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Abstract
A three-dimensional weakly compressible Smoothed Particle  
Hydrodynamics (SPH) solver is presented and applied to 
simulate free-surface solitary waves generated in a quasi two-
dimensional dam-break experiment. Test cases are constructed 
based on the measurement layouts of a dam-break experiment.
The simulated wave propagation speeds are compared to the 
exact solutions of the Korteweg-de Vries (KdV) equation as a 
first order theory, and to a second order iterative approximation 
investigated in the literature. Free surface shapes of different 
simulation cases are investigated as well. The results show good 
agreement with the free surface shapes of the KdV equation as 
well as with the second order approximation of solitary wave 
propagation speeds.
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1 Introduction
The first known observation of a solitary wave was reported 

by Scott Russell in 1834 [1]. He studied the behaviour of the 
solitary waves in laboratory while the first theoretical model 
explaining them appeared in 1895 by Korteweg and de Vries 
[2]. The idea of the Korteweg-de Vries (KdV) theory is based 
on slightly dispersive shallow water waves whose dispersion 
is balanced by nonlinear effects so that the wave preserves its 
amplitude and shape during the propagation on arbitrary dis-
tances. The exact solution of the KdV equation describes the 
shape and propagation speed of a soliton.  

Although the KdV theory can be considered a first order 
approximation and its solution describes real solitary waves 
well, higher order approximations can also be constituted. In 
[3] Halász introduced an iterative, successive approximation-
model with arbitrarily order. The model reproduces the KdV 
theory in the first iteration step, nevertheless, higher order 
investigation requires a numerical approach. 

SPH is a meshless Lagrangian numerical scheme firstly 
published by R.A. Gingold and J.J. Monaghan [4] and inde-
pendently by L. Lucy [5] in 1977. In the beginning SPH was 
applied in the field of astrophysics, then the first attempts on 
modeling fluid flows motivated by coastal engineering problems 
was published by J.J. Monaghan in 1994 [6] and [7]. Later the 
investigation of the dynamics of Scott Russel’s Solitary wave 
generator with SPH has been carried out by the same author in 
2000 [8]. Different aspects of free-surface waves in SPH were 
rigorously investigated, like turbulence modeling of breaking 
waves by R.A. Dalrymple and B.D. Rogers [9]. Standing and 
regular waves were modelled by Antuono et al. in [10] and the 
damping of viscous gravity waves in SPH were validated to ana-
lytical solutions by M. Antuono and A. Colagrossi [11]. Solitary 
waves over non-uniform bottoms and wave-splitting mechanics 
were investigated by Li et al. [12] and S. De Chowdhury and 
S.A. Sannasiraj in [13].

During the past two decades, owing to its attractive proper-
ties and prominent capabilities in modeling free surface flows, 
SPH became one of the most popular particle based numerical 
schemes in many different areas of engineering applications, 
like modeling coastal waves or tsunamies. 
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The present work aims the investigation of free surface 
wave propagation speeds simulated by SPH. We focus on the 
numerical results in comparison with propagation speeds of 
different solitary wave theories. 

The paper is organized as follows. In the next section a short 
overview of free-surface solitary wave models is presented, 
then the governing equations of fluid dynamics and our SPH-
based parallel solver is introduced. After the specification of 
the investigated test cases in Section 6 the results are compared 
with the first and second order wave propagation velocities of 
the literature and KdV soliton shapes in the last two sections. 

2 Solitary waves
In shallow water the zeroth order approximation of the free 

surface wave propagation speed can be described by the lin-
ear wave propagation equation, and is given by the well-known 
formula 

where g is the gravitational acceleration and H is the depth 
of the ambient water. This relation gives a rough approxima-
tion on solitary wave propagation but neglects some particular 
features of the phenomenon like the actual amplitude and width 
of the wave and is valid only if wave amplidude is negligible 
compared to the ambient water depth. The linear wave propa-
gation equation has no solitary wave solutions. 

