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Abstract
In this article, a modified dolphin monitoring (MDM) operator 
is introduced and used to improve the performance of the col-
liding bodies optimization (CBO) algorithm for optimal design 
of steel structures (CBO-MDM). The performance of the CBO, 
enhanced colliding bodies optimization (ECBO) and CBO-
MDM are compared through three well-established struc-
tural benchmarks. The optimized designs obtained by these 
algorithms are compared, and the results show that the per-
formance of CBO-MDM is superior to those of the other two 
algorithms.  The MDM is found to be a suitable tool to enhance 
the performance of the CBO algorithm. 
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1 Introduction
One of the most important applications of optimization in 

knowledge engineering is optimal design that leads to correct 
use of what is limited in each engineering problems [1]. Struc-
tural optimization leads economical design requiring less mate-
rial, computational time and human effort [2]. Meta-heuristic 
algorithms are widely used as robust tools for structural opti-
mization. Some of these can be listed as: Genetic Algorithms 
(GA) [3], Particle Swarm Optimization (PSO) [4], Charged Sys-
tem Search algorithm (CSS) [5], Krill-herd algorithm (KA) [6], 
Ray Optimization (RO) [7,8], Dolphin Echolocation Optimiza-
tion (DEO) [2,9], Colliding Bodies Optimization (CBO) [10], 
Enhanced Colliding Bodies Optimization algorithm (ECBO) 
[11], Natural Forest Regeneration algorithm (NFR) [12], Water 
Evaporation Optimization (WEO) [13], Tug of War Optimiza-
tion (TWO) [14], Gray Wolf Optimizer (GWO) [15], Ant Lion 
Optimizer (ALO) [16], Simplified Dolphin Echolocation algo-
rithm (SDEA) [17].

In this study, weight optimization of frame structures is 
examined. Sections are selected from a standard set of steel 
sections such as American Institute of Steel Construction 
(AISC) wide-flange W-shapes. Benchmarks problems of this 
paper are optimized by the CBO and the ECBO algorithm. In 
this paper, Modified Dolphin Monitoring (MDM) is introduced 
and it is shown how it can be improve the performance of the 
CBO algorithm. MDM is a modified version of the Dolphin 
Monitoring (DM), in this modified version some new proce-
dures are used to augment the DM ability to reach the global 
search and prevent entrapment in local optima. Results show 
that the performance of CBO-MDM algorithm is improved in 
comparison to the CBO and ECBO algorithms. 

This paper is organized as follow: After this introductory 
section, a brief explanation of the CBO and ECBO algorithms 
is provided in section 2. Modified dolphin monitoring is pre-
sented in section 3. In section 4, the formulations of the strength 
constraints of AISC load and resistance factor design specifi-
cations and displacement constraints are provided. Section 5 
includes three well-known benchmark problems. Concluding 
remarks are presented in the final section.
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2 CBO and ECBO algorithms
The main steps of colliding bodies optimization algorithm 

are presented as follows [8]:
1. Initialization: The initial positions of all the CBs are selected 

randomly in the search space. It is mimicked as position of 
some bodies.

2. Search: The value of mass for each CB is assessed, the mag-
nitude of each mass depends on the quality of each CB’s 
cost function. CBs are sorted according to their mass in 
decreasing order in a way that better CBs and worse CBs are 
assigned as stationary body and moving body, respectively. 
Stationary bodies and moving bodies are equally divided 
into two groups in CBO algorithm. Moving bodies move to 
stationary bodies and their velocity depend on the distance 
between them and stationary bodies, velocity of stationary 
bodies are considered as zero before collision. New position 
of each CBs after collision are calculated by collision laws.

3. Termination condition check: After the predefined parame-
ter iteration number, the optimization process is terminated.
Additionally in this paper an enhanced form of the CBO 

(ECBO) is applied to frame structures. ECBO algorithm uses a 
memory to save better results. It should be added that this algo-
rithm employs a random vector to improve the results.

3 Modified dolphin monitoring
The correct adjusting of parameters of each algorithm 

based on the type of problem is one of the important aspects 
that must be adhered regarding the meta-heuristic algorithms. 
This issue mostly depends on designer’s personal experience 
and is therefore considered a disadvantage for meta-heuristic 
algorithms. Incorrect adjusting of algorithm parameters may 
result in an algorithm to be trapped in local optima solution or 
solutions with a penalty. Also, some algorithms are only able to 
appropriately solve particular problems. One of the conclusions 
obtained by reviewing convergence factor at any loop is that 
the probability of early trapped algorithm in the local optima 
can be reduced with a population having a proper dispersion 
in the entire search space. Additionally, the ability to achieve 
global optima algorithm is increased. 

