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Abstract: The particle swarm optimization with an aging leader and challengers (ALC-PSO) 9 

algorithm is a recently developed optimization method which transplants the aging mechanism to 10 

PSO. The ALC-PSO prevents premature convergence and maintains the fast-converging feature 11 

of PSO. In this paper, a harmony search-based mechanism is used to handle the side constraints 12 

and it is combined with ALC-PSO, resulting in a new algorithm called HALC-PSO. These two 13 

algorithms are employed to optimize different types of skeletal structures with continuous and 14 

discrete variables. The results are compared to those of some other meta-heuristic algorithms. 15 

Keywords: Particle swarm optimization; aging mechanism; challengers; harmony search; 16 

algorithm; trusses; frames. 17 

 18 

1. Introduction 19 

Optimal design of engineering problems has received a great deal of attention in the recent 20 

decades. The aim of these problems is to minimize an objective function that is often the cost of 21 

the structure or a quantity directly proportional to the cost under certain constraints that may 22 

correspond to different engineering demands like stresses, displacements, maximum inter-story 23 

drift and other requirements. 24 

The recent generation of the optimization methods comprises of meta-heuristic algorithms 25 

that are proposed to solve complex problems. A meta-heuristic method often consists of a group 26 

of search agents that explore the feasible region based on both randomization and some specified 27 

                                                             

Corresponding author at: Centre of Excellence for Fundamental Studies in Structural Engineering, Iran University of Science and Technology, 

Narmak, Tehran, P.O. Box 16846-13114, Iran. Tel.: +98 21 77240104; fax: +98 21 77240398. 

E-mail address: alikaveh@iust.ac.ir (A. Kaveh). 



2 
 

rules (Kaveh [1]). The basic idea behind these stochastic search techniques is to simulate natural 28 

phenomena such as survival of the fittest, swarm intelligence and the cooling process of molten 29 

metals into a numerical algorithm. These algorithms are named according to the natural 30 

phenomenon used in the construction of the method (Dog˘an and Saka [2]). Genetic algorithm 31 

(GA) is inspired by Darwin’s theory about biological evolutions (Holland [3]; Goldberg [4]). 32 

Particle swarm optimization (PSO) simulates the social interaction behavior of the birds flocking 33 

and fish schooling (Eberhart and Kennedy [5]; Kennedy and Eberhart [6]). Ant colony 34 

optimization (ACO) imitates the manner that ant colonies find the shortest route between the 35 

food and their nest (Dorigo et al. [7]). Simulated annealing (SA) utilizes energy minimization 36 

that happens in the cooling process of molten metals (Kirkpatrick et al. [8]). Harmony search 37 

(HS) algorithm was conceptualized using the musical process of searching for a perfect state of 38 

harmony (Geem [9]). Charged system search (CSS) uses the electric laws of physics and the 39 

Newtonian laws of mechanics to guide the charged particles (Kaveh and Talatahari [10]). Firefly 40 

algorithm (FA) is based on the flashing patterns and behaviors of fireflies (Yang [11]). Ray 41 

Optimization (RO) is based on the Snell’s light refraction law when light travels from a lighter 42 

medium to a darker medium (Kaveh and Khayatazad [12]). Ant lion optimizer (ALO) mimics the 43 

hunting mechanism of ant lions in nature (Mirjalili [13]). 44 

In this article, two PSO-based algorithms are utilized for optimal design of skeletal 45 

structures. PSO is a population-based algorithm that has some advantages such as few 46 

parameters implementation, easy programming for computer, effective exploration of global 47 

solutions for some hard problems, and fast-converging behavior. However gBest, the historically 48 

best position of the entire swarm, leads all particles and when trapped at a local optimum may 49 

lead the entire swarm to that point resulting in a premature convergence. The PSO with an aging 50 

leader and challengers (ALC-PSO) algorithm, developed by Chen et al. [14], utilizes the aging 51 

theory in the particle swarm optimization to overcome this problem. ALC-PSO is characterized 52 

by assigning the leader of the swarm with a growing age and a lifespan. The lifespan is 53 

adaptively adjusted according to the leader’s leading power. If a leader shows strong leading 54 

power, it lives longer to attract the swarm toward better positions and once the leader reaches a 55 

local optimum, it fails to improve the quality of the swarm and gets aged quickly. In this case, 56 

new challengers emerge to replace the old leader resulting in diversity. By adding these 57 

mechanisms to PSO, the fast-converging feature can be preserved. On the other hand, ALC-PSO 58 
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has the ability to escape from local optima preventing premature convergence (Chen et al. [14]). 59 