Fig. 1 Notations of the solitary wave: H is the ambient depth, c is the speed 
of the soliton, A is the amplitude and η(x) is the shape of the surface. Note 

that in comoving frame η(x) does not depend on time. 

The KdV equation [2] 

is suitable for construction of free surface soliton shapes 
with different geometrical configurations. Here η(x,t) denotes 
the surface elevation at a given location x. Figure 1 shows a 
soliton propagating from the right to the left with the corre-
sponding notations. The exact solution of the KdV equation for 
a single free surface solitary wave in a comoving coordinate 
system is given by the shape of the wave 

where A is the amplitude, a = 0 is the horizontal displace-
ment of the soliton and 

is the effective wave number. The wave propagation speed 
related to the first order solitary wave solution is 

The second order wave speed including the corrections 
described by Halász is given as 

Halász [3] has shown that the second order approximation 
describes well the laboratory results for the solitary wave speed 
and that the third order theory differs only by a small amount that 
is usually not resolvable due to experimental uncertainty error. 

3 Governing equations
In fluid mechanics, the Euler and the continuity equations are 

widely used simultaneously to describe inviscid fluid motion. 
In the Lagrangian frame of reference these partial differential 
equations are expressed in terms of material coordinates where 
the local and convective fluxes are wrapped in the Lagrangian 
total derivative as 

where Φ denotes an arbitrary scalar or vector field. By 
employing the differential operator (7) the inviscid hydrody-
namic equations become 

where v, ρ, p, ν, g are the velocity, density, pressure, kinematic 
viscosity, and gravitational acceleration, respectively [14]. For 
weakly compressible flows an additional state equation 

is required to define a constraint between pressure and density.
Although there exist numerous analytic solutions of restricted 

variants of the system (8) including the wave propagation 
equations shown before, the exact solution in the generic case 
is still unknown and usually approximated by suitable numeri-
cal methods. However, these approximating schemes often suf-
fer from unfavourable numerical properties, whereupon their 
generality is often limited and possess restricted robustness and 
applicability. Considering laminar inviscid flows the difficul-
ties of modeling complex turbulent hydrodynamic behaviour 
are avoided in the present work. 

4 The numerical scheme
The meshless Lagrangian numerical SPH scheme is a suit-

able numerical tool for solving the system of equations intro-
duced in (8). The approximate solution provided by SPH is 
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based on elementary fluid nodes, called particles, moving 
through space while carrying their own values of mass, density, 
pressure, velocity, etc. The discretisation method is based on 
the weighted interpolation of the fields at a given point using 
the neighbouring particles governed by the so-called smoothing 
kernel function W(ri – rj, h) forming a discrete convolution [14] 

where i denotes the particle of interest, j is a particle in the 
vicinity of  i, fi = f(ri) is an arbitrary flow field at the position ri  

of particle i, the kernel function Wij = W(ri – rj, h) with compact 
or infinite influence radius, h is called the smoothing length, Vj 
is the elementary volume assigned to particle j and N is the num-
ber of particles within the influence radius of Wij. The discrete 
convolution (10) constructs an arbitrary flow field on a statisti-
cally uniform distribution of particles in space. In our calcula-
tions the renormalised Gaussian kernel function [15] 

is adopted, where r = |ri – rj |, and the renormalisation con-
stants are 

In this case, the influence radius δ was chosen to be 3h. Sim-
ilarly to (10) the first order spatial differential operators 

can be constructed by an arbitrary vector field denoted by 
u [16].

It is a prevailing practice in the SPH scheme to preserve 
numerical stability by inserting numerical diffusive terms into 
the continuity and momentum equations. The latter behaves 
similarly to viscosity generally resulting in a spurious dissipa-
tion of kinetic energy of the flow [14], especially in case of 
shock waves [17]. Since free surface solitons are driven by 
inertial forces and show inviscid behaviour, the momentum dif-
fusion (either physical on numerical) was ignored in the present 
work. Instead the numerical diffusive term for density in the 
continuity equation worked out by [15] and further improved 
by [18] was implemented. Based on the linear stability analysis 
by Antuono [19] the density diffusion became an efficient tool 
on damping numerical oscillations. 