The dolphin monitoring method was recently proposed to 
control the convergence factor, Kaveh and Farhoudi [18]. This 
method is modified in this paper and is called the modified dol-
phin monitoring. The purpose of this modification is to efficiently 
control the population dispersion to strengthen the ability of algo-
rithms. This version also does not cause a change in the structure 
of algorithms, but adds features such as modified dolphin moni-
toring which must be applied at the end of each loop range is 
defined to the average locations for each variable for a specified 
radius factor from standard deviation and this coefficient is equal 
to 15% in this study, In other word the range for each variable is 
equal to average ± (15%) standard deviation. In each loop, the 
percent of the population for each variable in the range (available 

population dispersion index) must be equal to the amount speci-
fied by Eq. (1). 

In the above equation, MPi is mandatory population disper-
sion for ith loop and the present dispersion of population index 
should reach this amount in each loop. LoopNumber is the total 
number of loops. It should be mentioned that the value of MP 
never reaches to 1 and its maximum value is 0.7. This action 
makes the algorithm more flexible and when the MP reaches 
to 1, the total population must be necessarily placed within the 
mentioned range. However, if the MP reaches to a value of 0.7, 
there will still remain a maximum chance for search.

3.1 Modified dolphin monitoring method
1.) Calculating the MP in each loop using Eq. (1).
2.) Calculating the population within the mentioned range for 

each variable in each loop and calling it as available popu-
lation dispersion index.
3.a) If the available population dispersion index is greater 

than the mandatory population dispersion, the algorithm 
is moving faster than what is expected to the optimal area 
(the same range) and the available population dispersion 
index should be decreased. To do this, the modified dol-
phin monitoring has considered two mechanisms:

Replacing the variable of interest from population 
which is in the range with:
3.a.1) The variable of interest from available popu-

lation which are out of the range
3.a.2) Values that are randomly generated within 

the permitted range for each variable.
The modified dolphin monitoring uses both mech-
anisms at the same time with a probability of 50 
percent. 

3.b) If the available population dispersion index is smaller 
than the mandatory population dispersion, algorithm is 
converging slower than what is expected to an optimal 
area. In this case, the available population dispersion 
index should be increased. To do this, the modified 
dolphin monitoring has considered two mechanisms 
same as before: 

Replacing the variable of interest from population 
which is out of the range with:
3.b.1) The best available optimal variable to the 

stage.
3.b.2) Values that are in the desired range.
Both mechanisms are used with a probability of 50 
percent, as the former case.

The first mechanism holds the algorithm not to move 
away from the best solution and makes the range opti-
mal up to that point and also continues to seek achieved 
optimum solutions up to that point.

MP i
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For further clarity, the pseudo-code of the third step (con-
taining 3.a and 3.b) is presented in the following:
--------------------------------------------------------------------------
for j = 1:number of variables

while available population dispersion index(j) ~= manda-
tory population dispersion(j)

if available population dispersion index(j) > mandatory 
population dispersion(j)

if rand < 0.5
variable of interest from population which are in the 

range = variable of interest from available population which 
are out of the range;

else
variable of interest from population which are in the 

range = values that are randomly generated within the permit-
ted range for jth variable;

end
elseif available population dispersion index(j) < manda-

tory population dispersion(j)
if rand < 0.5

variable of interest from population which are out 
of the range = the best available optimal variable to the stage;

else
variable of interest from population which are out 

of the range = values that are in the  desired range;
end

end
end

end
--------------------------------------------------------------------------

4 Formulation of the optimization problem
In this formulation, the aim is to minimize the weight of 

frame structures besides satisfying certain design constraints. 
Design constraints include strength and displacements con-
straints according to LRFD-AISC specification [19].  The 
mathematical formulation can be expressed as follow:

Find x x x x x Sng i i{ } = ∈[ , ,..., ]
1 2

To minimize W ALi i i
i

nm
({x}) =

=
∑ρ
1

where {x} is a set of design variables containing the cross 
sectional area of W-sections; ng is the numbers of member 
groups (number of design variables); W({x}) is the weight of 
the structure; nm is the number of elements of the structure; 
ρi is the material density of the member i; Ai and Li denote the 
cross-sectional area and the length of the member i, respec-
tively. Here, xi is the number of a W-section and Ai is the cross-
sectional area of the ith group.