The other method is harmony aging leader challenger particle swarm optimization (HALC-PSO) 60 

which utilizes HS algorithm in ALC-PSO for handling side constraints (Kaveh and Ilchi 61 

Ghazaan [15]). 62 

These two algorithms are employed to optimize different types of skeletal structures 63 

consisting of trusses and frames, with continuous and discrete variables. The design constraints 64 

are imposed according to the provisions of ASD-AISC (Allowable Stress Design, American 65 

Institute of Steel Construction) for truss structures (AISC [16]) and LRFD-AISC (Load and 66 

Resistance Factor Design) for frame structures (AISC [17]). Optimization results are compared 67 

to those of some other meta-heuristic algorithms. It appears that the proposed PSO variants are 68 

quite suitable for structural engineering problems. 69 

 70 

2. Optimum design of skeletal structures 71 

Size optimization of skeletal structures is known as benchmark in the field of optimization 72 

problems. The mathematical formulation of these problems can be expressed as: 73 
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where {X} is the vector containing the design variables; ng is the number of design variables; 74 

W({X}) presents weight of the structure; nm is the number of elements of the structure; ρi, Ai and 75 

Li denote the material density, cross-sectional area, and the length of the ith member, 76 

respectively. ximin and ximax are the lower and upper bounds of the design variable xi, respectively. 77 

gj({X}) denotes design constraints; and nc is the number of the constraints. 78 

In order to handle the constraints, the penalty approach is employed (Kaveh and Talatahari 79 

[18]). Thus, the objective function is redefined as follows: 80 

 81 
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 82 

where υ denotes the sum of the violations of the design constraints. The constant ε1 is set to unity 83 

and ε2 is set to 1.5 and ultimately increased to 3. Such a scheme penalizes the unfeasible 84 

solutions more severely as the optimization process proceeds. 85 

 Design constraints for truss and frame structures, studied in this paper, are briefly explained 86 

in the following sections. 87 

 88 

2.1.Constraint conditions for truss structures 89 

The stress and stability limitations of the members are imposed according to the provisions of 90 

ASD-AISC [16] as follows: 91 

 92 

The allowable tensile stresses for tension members are calculated as: 93 

 94 
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 95 

where Fy stands for the yield strength. 96 

The allowable stress limits for compression members are calculated depending on two 97 

possible failure modes of the members known as elastic and inelastic buckling: 98 

 99 

   

 for                                                   
23

12

for        
88

3

3

5
/

2
1

i2

2

i3

3

2

2















































c

i

c

i

c

i
y

c

i

i

C
E

C
CC

F
C









  (4) 

 100 

where E is the modulus of elasticity; λi is the slenderness ratio  i i ikl r  ; Cc denotes the 101 

slenderness ratio dividing the elastic and inelastic buckling regions (
22c yc E F ); k is the 102 

effective length factor (k is set 1 for all truss members); Li is the member length; and ri is the 103 

minimum radius of gyration. 104 
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In this design code provisions, the maximum slenderness ratio is limited to 300 for tension 105 

members, and it is recommended to be 200 for compression members. The other constraint 106 

corresponds to the limitation of the nodal displacements: 107 

 108 

0       1,  2,  ,  u

i i i nn     (5) 

 109 

where δi is the nodal deflection; δi
u
 is the allowable deflection of node i; nn is the number of 110 

nodes. 111 

 112 

2.2.Constraint conditions for frame structures 113 

Design constraints according to LRFD-AISC [17] requirements can be summarized as follows: 114 

(a) Maximum lateral displacement: 115 
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 116 

where ΔT is the maximum lateral displacement; H is the height of the frame structure; R is the 117 

maximum drift index (1/300). 118 

(b) The inter-story displacements: 119 

 120 
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 121 

where di is the inter-story drift; hi is the story height of the ith floor; ns is the total number of 122 

stories; RI is the inter-story drift index which is equal to 1/300. 123 

(c) Strength constraints: 124 
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 125 

where Pu is the required strength (tension or compression); Pn is the nominal axial strength 126 

(tension or compression); φc is the resistance factor (φc = 0.9 for tension, φc = 0.85 for 127 

compression); Mu is the required flexural strength; Mn is the nominal flexural strengths; and φb 128 

denotes the flexural resistance reduction factor (φb = 0.90). The nominal tensile strength for 129 

yielding in the gross section is computed as: 130 

.n g yP A F  (9) 

 131 

The nominal compressive strength of a member is computed as: 132 

.n g crP A F  (10) 
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 133 

where Ag is the cross-sectional area of a member, and k is the effective length factor determined 134 

by the approximated formula (Dumonteil [19]): 135 

 136 
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 137 

where GA and GB are stiffness ratios of columns and girders at two end joints, A and B, of the 138 

column section being considered, respectively. 139 
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 140 