The compressibility, as another particular numerical prop-
erty of standard SPH, was controlled by an appropriate weakly 
compressible equation of state assuming a barotropic fluid 
flow with linear relation between density and pressure [7]. The 

discretised hydrodynamic equations of the SPH scheme used 
through this paper are 

where ρ0 is the reference density, f is the sum of the external 
forces including gravity and cs is the speed of acoustic wave 
(or ’sound’) propagation. The second term on the right hand 
side of the continuity equation is the artificial density diffusion 
term, forming a model often referred as δSPH with the empiri-
cal coefficient ξ = 0.1, and 

The second term on the right hand side with the renormal-
ised density gradients < Ñρ >L ensures mass conservation over 
the fluid domain including free surface boundaries and it is cal-
culated using the formula 

where Ä denotes the tensor product [18]. The renormalisa-
tion tensor L is responsible for the convergence of the discrete 
Laplacian in the vicinity of the fluid boundaries by correcting 
the numerical artifacts in the discrete gradient caused by kernel 
truncation. 

To reduce computational cost, the weakly compressible 
models usually operate with moderate sound speed (in com-
parison to the physical one), but large enough to keep the maxi-
mum density deviation within a predefined range and separate 
inertial and acousticwaves. It is usually considered to be ten 
times larger than the typical velocity magnitude being present 
in the flow: 

where M = 0.1 is the Mach number and H is the character-
istic height of the problem, which is the ambient fluid depth in 
our case. 

4.1 Boundary and initial conditions
A remarkable benefit of the SPH scheme (at least in mod-

eling fluid flows) is the treatment of free surfaces of arbitrary 
shape as natural boundaries without any additional computa-
tional effort. Furthermore, if the fluid domain is simply con-
nected the air can be entirely left out from the computational 
domain because of its constant pressure and negligible density 
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compared to water. Note that in case of complex flows such as 
breaking waves (see more examples in [20]) the air phase might 
play an important role, thus it should not be ignored uncondi-
tionally. In the present work we modelled only the water phase. 

In this work two different types of boundary conditions of 
SPH were applied. One of them formed the rigid boundaries of 
the channel wall and bottom, while the other one was a periodic 
boundary, which allows one to perform more general calcula-
tions in infinite domain. 

Here periodic boundaries were essential by forming a 2δ 
width domain (within parallel planes) in spanwise direction to 
approximate a planar flow with the three dimensional numeri-
cal solver described in the next section. 

The models of solid boundaries in SPH have several funda-
mentally distinct variants with different assets and limitations 
[16]. In the present work a penalty force-based boundary condi-
tion was applied presented by Sun et al. in [21]. The boundary 
model is based on the Voigt model with ideal spring and vis-
cous damping. We applied the particle-wall interaction forces 
(elastic and viscous) only in normal direction to achieve exact 
free-slip condition. A further benefit of the model isits compu-
tational efficiency due to the lack of additional wall-particles. 

In each simulation thoughout this paper the initial configura-
tion of the particles is based on three-dimensional uniform grid. 

4.2 Integration
The system (14) can be solved by an arbitrary but stable 

numerical integration scheme. In the present work the second 
order predictor-corrector scheme was applied. In the first step 
the particles are temporarily advanced in time with a half-step 
∆t / 2 (prediction): 

In the intermediate state the density derivatives, pressures, 
external and interparticle forces (or accelerations ai) of particles 
are evaluated. Using the new values, the particles are advanced 
in time with a full step (correction) from the original state [22]: 

To reduce the computational performance requirement while 
preserving numerical stability the time step size might be selected 
adaptively in each frame. In the current SPH model this was 
implemented using the Courant-Friedrichs-Lewy condition [7]: 

where CFL = 0.2 and vij = vi – vj. 