In this study, discrete optimization is considered, and the ith 
variable is selected from Si as follow:

Thus the problem can be solved as discrete optimization 
problem, r(i) is the last available discrete value. To control the 
constraints, penalty approach is used as follow:

where fitness(x) and ν are the fitness function and sum of the 
violations of the design. In this study, ε1 and ε2 are set to 0.3 
and 1, respectively, and nc is the total number of constraints for 
each individual design.

According to AISC-ASD [19] constraints are as follow:
(a) Maximum lateral displacement

where ∆T is the maximum lateral displacement of the roof; 
H is the height of the frame structure; R is the maximum drift 
index (in this study it is equal to 1/300).

(b) The inter story drift constraints

where di is the inter story drift; hi is the story height of the ith 
floor; ns is the total number of stories; Rl denotes the inter story 
drift index and its limitation is like R index.

(c) Strength constraints

where Pu is the required strength (tension or compression); Pn 
is the nominal axial strength (tension or compression); Øc is the 
resistance factor (Øc  = 0.9 for tension and Øc  = 0.85 for com-
pression); Mu (containing Mux and Muy) is the required flexural 
strengths; Mn (containing Mnx and Mny)  is the nominal flexural 
strengths (for two-dimensional frames Muy = 0 and Mny = 0 ); and 
Øb presents the flexural resistance reduction factor (Øb = 0.90). 
The nominal tensile strength for yielding in the gross section is 
evaluated as follow:

and the nominal compressive strength of a member is cal-
culated by:
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where Ag is the cross-sectional area of a member and k is the 
effective length factor that is calculated by the approximate for-
mula for unbraced frames based on the study of Dumonteil [20].

where GA and GB are stiffness ratios of columns and girders at 
the two end joints, A and B, of the column section, respectively.

5 Optimum design of steel frame using CBO, ECBO 
and CBO-MDM

In this section, three benchmark frame structures are con-
sidered to investigate the performance of the CBO-MDM in 
comparison with CBO and ECBO algorithms. Minimizing the 
weight of three frame structures is the aim of this study. These 
frames are:

A 1–bay 10-story frame
A 3-bay 15-story frame
A 3-bay 24-story frame
In this study, a population of n = 60 is used for all the algo-

rithms (CBO, ECBO and CBO-MDM). One thousand iterations 
are peformed as the maximum number of iterations. For more 
precise study, each problem was solved 100 times indepen-
dently. All the considered algorithms can only select discrete 
values from the permissible cross section for each problem.

All the problems and algorithms are coded in MATLAB 
and the frame structures are analyzed using a direct stiffness 
method. It should be noted that the purpose of optimal solution 
is to find the best answer among answers for each algorithm.

5.1. A 1-bay 10-story frame
Figure 1 illustrates the topology, applied loads and number-

ing of the member groups for a one-bay 10-story frame. The 
element grouping results in four beam sections and five col-
umn sections for a total of nine design variables. Beam element 
groups are selected from 267 W-sections, and column groups 
are chosen from only W14 and W12 sections.

The modulus of elasticity is equal to E = 200GPa (29 000 
ksi) and the yield stress is 248.2MPa (36 ksi). The effective 
length factors of the members are calculated as Kx ≥ 1.0 for 
a sway-permitted frame, and the out-of-plane effective length 
factor is specified as Ky = 1.0. Each column is considered as 
non-braced along its length, and the non-braced length for each 
beam member is specified as 1/5 of the span length. The frame 
is designed according to the LRFD specifications [19] and con-
sideration of Section 4.

Fig. 1 Schematic of the 1-bay 10-story planar frame.