3. Optimization algorithms 141 

Particle swarm optimization (PSO), introduced by Eberhart and Kennedy [5], is a population-142 

based method inspired by the social behavior of animals such as fish schooling and bird flocking. 143 

The PSO algorithm is initialized with a population of random candidate solutions in an n-144 

dimensional search space, conceptualized as particles. Each particle in the swarm maintains a 145 

velocity vector and a position vector. During each generation, each particle updates its velocity 146 

and position by learning from the best position achieved so far by the particle itself and the best 147 

position achieved so far across the whole population. Let Vi(vi
1
,vi

2
,…,vi

n
) and Xi(xi

1
,xi

2
,…,xi

n
) be 148 

the ith particle’s velocity vector and position vector, respectively, and M be the number of 149 

particles in a population. The update rules in the PSO algorithm are based on the following two 150 

simple equations (Shi and Eberhart [20]): 151 
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where ω is an inertia weight, pBesti(pBesti
1
, pBesti

2
,…, pBesti

n
) is the historically best position of 153 

particle i (i =1, 2, …, M), gBest(gBest
1
, gBest

2
, …, gBest

n
) is the historically best position of the 154 

entire swarm, r1
j
 and r2

j
 are two random numbers uniformly distributed in the range of [0,1], c1 155 

and c2 are two parameters to weigh the relative importance of pBesti and gBest, respectively and 156 

j(j=1, 2, …, n) represents the jth dimension of the search space. 157 

The PSO algorithm has very few parameters to adjust, which makes it particularly easy to 158 

implement and it is effective to explore global solutions for a variety of difficult optimization 159 

problems. Another advantage of PSO is that all particles learn from gBest in updating velocities 160 

and positions so the algorithm exhibits a fast-converging behavior. However, on multimodal 161 

problems, a gBest located at a local optimum may trap the whole swarm leading to premature 162 

convergence (Chen et al. [14]). Different variants of PSO have been developed to improve its 163 

performance and two of them are described in the following sections. 164 

 165 

3.1.Particle swarm optimization with an aging leader and challengers 166 
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In nature, when the leader of a colony gets too old to lead, new individuals emerge to challenge 167 

and claim the leadership. In this way, the community is always led by a leader with adequate 168 

leading power. Inspired by this natural phenomenon, Aging mechanism has been transplanted 169 

into PSO leading to ALC-PSO (Chen et al. [14]). In this method, the leader of the swarm ages 170 

and has a limited lifespan that is adaptively tuned according its leading power. When the lifespan 171 

is exhausted, the leader is challenged and replaced by newly generated particles. Therefore, the 172 

leader in ALC-PSO is not necessarily the gBest, but a particle with adequate leading power 173 

guaranteed by the aging mechanism. In this way, ALC-PSO prevents the premature convergence 174 

and maintaining the fast-converging feature of the PSO. Let us change gBest into Leader in the 175 

velocity update rule of the PSO as: 176 

 )x-.(Leader.rc )x-.(pBest.rc  . j

i

jj

22

j

i

j

i

j

11  j

i

j

i vv   (16) 

This technique consists of the following steps: 177 

Level 1: Initialization 178 

Step 1: ALC-PSO parameters are set. The initial locations of particles are created 179 

randomly in an n-dimensional search space and their associated velocities are set to 0. 180 

The best particle is selected as the Leader. Its age θ and lifespan Θ are initialized to 0 and 181 

Θ0 , respectively. 182 

Level 2: Search 183 

Step 1: Velocities are updated according to Eq. (16) and each particle moves to the new 184 

position based on its previous position and updated velocity as specified in Eq. (15). 185 

Step 2: The historically best position Xi (i = 1, 2, …, M) of each particle is saved as its 186 

Pbesti. Moreover, if the best location found in this iteration is better than the Leader, then 187 

the Leader is updated.  188 

Step 3: The Leader lifespan is updated by the following formulas during a Leader’s 189 

lifetime (i.e., θ =0, 1, …, Θ): 190 

 191 
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where gBest and f (gBest(θ)) are the historically best solution and its objective function 195 

value when the age of the Leader is θ, respectively. These formulas create four cases: 196 