5 Simulation tools
Since the three dimensional model requires large number of 

particles to resolve the fluid motion the simulations become 
computationally expensive. The favourable vectorisation prop-
erties of the explicit particle based methods allow the current 
and many other solvers (like [23], [24] and [25]) to exploit 
the abilities of computationally powerful GPGPU’s (General-
Purpose Graphical Processing Unit) rendering the solutions 
through massively parallel calculations. To further reduce the 
computational time, the time-consuming data copies between 
host and device memory are minimised by transferring the par-
tial results from the device only at predifined equidistant simu-
lation-time intervals ts = 0.033s. The presented SPH model was 
implemented in our three dimensional parallel fluid dynamics 
solver using GPGPU in C++ and CUDA.  

6 Test cases
We have simulated the propagation of a single solitary wave 

in an infinitely wide channel, as appearing in a wet bed dam 
break experiment, reproducing the conditions investigated in 
[3] Halász performed several measurements of single solitary 
waves in a channel layout introduced in Figure 2 with hydro-
static initial conditions. By removing the flat plate at the water 
column on the right hand side of the channel at instant t0 = 0s, 
the collapse of the water column forms a solitary wave propa-
gating from the right to the left. As Halász pointed out, a soli-
tary wave travels through the channel without significant dissi-
pation until it reaches the vertical wall at the end of the channel.  

Fig. 2 The whole channel layout (L = 10m, d = 0.13m, H = 0.103m and  
H' is 0.17m or m depending on the simulation case).

Based on the measurement layouts in [3] we performed 
simulations of six independent configurations: three sizes of 
particle support radii, with two different initial water column 
heights. The influence radii of the particles, the initial water 
column height, and the number of particles for the different 
computations are summarised in Table 1. The average interpar-
ticle distance is given as 
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where the average number of neighbours N was chosen 
to 70 in this work showing the mean interparticle distance  
dx = 1.173h. As a result of the ratio δ / dx, the number of parti-
cles initially generated across the uniform grid is 5 in spanwise 
direction.

7 Results and discussion
In the present work each calculation has been executed on a 

GTX 970 desktop GPU with 4 GB of device memory. The time 
and memory requirement of the computations varied between 
36 and 180 hours while 0.6 and 3.8 GB’s of GPU memory 
depending on the number particles used.

Fig. 3 Zeroth order interpolation to uniform grid. Dashed lines indicate the 
highest elevation per cell, the piecewise linear surface is shown by the solid 

line. Note that the clustered particle distribution is due to the two dimen-
sional visualisation of the particles.

The evaluation of the propagation speed of the simulated 
solitary wave along the channel required a free surface track-
ing algorithm which reliably identifies the position of the wave 
peak in each investigated simulaton frame. Since in our case 
only the vertical positions need to be determined, we logged 
the highest particle’s altitude above the uniform δ-sized grid 
laying on the plane of the channel bottom in each time instant. 
This procedure can be considered as a zeroth order interpola-
tion of the particles’ elevation to the uniform grid. The visu-
alisation of the interpolation is shown in Figure 3 Due to the 
discrete convolution (10) the free surface boundary covering a 
set of particles is not sharp and need to be tuned carefully. Here 
the surface was shifted from the layer of the surface particles 
by the average interparticle distance dx.

The velocity-time series of the wave peaks were calculated 
by applying a moving average filter to the raw position-time 
series with a filter size ∆t = 20ts and the temporal derivative was 
calculated with a first order central finite differencing scheme. 
The smooth velocity data series was resampled on a uniform 
∆t-sized grid. By means of the introduced procedure the velocity 

data was constructed in the 5m width window between 4m and 
9m measured from the right hand side of the channel. 

