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Abstract 
The paper presents the modelling results of failure rate of water 
mains, distribution pipes and house connections in one Polish 
city. The prediction of failure frequency was performed using 
artificial neural networks. Multilayer perceptron was chosen as 
the most suitable for modelling purposes. Neural network archi-
tecture contained 11 input signals (sale, production, consump-
tion and losses of water, number of water-meters, length and 
number of failures of water mains, distribution pipes and house 
connections). Three neurons (failure rates of three conduits 
types) were put to the output layer. One hidden layer, with hid-
den neurons in the range 1-22, was used. Operating data from 
years 2005-2011 were used for training the network. Optimal 
model was verified using operational data from 2012. Model 
MLP 11-10-3 was chosen as the best one for failure rate predic-
tion. In this model hidden and output neurons were activated 
by exponential function and the learning was done using quasi-
Newton approach. During the learning process the correlation 
(R) and determination (R2) coefficients for water mains, distri-
bution pipes and house connections equaled to 0.9921, 0.9842; 
0.8685, 0.7543 and 0.9945, 0.9891, respectively. The conver-
gences between real and predicted values seem to be, from engi-
neering point of view, satisfactory.
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1 Introduction
Water-pipe networks belong to the critical infrastructure 

and the proper management of the whole water supply systems 
should be established at the high level of importance [1]. Due 
to this fact the failure frequency seems to be one of the most 
important indicators considered during the management pro-
cess as well as during estimation of the reliability level of water 
distribution systems [2, 3]. Nowadays, failure rate of water 
pipes should be calculated not only on the basis of operational 
data, but also using the best available mathematical techniques 
and models [4, 5]. Mathematical modelling must follow the 
collection of operational data which are of course the informa-
tion base of considered water-pipe network. There are a lot of 
typical mathematical models and solutions [6-8] which allow 
us: to predict the failure frequency, to enable the reliability and 
risk analysis and to have an influence on the quick reaction 
when the serious damage occurs.  

On the other hand, artificial intelligence is nowadays used 
more often as the alternative for typical statistical or physically 
based models. The most popular method seems to be forecast-
ing using artificial neural networks (ANN). Artificial neural 
networks are used to predict, classify, recognize, associate and 
analyze data, to filter signals and for optimization purposes. 
Neural networks enable to model non-linear and complex prob-
lems. The information between neurons laid in layers (input, 
hidden and output) is transferred in one direction and neurons 
calculate the weighted sum of signals. The weight values are 
obtained during the learning process. Depending on their struc-
ture and way of transmitting signals between neurons, the fol-
lowing types of artificial neural networks are distinguished: 
linear networks, networks with radial base functions, recur-
sive networks and multilayer perceptron networks (MLP). The 
additional feature of ANN it is ability of adaptation to unstable 
and dynamic conditions and changes the values of parameters. 
This property enables efficient usage especially in engineering 
where a lot of parameters are changing dynamically. Artificial 
neural networks are an alternative (instead of traditional mod-
elling) because they enable prediction of unstable parameters 
without necessity of knowing exact relation between variables. 
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The disadvantage of prediction using ANN is the necessity of 
collecting huge experimental data base which is used for learn-
ing and then for making the prognosis. Generally, it should be 
remembered that ANN modelling is like “black box” approach 
and that is why it is impossible to penetrate deeply inside the 
way of forming the network structure.

Neural networks are used e.g. to predict the water distribu-
tion profiles [9], to forecast the water level in reservoir dam 
[10], to establish the time of damage occurrence [11], to predict 
number of failure [12]. Neural network will function correctly 
when the proper pattern is shown. On the basis of this pattern 
the network training will be carried out [13]. The aim of the 
network learning is to obtain the correct output signals as well 
as to establish all weights which are modified to reach the most 
suitable values. The neural network, which is trained on one 
data set, should generate correct results when the input vec-
tor contains different data (not included before to learning set). 
This feature is one of the most important because shows the 
generalization abilities of artificial neural network modelling.