I. Good Leading Power: If Eq. (17) is satisfied, it can be deduced that Eq. (18) and Eq. 197 

(19) also hold. Hence, the current Leader has a strong leading power to improve the 198 

swarm. Therefore, the lifespan Θ is increased by 2.  199 

II. Fair Leading Power: If only Eqs. (18) and (19) are satisfied, the lifespan Θ is 200 

increased by 1 because it can be deduced that the current Leader still has potential to 201 

improve the swarm in the following iterations. 202 

III. Poor Leading Power: If only Eq. (19) is satisfied, the lifespan Θ remains unchanged 203 

since the current Leader only has the ability to improve itself. 204 

IV. No Leading Power: If none of the above formulas is satisfied, it demonstrates that the 205 

current Leader is not able to improve the swarm in the subsequent iterations. 206 

Therefore, the lifespan Θ decreased by 1. 207 

After the lifespan Θ is adjusted, the age θ of the Leader is increased by 1. If the lifespan 208 

is exhausted, i.e., θ ≥ Θ, go to Step 4. Otherwise, go to Level 3. 209 

Step 4: A new particle that is called Challenger has to be created to challenge and try to 210 

replace the old Leader. With probability like pro, Challenger
j
  is determined randomly in 211 

the jth dimension. Otherwise, Challenger
j
 is inherited from the Leader: 212 
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  213 

where L
j
 and U

j
 are the lower and upper bounds of the j-th design variable, respectively. 214 

rnd is a random number in the interval [0,1]. In this paper, pro is set to 1/n. If the 215 
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Challenger is exactly the same as the previous Leader, one dimension of Challenger is 216 

randomly selected and its value is set at random with in its domain. 217 

Step 5: The Challenger is utilized as a temporary Leader for T iterations to evaluate its 218 

leading power. In these T iterations, the velocity is updated by: 219 
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 220 

The Challenger is accepted as Leader if any pBest is improved during these T iterations 221 

and its age θ and lifespan Θ are respectively set to 0 and Θ 0. Otherwise, the previous 222 

Leader is used and its lifespan Θ remains unchanged and its age θ is reset to θ = Θ-1. 223 

Level 3: Terminal condition check 224 

Step 1: After the predefined maximum evaluation number, the optimization process is 225 

terminated. 226 

 227 

3.2. Harmony search added to ALC-PSO  228 

In order to deal with the case of an agent violating side constraints is an important issue in most 229 

of the meta-heuristic algorithms. One of the simplest approaches is utilizing the nearest limit 230 

values for the violated variable. Alternatively, one can force the violating particle to return to its 231 

previous position, or one can reduce the maximum value of the velocity to allow fewer particles 232 

to violate the variable boundaries. Although these approaches are simple, they are not 233 

sufficiently efficient and may lead to reduce the exploration of the search space (Kaveh and 234 

Talatahari [10]). 235 

This problem has previously been addressed and solved using the harmony search-based 236 

handling approach (Kaveh and Talatahari [21]; [22]; [10]). In this technique, there is a possibility 237 

like HMCR (harmony memory considering rate) that specifies whether the violating component 238 

must be selected randomly from pBest or it should be determined randomly in the search space. 239 

So if xi
j
 is the jth component of the ith particle which violates the boundary limitation, it must be 240 

regenerated by the following formula: 241 

 242 
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 243 

where “w.p.” is the abbreviation for “with the probability” and PAR is the pitch adjusting rate 244 

which varies between 0 and 1. k is identified randomly from [1, M] (M be the number of 245 

particles). By adding this variable constraint handling approach to ALC-PSO, the HALC-PSO 246 

algorithm is developed. 247 

 248 

4. Test problems and discussion of optimization results  249 

Four skeletal structures are optimized for minimum weight with the cross-sectional areas of the 250 

members being the design variables to verify the efficiency of the present methods. The 251 

parameters of ALC-PSO and HALC-PSO are set as follows: c1 and c2 are both set to 2; ω is set 252 

to 0.4; the legal velocity range Vmax is considered 50% of the search range; Θ0 and T are 253 

respectively set to 60 and 2. In HALC-PSO, HMCR is taken as 0.95 and PAR is set to 0.10. The 254 

population of 30 particles are utilized in test examples 1,2 and 4, while there are only 15 particles 255 

in test problem 3. To reduce statistical errors, each test is repeated 30 times independently. For 256 

each independent run, 20,000 evaluations are considered as maximum function evaluations in 257 

test examples 1, 3 and 4 while in the case of test problem 2 it is set equal to 30,000. 258 

In the discrete problems, particles are allowed to select discrete values from the 259 

commercially available cross sections (real numbers are rounded to the nearest integer in each 260 

iteration). This method is chosen due to its easy computer implementation. The algorithms are 261 

coded in MATLAB and the structures are analyzed using the direct stiffness method. 262 