Table 1 Summary of simulation cases

Case δ[mm] dx[mm] H / dx H'[m] Particles  

a 2.5 0.978 105.3 0.17 5.48M

b 2.5 0.978 105.3 0.24 5.54M

c 3.75 1.47 70.22 0.17 2.45M

d 3.75 1.47 70.22 0.24 2.47M

e 5.0 1.96 52.67 0.17 1.38M

f 5.0 1.96 52.67 0.24 1.39M

Implementing the channel layout introduced by [3] in the 
numerical model has two important advantages. On the one 
hand the calculation results are suitable for direct comparison 
with the measurements, on the other hand the velocity field 
below the solitary wave does not have to be prescribed by the 
initial conditions of the simulations. The main numerical draw-
back is that it is inevitable to update each particle in the entire 
tank in every simulated time step, however, the region of inter-
est is small in comparison with the whole channel.  

Fig. 4 Dimensionless soliton wave speed as a function of dimensionless 
amplitude. Dashed and solid curves are the first and second order approxi-

mations respectively.

In Figure 4 we see the wave propagating speed-amplitude 
relations of the first and second order theories against our 
simulation results. For each point, the instantaneous amplitude 
and propagation speed were extracted from the reconstructed 
surface history to plot instantaneous normalized propagation 
speed against instantaneous relative amplitude.  

It is visible that along the investigated section of the channel 
(from 4m to 9m) the solitary wave speed and amplitude dimin-
ished considerably, governed by a continuous dispersion. Nev-
ertheless, the simulation results seem to more or less follow the 
line of the second order approximation, as if the solitary wave 
would be an ideal soliton in each time instant. Apparently, in 
all simulation cases, the second order theory is closer to the 
simulation results than the first order theory.  
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Fig. 5 RMS of the deviation of the six simulation cases to the second order 
approximation.

The effect of the resolution represented by the particle influ-
ence radius δ was investigated through the root mean sqaure 
(RMS) error 

of the instantaneous simulation results ck compared to the 
second order theory c2(Ak / H) given by (6). Here n is the num-
ber of evaluated instantaneous wave velocities introduced in 
Figure 4. As Figure 5 shows, reducing the influence radius δ, 
the values of the RMS σ are decreasing considerably. 

7.1 Surface evolution
The evolution of the free surface in time along the channel 

during the solitary wave propagation as captured by the simu-
lations with the finest resolution is presented in the space-time 
plots of Figure 6. The dark diagonal stripes are indicating the 
solitary waves travelling at nearly constant speed through the 
channel followed by a significantly slower wave pattern with 
small amplitudes compared to the solitary wave. This wave 
pattern is observable in the channel during measurements as 
well. Furthermore a marked depression is present behind the 
solitary wave in case a) while this phenomenon does not occur 
in case b). Note that the noisy surface immediately after the 
launch of the wave in case b) was caused by the slight break 
of the wave peak along the first few meters in the simulations, 
reported in laboratory measurements as well. 

Fig. 6 Free surface history of case a) (left) and b) (right)

7.2 Solitary wave shape
Besides the solitary wave propagation speed the shape of 

the free surface was compared to the first order soliton shapes 
obtained from the analytical solution of the KdV equation. The 
comparison is shown in Figure 7; the waves propagate from the 
right to the left. The exact solutions (3) were fitted to the given 
SPH results using the evaluated amplitudes and peak positions, 
defining together the effective wave number (4).

The wave shapes are in very good agreement with the exact 
solutions of the KdV equation even in case of coarser resolu-
tions, apart from the depression, which appears close in the 
tail of the solitons with smaller amplitudes in case a), c) and e) 
likewise to Figure 6. The existence of this trailing depression 
has been verified experimentally for the transient flow investi-
gated. For further details on the comparison of the waveform to 
experimental data see (8). 

Fig. 7 SPH soliton shapes (solid lines) of the six simulation cases compared 
with the exact solution of the KdV-equation (dashed lines) at the same time 

instant t = 6.6s.