Table 1 provides a comparison of the optimal designs obtained 
by CBO, ECBO and CBO-MDM algorithms. This table contains 
best solution vector and the best, worst and mean weights for all 
the considered algorithms after 100 individual run.
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Table 1 Optimal designs of the CBO, ECBO and CBO-MDM for the 1-bay 

10-story frame

Element group
Optimal W-shaped sections

CBO ECBO CBO-MDM

1 W14x211 W14x211 W14x211

2 W14x159 W14x176 W14x176

3 W14x132 W14x145 W14x132

4 W14x99 W12x106 W14x9

5 W14x61 W12x79 W14x61

6 W40x149 W33x118 W33x118

7 W30x99 W30x99 W30x99

8 W27x94 W24x84 W27x84

9 W18x50 W21x55 W21x44

Best weight (kN) 290.69 286.8 277.28

Worst weight (kN) 320.89 323.55 298.4

Mean weight (kN) 304 302.6 285.16

It can be seen that the CBO-MDM has reached the lightest 
result compared to the CBO and ECBO algorithms. Also the 
CBO-MDM obtained better mean weight among other algo-
rithms. The best weight of the CBO, ECBO and CBO-MDM 
are 290.69 kN, 286.8 kN and 277.28 kN, respectively. The 
CBO, ECBO and CBO-MDM algorithms obtained the optimal 
design after 225, 747 and 854 iterations respectively. Addition-
ally the CBO-MDM reached the optimal design of CBO and 
ECBO after approximately 294 and 705 iterations. Fig. 2 illus-
trates the convergence histories of the CBO, ECBO and CBO-
MDM for the best and average designs of the 1-bay 10-story 
frame. It is obvious that the CBO-MDM obtained better results 
compared to the CBO and ECBO. Figure 3 and Fig. 4 show the 
existing stress ratios and inter-story drift for the optimal design 
of the CBO, ECBO and CBO-MDM algorithms.

Fig. 2 Convergence curves of the 1-bay 10-story frame.

Fig. 3 Stress ratios for optimal design of the 1-bay 10-story frame.
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5.2 A 3-bay 15-story frame
The second design problem is a 3-bay 15-story frame con-

taining 64 joints and 105 members. This is a famous bench-
mark problem and Fig. 5 illustrates the topology, applied loads 
and the numbering of member groups for the frame. One hun-
dred and five members are classified into eleven groups (9 
column groups and one beam group). The material density is  
E = 200GPa (29 000 ksi) and the yield stress is 248.2MPa (36 
ksi) for all the members.

The effective length factors of the members are consid-
ered as kx ≥ 0 for a sway-permitted frame and the out-of-plane 
effective length factor is indicated as ky = 1.0. Each column is 
considered as non-braced along its length, and the non-braced 
length for each beam member is determined as one-fifth of the 
span length. The frame structure is designed according to the 
LRFD specifications and uses an inter-story drift displacement 
constraint [19].

Fig. 5 Schematic of the 3-bay 15-story planar frame.

Fig. 4 Inter-story drifts for optimal design of the 1-bay 10-story frame.
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Table 2 presents the optimal values of the eleven variables 
achieved by CBO, ECBO and CBO-MDM algorithms; also, this 
table contains worst and means weights for all the algorithms.

Table 2 Optimal designs of the CBO, ECBO and CBO-MDM for the 3-bay 
15-story frame

Element group
Optimal W-shaped sections

CBO ECBO CBO-MDM

1 W24x104 W21x111 W14x99

2 W36x160 W27x146 W27x161

3 W24x84 W27x84 W14x82

4 W24x104 W24x104 W24x104

5 W21x68 W12x65 W16x67

6 W18x86 W18x86 W18x86

7 W18x50 W21x55 W21x48

8 W12x65 W14x61 W14x61

9 W8x28 W14x38 W8x28

10 W10x39 W8x35 W10x39

11 W21x44 W21x44 W21x44

Best weight (kN) 391.15 390.40 387.45

Worst weight (kN) 430.55 414.94 424.20

Mean weight (kN) 411.72 397.07 390.90

CBO, ECBO and CBO-MDM reach 391.15 kN, 390.40 kN 
and 387.45 kN, respectively; also CBO-MDM obtain better 
mean weight compared to CBO and ECBO. Additionally CBO, 
ECBO and CBO-MDM reach the optimal design after 323, 794 
and 969 iterations correspondingly, CBO-MDM reaches the 
optimal design of CBO and ECBO after 480 and 617 iterations, 
respectively.

Figure 6 illustrates the best and mean of one hundred runs 
convergence history for the expected algorithms. Figure 7 dis-
plays the final weights obtained by CBO, ECBO and CBO-
MDM algorithms in one hundred independent runs. It is obvi-
ous that the CBO-MDM has better performance than the other 
counterparts.