 263 

4.1. Spatial 120-bar dome shaped truss 264 

The schematic and element grouping of the spatial 120-bar dome truss are shown in Fig. 1. For 265 

clarity, not all the element groups are numbered in this figure. The 120 members are categorized 266 

into seven groups because of symmetry. The modulus of elasticity is 30,450 ksi (210 GPa) and 267 

the material density is 0.288 lb/in
3
 (7971.810 kg/m

3
). The yield stress of steel is taken as 58.0 ksi 268 
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(400 MPa). The dome is considered to be subjected to vertical loading at all the unsupported 269 

joints. These loads are taken as −13.49 kips (−60 kN) at node 1, −6.744 kips (−30 kN) at nodes 2 270 

through 14, and −2.248 kips (−10 kN) at the all other nodes. Element cross-sectional areas can 271 

vary between 0.775 in
2
 (5 cm

2
) and 20.0 in

2
 (129.032 cm

2
). Constraints on member stresses are 272 

imposed according to the provisions of ASD-AISC [16], as defined by Eqs. (3,4). Displacement 273 

limitations of ±0.1969 in (±5 mm) are imposed on all nodes in x, y and z coordinate directions. 274 

Table 1 shows the best solution vectors, the corresponding weights, the average weights and 275 

the Standard deviation for present algorithms and some other meta-heuristic algorithms. It can be 276 

seen from Table 1 that the best design is obtained by HALC-PSO which is 33250.01 lb. ICA 277 

(Kaveh and Talatahari [18]), CSS (Kaveh and Talatahari [23]) and IRO (Kaveh et al. [24]) 278 

algorithms found the best solution after 6,000, 7,000 and 18,300 structural analyses, respectively. 279 

ALC-PSO and HALC-PSO achieved the optimum design after 10,000 and 13,000 structural 280 

analyses, respectively. However, they can obtain the ICA and IRO optimized designs after about 281 

5,500 structural analyses and CSS optimized designs after about 7,000 structural analyses. Fig. 2 282 

compares the best and average convergence history for the present algorithms. 283 

 284 

4.2. Spatial 582-bar tower 285 

The second test problem regards the spatial 582-bar tower truss with the height of 3149.6 in (80 286 

m), shown in Fig. 3. The tower is optimized for minimum volume with the cross-sectional areas 287 

of the members being the design variables. The symmetry of the tower about x-axis and y-axis is 288 

considered to group the 582 members into 32 independent sizing variables. A single load case is 289 

considered consisting of the lateral loads of 1.12 kips (5.0 kN) applied in both x- and y-directions 290 

and a vertical load of -6.74 kips (-30 kN) applied in the z-direction at all nodes of the tower. A 291 

discrete set of standard steel sections selected from W-shape profile list based on area and radii 292 

of gyration properties is used to size the variables. The lower and upper bounds of sizing 293 

variables are taken as 6.16 in
2
 (39.74 cm

2
) and 215.0 in

2
 (1387.09 cm

2
), respectively (Hasancebi 294 

et al. [25]). The stress and stability limitations of the members are imposed according to the 295 

provisions of ASD-AISC [16]. Furthermore, nodal displacements in all coordinate directions 296 

must be smaller than ±3.15 in (±8.0 cm). 297 
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Optimization results are presented in Table 2. ALC-PSO obtained the lightest design overall. 298 

HALC-PSO obtained the second best design, which is only 0.5% larger than its counterpart 299 

found by ALC-PSO. The optimized volumes of DHPSACO (Kaveh and Talatahari [26]) and BB-300 

BC (Kaveh and Talatahari [27]), respectively, are 4% and 5.4% larger than that of ALC-PSO. 301 

DHPSACO, BB-BC, ALC-PSO and HALC-PSO required 8,500, 12,500, 15,000 and 16,000 302 

structural analyses to converge to the optimum, respectively. However, the proposed method can 303 

obtain the DHPSACO and BB-BC optimized designs after about 5,500 and 5,000 structural 304 

analyses, respectively. Fig. 4 shows that the maximum element stress ratio evaluated at the 305 

optimum design for ALC-PSO and HALC-PSO is 99.87% and 99.34%, respectively. Nodal 306 

displacements evaluated at the optimized designs are shown in Figs. 5 through 7. Some stress 307 

and displacement constraint margins evaluated for ALC-PSO and HALC-PSO are critical. 308 

 309 

4.3. Three-bay fifteen-story frame 310 

The schematic, applied loads and the numbering of member groups for this test problem are 311 

shown in Fig. 8. This frame consists of 64 joints and 105 members. The displacement and AISC-312 

LRFD combined strength constraints are the performance constraint of this example (AISC 313 