The main aim of this paper was to present the possibilities 
of using ANN for prediction of failure rate of water mains, dis-
tribution pipes and house connections in one Polish city. Multi-
layer perceptron with one input, one hidden and one output layer 
was considered for prediction purposes. This network structure 
is nowadays the best described and the most suitable for engi-
neering phenomena forecasting [14, 15]. The important advan-
tage of neural networks, using for predicting unstable values, is 
the generalization ability between input and output data without 
necessity of knowing the relationships’ nature. This aspect was 
the most important during the selection of some input param-
eters (theoretically not connected with the failure frequency) put 
to the neural network described in this paper.

2 Material and methods 
Failure rate prediction of water pipes was performed using 

ANN, but the approach presented in this paper was completely 
different in comparison to earlier author’s results [16]. Opera-
tional data (received from Water Utility) from the time span 
2005-2011 were used for network training. The verification of 
the chosen optimal neural network model was carried out on the 
basis of data from 2012. Till now the input signals for failure 
rate prediction using ANN were connected with the character of 
water pipes, e.g. material, age, diameter [12, 16]. In this work 

general data describing the character of water-pipe network 
were used as the input neurons. According to this assumptions 
following data were selected as input parameters: water sale 
(SW), water production (PW), water consumption (BW), water 
losses (TW), number of water-meters (LW), length of water 
mains (Dm), length of distribution pipes (Dr), length of house 
connections (Dp), number of failures of water mains (Lm), num-
ber of failures of distribution pipes (Lr), number of failures of 
house connections (Lp). Such approach is innovative and shows 
the universality of using artificial intelligence, even in the case 
when the relationships between input and output signals are 
not known or are difficult to assess. Three failure rates of three 
conduit’s types (water mains - λm, distribution pipes - λr and 
house connections - λp) were put to the output layer. On the 
basis of operating data (registered by Water Utility), the total 
annual water sale, production, consumption and losses of water 
as well as the number of damages of the water pipes were taken 
into consideration. The number of water-meters meant the total 
number of meters installed in individual and industrial custom-
ers who are under Water Utility’s management. The values of 
experimental indicator λ (fail./km·a) were calculated on the 
basis of the simple relation (the number of damages per year 
divided by average pipe’s length). In the next sections of this 
paper the values of experimental failure rate indicator (λ) are 
called real values as opposed to predicted by ANN values.   

The ranges of input and output parameters is shown in the 
table 1. The values of water losses are not included in the table 
because they are like “top secret” from exploiters point of view 
and cannot be published.

Exemplary neural network architecture (MLP type) with 
eleven input neurons (I) and three output neurons (O) is dis-
played in the figure 1. The number of hidden neurons was var-
ied between 1 and 22 according to the model. The whole data 
set was divided into subsets: 70% of all data from the training 
sample (operational data from 2005-2011) was used to learn 
the artificial neural network, 15% for testing and 15% for val-
idation. The verification of the chosen ANN models was done 
using prognosis sample (operational data from 2012). Linear, 
logistic, exponential and hyperbolic tangent activation func-
tions were used in the training process of ANN models. The 
weights reduction was used in hidden and output layers to 
achieve more stable solutions.

SW, m3 PW, m3 BW, m3 TW, m3 LW Dm, km Dr, km

35698593 43808650 47773882 - 43057 201.7 1197.3

36678414 46400316 49429010 - 44256 212.4 1266.5

Dp, km Lm Lr Lp λm, fail./(km·a) λr, fail./(km·a) λp, fail./(km·a)

401,9 16 328 109 0.08 0.26 0.26

434,4 35 518 380 0.16 0.43 0.93

Table 1 Scope of input and output signals in the time span 2005-2012
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The methodology of choosing the optimal model was as 
follows: firstly, 20 of ANN models, characterized by learning 
quality higher than 0.5, were created (in this step the network 
was learnt using the data from the time span 2005-2011), the 
learning quality and the relative mean-squared errors and root 
mean-squared errors for each model were calculated. Secondly, 
the correctness of prediction was checked (prognosis step) 
using operational data from 2012. Optimal model was char-
acterized by the lowest relative mean-squared error and root 
mean-squared error as well as the best convergence between 
real and forecasted by ANN data. The calculations were per-
formed in the program Statistica 10.0.