5.3 A 3-bay 24-story frame
A 3-bay 24 story frame is shown in Fig. 8 as the last design 

problem. This structure consists of 168 members that are col-
lected in 20 groups (16 column groups and 4 beam groups). 
The beam and column element groups are selected from all 267 
W-shape and W-14 sections. The material has a modulus of elas-
ticity equal to E = 205GPa (29,732 ksi) and a yield stress of fy = 

Fig. 6 Convergence curves of the 3-bay 15-story frame

Fig. 7 Final weights of one hundred independent runs for the 3-bay 15-story frame (sorted).
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230.28 MPa (33.4 ksi). The effective length factors of the mem-
bers are computed as Kx ≥ 1.0 for a sway permitted frame and 
the out-of-plane effective length factor is determined as ky = 1.0. 
All columns and beams are considered as non-braced along their 
lengths. The frame is designed according to the LRFD specifica-
tions and uses an inter-story drift displacement constraint [19].

Table 4 illustrates a comparison of the optimal design for 
CBO, ECBO and CBO-MDM algorithms. This table contains 
the best solution vector and the best, worst and mean weight 
for every algorithm among 100 individual run. It can be seen 
that the CBO-MDM has attained the lightest result compared 
to CBO and ECBO algorithms, Also the CBO-MDM obtained 
better mean weight among other algorithms. The best weight of 
CBO, ECBO and CBO-MDM are 898 kN, 895.64 kN and 892.44 
kN, respectively.  The CBO, ECBO and CBO-MDM algorithms 
obtained the optimal design after 280, 659 and 662 iterations, 
respectively. Additionally CBO-MDM reached the optimal 
design of CBO and ECBO after approximately 440 and 469 
iterations. Figure 9 illustrates the convergence histories of the 
CBO, ECBO and CBO-MDM for the best and average designs 
of the 3-bay 24-story frame. It is obvious that the CBO-MDM 
obtained better results compared to CBO and ECBO. Figure 10 
and Fig. 11 show the existing stress ratios and inter-story drift for 
the optimal design of CBO, ECBO and CBO-MDM algorithms.

Table 3 Optimal designs of the CBO, ECBO and CBO-MDM for the 3-bay 
24-story frame

Element group
Optimal W-shaped sections

CBO ECBO CBO-MDM

1 W30x90 W30x90 W30x90

2 W6x15 W8x18 W6x15

3 W24x55 W24x55 W24x55

4 W6x8.5 W6x8.5 W6x8.5

5 W14x159 W14x132 W14x159

6 W14x132 W14x132 W14x120

7 W14x90 W14x99 W14x109

8 W14x99 W14x82 W14x90

9 W14x82 W14x68 W14x68

10 W14x48 W14x53 W14x48

11 W14x30 W14x38 W14x30

12 W14x22 W14x22 W14x22

13 W14x90 W14x99 W14x90

14 W14x99 W14x99 W14x99

15 W14x99 W14x99 W14x90

16 W14x82 W14x90 W14x82

17 W14x61 W14x74 W14x68

18 W14x53 W14x53 W14x53

19 W14x34 W14x30 W14x34

20 W14x22 W14x22 W14x22

Best weight (kN) 898 895.64 892.44

Worst weight (kN) 1124.69 1042.42 987.87

Mean weight (kN) 977.87 948.83 923.97

Fig. 8 Schematic of the 3-bay 24-story planar frame.
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Fig. 9 Convergence curves of the 3-bay 24-story frame.

Fig. 10 Stress ratios for optimal design of the 3-bay 24-story frame.

Fig. 11 Inter-story drifts for optimal design of the 1-bay 10-story frame.
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6 Conclusions
This study presents the Modified Dolphin Monitoring 

(MDM) operator with its performance when coupled with CBO 
algorithm. It should be noted that the MDM does not cause 
any change in the main steps of the optimization algorithm and 
only performs as an operator on the final solution of each loop, 
improving the behavior of the main algorithm. To evaluate 
the performance, the CBO-MDM is compared with that of the 
CBO and its enhanced version ECBO. Optimal design of three 
frame structures known in the optimization literature is aimed 
at minimizing weight according to the existing constraints. 

Results of all the considered benchmark problems show that 
the CBO-MDM is capable to achieve a better solution in com-
parison to the standard CBO and ECBO algorithms, and found 
a better mean solution. Apart from one case, its worst solution 
was also better than the other two methods. On the other hand, 
according to the figures provided, the method improves the 
speed of the convergence for the algorithms. 

Finally, it seems that using this method promotes the ability 
the algorithms in achieving the optimum solutions, and the use 
of this method for other algorithms can be recommended.
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