[17]). An additional constraint of displacement control is the sway of the top story that is limited 314 

to 9.25 in (23.5 cm). The material has a modulus of elasticity equal to E=29,000 ksi (200 GPa) 315 

and a yield stress of Fy=36 ksi (248.2 MPa). The effective length factors of the members are 316 

calculated as kx≥0 for a sway-permitted frame and the out-of-plane effective length factor is 317 

specified as ky=1.0. Each column is considered as non-braced along its length, and the non-318 

braced length for each beam member is specified as one-fifth of the span length. 319 

Table 3 compares the designs developed by HBB-BC (Kaveh and Talatahari [27]), ICA 320 

(Kaveh and Talatahari [18]) and the present algorithms. It can be seen that the HALC-PSO 321 

designs a structure that is 11%, 8% and 0.2% lighter than the HBB-BC, ICA and ALC-PSO, 322 

respectively. HBB-BC and ICA found the best solution after 9,500 and 6,000 structural analyses, 323 

respectively. ALC-PSO and HALC-PSO, respectively, require 13,395 and 9,390 analyses to 324 

converge to their best designs. However, they can obtain the ICA optimized design after about 325 

2,000 analyses. The average optimal weights of ALC-PSO and HALC-PSO for the 30 326 
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independent runs are 88,330 lb and 88,114 lb, respectively. The convergence curves of the 327 

present algorithms for the best and average optimum designs are compared in Fig. 9. 328 

 329 

4.4. Three-bay twenty four-story frame 330 

Fig. 10 shows the structural scheme, service loading conditions and member group numbering of 331 

the three-bay twenty four-story frame as the last test problem in this study (Degertekin [28]). 332 

This frame consists of 100 joints and 168 members. The member grouping results in 16 column 333 

sections and 4 beam sections for a total of 20 design variables. In this example, each of the four 334 

beam element groups is chosen from all 267 W-shapes, while the 16 column member groups are 335 

selected from only W14 sections. The material has a modulus of elasticity equal to E=29,732 ksi 336 

(205 GPa) and a yield stress of Fy=33.4 ksi (230.3MPa). The frame is designed following the 337 

AISC-LRFD specifications (AISC [17]). The effective length factors of the members are 338 

calculated as kx≥0 for a sway-permitted frame and the out-of-plane effective length factor is 339 

specified as ky=1.0. All columns and beams are considered as non-braced along their lengths. 340 

Results of the present study and some meta-heuristic techniques are provided in Table 4. It 341 

can be seen that best design is found by using HALC-PSO which is 201,906 lb. The optimized 342 

weights of ACO (Camp et al. [29]), HS (Degertekin [28]), ICA (Kaveh and Talatahari [18]) and 343 

ALC-PSO, respectively, are 8.4%, 6.0%, 5.3%, and 0.2% larger than that of HALC-PSO. The 344 

ICA required 7,500 structural analyses to converge to the optimal solution, which is less than 345 

number of analyses required by other methods. Here, 13,000 analyses were required by ALC-346 

PSO and 18,000 analyses by HALC-PSO. However, they can obtain the ICA optimized design 347 

after about 5,500 analyses. Member stress ratio values computed at the optimized design are 348 

shown in Fig. 11. The maximum values of the stress ratio for ALC-PSO and HALC-PSO are 349 

96.64% and 96.91%, respectively. Fig. 12 shows the inter-story drift constraint margins. It can be 350 

seen that the inter-story in many stories for ALC-PSO and HALC-PSO are close to the allowable 351 

values. 352 

 353 

5. Concluding remarks 354 
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In this study, the particle swarm optimization with an aging leader and challengers is employed 355 

for size optimization of skeletal structures. Also, a new meta-heuristic algorithm so-called 356 

HALC-PSO is developed to improve the performance of the ALC-PSO method. This technique 357 

applies Harmony Search to handle the side constraints. 358 

The merits of these two algorithms lie in three aspects. First, the whole swarm is attracted by 359 

a leader with adequate leading power just like what the gBest does in the PSO. Thus, the fast 360 

converging feature of the PSO is preserved. Second, when a leader has poor leading power, gets 361 

aged quickly and new challengers emerge to replace the old leader. Therefore, the algorithm can 362 

maintain diversity and prevent premature convergence. Finally, the proposed algorithms still 363 

have a simple structure because the mechanisms added to PSO are conceptually simple. 364 

The efficiency of ALC-PSO and HALC-PSO is investigated to find optimum design of truss 365 

and frame structures with continuous and discrete variables. Optimization results are compared 366 

to those of some other well-known meta-heuristics. The optimum design obtained by HALC-367 