8 Summary and Conclusions
In this work, water surface solitary wave formation and prop-

agation have been investigated with a parallel numerical fluid 
dynamics solver based on the SPH scheme and the results have 
been compared with the first order analytical theory (KdV equa-
tion) and a second order approximation introduced by Halász 
in [3]. The simulation layouts of a dam break experiment were 
adopted from the measurements carried out by Halász.

The instantaneous dimensionless velocities and their corre-
sponding amplitudes extracted from the simulations show that 
although significant dispersion occurs during the wave propaga-
tion, the velocity-amplitude relation follows the second order 
analytical approximation, also verified by the measurements in 
[3] within measurement uncertainty. The resolution dependency 
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of the numerical model was also tested by three different parti-
cle support radii presenting the clear convergence to the second 
order approximation.  

Solitary wave shapes provided by the numerical model were 
also compared with the closed-form analytical formula of the 
first order KdV-soliton. Our simulation results show very good 
agreement with the first order soliton shape even in case of 
coarser numerical resolutions for the leading edge and the peak 
shape. However, since the waves were generated in a numeri-
cal dam-break experiment, the transient formation of the soli-
tary wave also included trailing waves behind the developing 
soliton. In case of smaller solitary waves significant depressions 
(and consequently notable antisymmetries of the wave shapes) 
were observed behind the waves. We found that, if such tran-
sient flows should be modeled, these trailing waves found in 
the simulations cannot be verified by either the present first or 
the second order approximations, as these models describe only 
the propagation of a developed solitary wave. The verification 
of the presence of these trailing waves in our simulation results 
is shown by comparison with water height time-series extracted 
from our preliminary experimental measurements see (8) result-
ing in a good qualitative match in both investigated test cases. 
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Appendix
Measurements focusing on the surface shapes were also car-

ried out based on the same geometry (and, in fact, the very 
same experimental wave tank) investigated in [3]. During the 
measurements, the surface level was observed in fixed positions 
along the channel then the extracted time-series were compared 
with the corresponding simulation results. In Figure 8 typical 
time-series are shown for both initial configurations (H’ = 0.17m 
and H’ = 0.24m). In both cases the time series were extracted at  
x = 4m and shifted in time to set the wave peak to t = 0s. The 
significant depression, also seen in Figure 6 and 7 is visible 
in the tail of the ’small’ solitary wave. In a subsequent work 
a detailed investigation is planned to be presented about the 
surface shape of the solitary waves in measurements and SPH 
simulations.)

Fig. 8 Comparison of measurements (dashed lines) with SPH simulations 
(solid lines) in case of H’ = 0.17m (right) and H’ = 0.24m (left) at x = 4m. 

References
[1]  Drazin, P. G., Johnson, R. S. “Solitons: An Introduction.”. Cambridge 

University Press, 1989.
[2]  Korteweg, D. J., de Vries, G. “On the change of form of long waves ad-

vancing in a rectangular canal, and on a new type of long stationary 
waves.”. Philosophical Magazine, Series 5. 39(240), pp. 422–443. 1895.  
https://doi.org/10.1080/14786449508620739

[3]  Halasz, G. B. “Higher order corrections for shallow-water solitary 
waves: elementary derivation and experiments.”. European Journal of 
Physics, 30, pp. 1311–1323. https://doi.org/10.1088/0143-0807/30/6/009.

[4]  Gingold, R. A., Monaghan, J. J. “Smoothed particle hydrodynamics the-
ory and application to non-spherical stars.”. MonthlyNotices of the Royal 
Astronomical Society, 181(3), pp. 375–389. 1977. https://doi.org/10.1093/
mnras/181.3.375

[5]  Lucy, L. B. “A numerical approach to the testing of the fssion hypoth-
esis.”. Astronomical  Journal, 82, pp. 1013–1024. 1977. https://doi.
org/10.1086/112164

[6]  Monaghan, J. J. “Simulating free surface flows with SPH.”. Jour-
nal of Computational Physics, 110(2), pp. 399–406. 1994. https://doi.
org/10.1006/jcph.1994.1034