PSO is lighter than other methods in three of four examples, and its reliability of search is shown 368 

through statistical information. The convergence rate of ALC-PSO and HALC-PSO are 369 

approximately identical, and better than other methods. To sum up, optimization results confirm 370 

the validity of the proposed approaches. 371 

 372 
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 442 

Figure captions 443 
 444 
Fig. 1.  Schematic of the 120-bar dome shaped truss 445 
 446 

Fig. 2.  Convergence curves of the 120-bar dome problem 447 
 448 

Fig. 3.  Schematic of the spatial 582- bar tower 449 
 450 

Fig. 4.  Stress margins evaluated at the optimum design of the 582-bar tower problem 451 
 452 

Fig. 5.  Existing displacement in the x-direction for the 582-bar truss 453 
 454 

Fig. 6.  Existing displacement in the y-direction for the 582-bar truss 455 
 456 

Fig. 7.  Existing displacement in the z-direction for the 582-bar truss 457 
 458 

Fig. 8.  Schematic of the 3-bay 15-story frame 459 
 460 

Fig. 9.  Convergence curves of the 3-bay 15-story frame problem 461 
 462 

Fig. 10.  Schematic of the 3-bay 24-story frame 463 
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 464 

Fig. 11.  Stress margins evaluated at the optimum design of the 3-bay 24-story frame problem 465 
 466 

Fig. 12.  Interstory-drift margins evaluated at the optimum design of the 3-bay 24-story frame problem 467 
  468 



19 
 

 469 

Table 1. Optimization results obtained for the 120-bar dome problem 470 

Element group 

Optimal cross-sectional areas (in2 ) 

Kaveh and 
Talatahari [18] 

Kaveh and 
Talatahari [23] 

Kaveh et al. [24] 
Present work 

ALC-PSO HALC-PSO 

1 
2 
3 
4 
5 
6 
7 

3.0275 3.027 3.0252 3.02397 

14.72544 

3.02422 

14.4596 14.606 14.8354 14.68930 

5.2446 5.044 5.1139 5.04683 5.08822 

3.1413 3.139 3.1305 3.13888 3.13922 

8.4541 8.543 8.4037 8.53031 8.51643 

3.3567 3.367 3.3315 3.29159 3.28574 

2.4947 2.497 2.4968 2.49686 2.49644 

Weight (lb) 33,256.2 33,251.9 33,256.48 33,250.18 33,250.01 
Average weight (lb) N/A N/A 33280.85 33256.02 33256.93 

Standard deviation (lb) N/A N/A N/A 5.28 4.16 

1in2=6.4516cm2, 1lb=4.4482N 471 

 472 

Table 2. Optimization results obtained for the 582-bar tower problem 473 

Element Group 

Optimal W-shaped sections 

Kaveh and 
Talatahari [26] 

Kaveh and 
Talatahari [27] 

Present work 

ALC-PSO HALC-PSO 

1 W8×24 W8×24 W8×21 W8×21 
2 W12×72 W24×68 W14×90 W21×93 

3 W8×28 W8×28 W8×24 W8×24 
4 W12×58 W18×60 W10×60 W12×58 
5 W8×24 W8×24 W8×24 W8×24 
6 W8×24 W8×24 W8×21 W8×21 
7 W10×49 W21×48 W10×49 W10×45 
8 W8×24 W8×24 W8×24 W8×24 
9 W8×24 W10×26 W8×21 W8×21 
10 W12×40 W14×38 W10×45 W12×50 

11 W12×30 W12×30 W8×24 W8×24 
12 W12×72 W12×72 W10×68 W21×62 
13 W18×76 W21×73 W12×72 W14×74 
14 W10×49 W14×53 W12×50 W10×54 
15 W14×82 W18×86 W18×76 W18×76 
16 W8×31 W8×31 W8×31 W8×31 
17 W14×61 W18×60 W14×61 W10×60 
18 W8×24 W8×24 W8×24 W8×24 

19 W8×21 W16×36 W8×21 W8×21 
20 W12×40 W10×39 W12×40 W12×40 
21 W8×24 W8×24 W8×24 W8×24 
22 W14×22 W8×24 W8×21 W8×21 
23 W8×31 W8×31 W8×21 W10×22 
24 W8×28 W8×28 W8×24 W8×24 
25 W8×21 W8×21 W8×21 W8×21 
26 W8×21 W8×24 W8×21 W8×24 
27 W8×24 W8×28 W8×24 W6×25 

28 W8×28 W14×22 W8×21 W8×21 
29 W16×36 W8×24 W8×21 W8×21 
30 W8×24 W8×24 W8×24 W8×24 
31 W8×21 W14×22 W8×21 W8×21 
32 W8×24 W8×24 W8×24 W8×24 

Volume (in3) 1,346,227 1,365,143 1,294,682 1,301,106 
Average Volume (in3) N/A N/A 1,304,307 1,312,284 

Standard deviation (in3) N/A N/A 4,003 5,895 
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 474 

Table 3. Optimization results obtained for the 3-bay 15-story frame problem 475 

Element Group 

Optimal W-shaped sections 

Kaveh and Talatahari 
[27] 

Kaveh and Talatahari 
[18] 

Present work 

ALC-PSO HALC-PSO 

1 W24×117 W24×117 W14×99 W14×99 

2 W21×132 W21×147 W27×161 W27×161 
3 W12×95 W27×84 W27×84 W27×84 
4 W18×119 W27×114 W24×104 W24×104 
5 W21×93 W14×74 W14×61 W14×61 
6 W18×97 W18×86 W30×90 W30×90 
7 W18×76 W12×96 W14×48 W18×50 
8 W18×65 W24×68 W12×65 W14×61 
9 W18×60 W10×39 W8×28 W8×28 

10 W10×39 W12×40 W10×39 W10×39 
11 W21×48 W21×44 W21×44 W21×44 

Weight (lb) 97,689 93,846 87,054 86,916 
Average weight (lb) N/A N/A 88,114 88,329 

Standard deviation (lb) N/A N/A 570 904 

 476 

Table 4. Optimization results obtained for the 3-bay 24-story frame problem 477 

Element Group 

Optimal W-shaped sections 

Camp et al. 
[29] 

Degertekin 
[28] 

Kaveh and 
Talatahari 

[18] 

Present work 

ALC-PSO HALC-PSO 

1 W30×90 W30×90 W30×90 W30×90 W30×90 
2 W8×18 W10×22 W21×50 W6×15 W6×15 
3 W24×55 W18×40 W24×55 W24×55 W24×55 
4 W8×21 W12×16 W8×28 W6×8.5 W6×8.5 
5 W14×145 W14×176 W14×109 W14×159 W14×159 
6 W14×132 W14×176 W14×159 W14×132 W14×132 
7 W14×132 W14×132 W14×120 W14×82 W14×109 

8 W14×132 W14×109 W14×90 W14×68 W14×74 
9 W14×68 W14×82 W14×74 W14×68 W14×61 
10 W14×53 W14×74 W14×68 W14×74 W14×74 
11 W14×43 W14×34 W14×30 W14×34 W14×30 
12 W14×43 W14×22 W14×38 W14×22 W14×22 
13 W14×145 W14×145 W14×159 W14×90 W14×90 
14 W14×145 W14×132 W14×132 W14×99 W14×99 
15 W14×120 W14×109 W14×99 W14×109 W14×90 

16 W14×90 W14×82 W14×82 W14×99 W14×90 
17 W14×90 W14×61 W14×68 W14×74 W14×74 
18 W14×61 W14×48 W14×48 W14×43 W14×38 
19 W14×30 W14×30 W14×34 W14×34 W14×38 
20 W14×26 W14×22 W14×22 W14×22 W14×22 

Weight (lb) 220,465 214,860 212,640 202,410 201,906 
Average weight (lb) 229,555 222,620 N/A 208,112 206,463 

Standard deviation (lb) 4,561 N/A N/A 5,075 3,377 

 478 

 479 

 480 
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 481 

Fig. 1.  Schematic of the 120-bar dome shaped truss 482 
 483 
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 484 

 485 

 486 

 487 

 488 

Fig. 2.  Convergence curves of the 120-bar dome problem 489 
 490 

 491 
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 492 

Fig. 3.  Schematic of the spatial 582- bar tower 493 
 494 
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 495 

Fig. 4.  Stress margins evaluated at the optimum design of the 582-bar tower problem 496 
 497 

 498 
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 500 

Fig. 5.  Existing displacement in the x-direction for the 582-bar truss 501 
 502 
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 504 

Fig. 6.  Existing displacement in the y-direction for the 582-bar truss 505 
 506 
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 507 

Fig. 7.  Existing displacement in the z-direction for the 582-bar truss 508 
 509 
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 510 

Fig. 8.  Schematic of the 3-bay 15-story frame 511 
 512 

 513 
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 515 

Fig. 9.  Convergence curves of the 3-bay 15-story frame problem 516 
 517 
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 519 

Fig. 10.  Schematic of the 3-bay 24-story frame 520 
 521 
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 523 

Fig. 11.  Stress margins evaluated at the optimum design of the 3-bay 24-story frame problem 524 
 525 
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 527 

Fig. 12.  Interstory-drift margins evaluated at the optimum design of the 3-bay 24-story frame problem 528 
 529 
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