[7]  Monaghan, J. J., Kos, A. “Solitary waves on a Cretan Beach.”. Journal of 
Waterway,  Port, Coastal and Ocean Engineering, 125(3), pp. 145–154. 
1999. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:3(145)

[8] Monaghan, J. J., Kos, A. “Scott Russell’s wave generator.”. Physics of 
Fluids, 12, 622. 2000. https://doi.org/10.1063/1.870269

[9]  Dalrymple, R. A., Rogers, B. “Numerical modeling of water waves with 
the SPH method.”. Coastal Engineering, 53, pp. 141–147. 2006. https://
doi.org/10.1016/j.coastaleng.2005.10.004

[10]  Antuono, M., Colagrossi, A., Marrone, S., Lugni, C. “Propagation of 
gravity waves through an SPH scheme with numerical difusive terms.”.  
Computer Physics Communications, 182(4), pp. 866–877. 2011. https://
doi.org/10.1016/j.cpc.2010.12.012

[11]  Antuono, M., Colagrossi, A. “The damping of viscous gravity waves.”. 
Wave Motion, 50(2), pp. 197–209. 2013. https://doi.org/10.1016/j.wave-
moti.2012.08.008

[12]  Li, J., Liu, H., Gong, K., Keat, S., Shao, S. “SPH modeling of solitary 
wave fissions over uneven bottoms.”. Coastal Engineering, 60, pp.  
261–275. 2012. https://doi.org/10.1016/j.coastaleng.2011.10.006

[13 De Chowdhury, S., Sannasiraj, S. A. “SPH Simulation of shallow water 
wave propagation.”. Ocean Engineering, 60, pp. 41–52. 2013. https://doi.
org/10.1016/j.oceaneng.2012.12.036

[14] Monaghan, J. J. “Smoothed particle hydrodynamics.” Reports on Prog-
ress in Physics, 68(6), No. 1703. 2005. https://doi.org/10.1088/0034-
4885/68/8/R01

[15]  Molteni, D., Colagrossi, A. “A simple procedure to improve the pressure 
evaluation in hydrodynamic context using the SPH.”. Computer Physics 
Communications, 180(6), pp. 861–872. 2009. https://doi.org/10.1016/j.
cpc.2008.12.004

https://doi.org/10.1080/14786449508620739
https://doi.org/10.1088/0143-0807/30/6/009
https://doi.org/10.1093/mnras/181.3.375
https://doi.org/10.1093/mnras/181.3.375
https://doi.org/10.1086/112164
https://doi.org/10.1086/112164
https://doi.org/10.1006/jcph.1994.1034
https://doi.org/10.1006/jcph.1994.1034
https://doi.org/10.1061/(ASCE)0733-950X(1999)125:3(145)
https://doi.org/10.1063/1.870269
https://doi.org/10.1016/j.coastaleng.2005.10.004
https://doi.org/10.1016/j.coastaleng.2005.10.004
https://doi.org/10.1016/j.cpc.2010.12.012
https://doi.org/10.1016/j.cpc.2010.12.012
https://doi.org/10.1016/j.wavemoti.2012.08.008
https://doi.org/10.1016/j.wavemoti.2012.08.008
https://doi.org/10.1016/j.coastaleng.2011.10.006
https://doi.org/10.1016/j.oceaneng.2012.12.036
https://doi.org/10.1016/j.oceaneng.2012.12.036
https://doi.org/10.1088/0034-4885/68/8/R01
https://doi.org/10.1088/0034-4885/68/8/R01
https://doi.org/10.1016/j.cpc.2008.12.004
https://doi.org/10.1016/j.cpc.2008.12.004


739Modeling Free-surface Solitary Waves with Smoothed Particle Hydrodynamics 2017 61 4

[16]  Violeau, D. Fluid Mechanics and the SPH Method. Oxford University 
Press, UK. 2012.

[17]  Cullen, L., Dehnen, W. “Inviscid smoothed particle hydrodynamics.”. 
Monthly Notices of the Royal Astronomical Society, 408(2), pp. 669–683. 
2010. https://doi.org/10.1111/j.1365-2966.2010.17158.x

[18]  Antuono, M., Colagrossi,A., Marrone, S., Molteni, D. “Free-surface 
flows solved by means of SPH schemes with numerical difusive terms.”. 
Computer Physics Communications, 181(3), pp. 532–549. 2010. https://
doi.org/10.1016/j.cpc.2009.11.002

[19]  Antuono, M., Colagrossi, A., Marrone, S. “Numerical diffusive terms 
in weakly-compressible SPH schemes.”. Computer Physics Com-
munications, 183(12), pp. 2570–2580. 2012. https://doi.org/10.1016/j.
cpc.2012.07.006

[20]  Colagrossi, A.,. Landrini, M. “Numerical simulation of interfacial 
fows by smoothed particle hydrodynamics.”. Journal of Computation-
al Physics, 191(2), pp. 448–475. 2003. https://doi.org/10.1016/S0021-
9991(03)00324-3

[21]  Sun, X., Sakai, M., Y. Yamada, Y. “Three-dimensional simulation of a 
solid-liquid flow by the DEM-SPH method.”. Journal of Computational 
Physics, 248, pp. 147–176. 2013. https://doi.org/10.1016/j.jcp.2013.04.019

[22]  Monaghan, J. J. “On the problem of penetration in particle methods.”.
Journal of Computational Physics, 82(1), pp. 1–15. 1989. https://doi.
org/10.1016/0021-9991(89)90032-6

[23]  Crespo, A. J. C., Dominguez, J. M., Rogers, B. D., Góomez-Gesteira, 
M., Longshaw, S., Canelas, R., Vacondio, R., Barreiro, A., Garcia-Feal, 
O. “DualSPHysics: Open-source parallel CFD solver based on Smoothed 
Particle Hydrodynamics (SPH).”. Computer Physics Communications, 
187, pp. 204–216. 2015. https://doi.org/10.1016/j.cpc.2014.10.004

[24]  Cercos-Pita, J. L. “AQUAgpusph, a new free 3D SPH solver accelerated-
with OpenCL.”. Computer Physics Communications, 192, pp. 295–312. 
2015. https://doi.org/10.1016/j.cpc.2015.01.026

[25]  B. L. Wang, H. Liu, Application of SPH method on free surface flows 
onGPU.”. Journal of Hydrodynamics, Ser. B, 22(5), pp. 912–914. 2010. 
https://doi.org/10.1016/S1001-6058(10)60051-0

https://doi.org/10.1111/j.1365-2966.2010.17158.x
https://doi.org/10.1016/j.cpc.2009.11.002
https://doi.org/10.1016/j.cpc.2009.11.002
https://doi.org/10.1016/j.cpc.2012.07.006
https://doi.org/10.1016/j.cpc.2012.07.006
https://doi.org/10.1016/S0021-9991(03)00324-3
https://doi.org/10.1016/S0021-9991(03)00324-3
https://doi.org/10.1016/j.jcp.2013.04.019
https://doi.org/10.1016/0021-9991(89)90032-6
https://doi.org/10.1016/0021-9991(89)90032-6
https://doi.org/10.1016/j.cpc.2014.10.004
https://doi.org/10.1016/j.cpc.2015.01.026
https://doi.org/10.1016/S1001-6058(10)60051-0

	1 Introduction 
	2 Solitary waves 
	3 Governing equations 
	4 The numerical scheme 
	4.1 Boundary and initial conditions 
	4. 2 Integration 

	5 Simulation tools
	6 Test cases 
	7 Results and discussion 
	7.1 Surface evolution 
	7.2 Solitary wave shape 

	8 Summary and Conclusions 
	Acknowledgement 