Fig. 1 Artificial neural network structure

3 Results and discussion
On average, in years 2005-2012 real failure rates (λ, fail./

(km·a)) of water mains, distribution pipes and house connec-
tions were equal to 0.13, 0.35 and 0.69, respectively. On the 
basis of the methodology mentioned above, 20 artificial neu-
ral network models were created. The main parameters of the 
models are listed in the table 2. For the further analysis (model 
verification and making prognosis) 7 models were chosen (they 
are bolded in the table 2). The analysis of mean-squared errors 
and the convergences between real and predicted by ANN data 
proved that the model no. 10 was the optimal one.

The real and predicted by the model no. 10 values of failure 
rate are shown in the table 3.

Table 3 Failure rates (optimal model MLP 11-10-3)

Year/type
of  

conduit

Water mains Distribution 
pipes

House connections

Real ANN Real ANN Real ANN

2005 0.08 0.08 0.32 0.32 0.71 0.72

2006 0.14 0.14 0.43 0.43 0.93 0.93

2007 0.13 0.14 0.34 0.33 0.72 0.70

2008 0.15 0.15 0.34 0.34 0.74 0.74

2009 0.10 0.10 0.37 0.37 0.26 0.27

2010 0.16 0.16 0.35 0.35 0.71 0.71

2011 0.16 0.16 0.26 0.33 0.63 0.58

2012 0.08 0.13 0.36 0.33 0.78 0.29

Table 2 Parameters of artificial neural network models

No. Model Learning
quality

Learning
error Testing error Validation error Number of  

learning epochs
Activation function-

hidden layer

Activation  
function 

-output layer
1. MLP 11-8-3 0.996815 0.000554 0.005477 0.001642 66 logistic logistic

2. MLP 11-5-3 0.989200 0.001029 0.007251 0.002911 11 linear tanh

3. MLP 11-1-3 0.510212 0.017006 0.013971 0.001497 34 logistic logistic

4. MLP 11-1-3 0.570704 0.024691 0.003823 0.001284 9 linear logistic

5. MLP 11-15-3 0.997235 0.000239 0.005919 0.002073 11 hyperbolic tangent linear

6. MLP 11-4-3 0.979028 0.002170 0.000568 0.005717 11 linear tanh

7. MLP 11-3-3 0.589936 0.012236 0.006677 0.001812 7 logistic exponential 

8. MLP 11-10-3 0.610937 0.026316 0.015773 0.000355 4 exponential logistic

9. MLP 11-11-3 0.999753 0.000042 0.033948 0.000063 38 exponential exponential

10. MLP 11-10-3 0.999856 0.000021 0.003647 0.000337 112 exponential exponential

11. MLP 11-5-3 0.962269 0.002016 0.010596 0.002122 13 linear exponential

12. MLP 11-12-3 0.971449 0.003112 0.000289 0.009297 9 hyperbolic tangent tanh

13. MLP 11-10-3 0.936228 0.008271 0.002407 0.002961 5 hyperbolic tangent logistic

14. MLP 11-3-3 0.645893 0.023620 0.002484 0.010894 16 exponential logistic

15. MLP 11-1-3 0.658002 0.018063 0.005177 0.000834 9 linear linear

16. MLP 11-10-3 0.967928 0.003303 0.004431 0.007306 14 logistic tanh

17. MLP 11-7-3 0.949071 0.005963 0.002727 0.001563 8 exponential tanh

18. MLP 11-19-3 0.998526 0.000209 0.007996 0.000985 19 hyperbolic tangent exponential

19. MLP 11-11-3 0.944676 0.004177 0.001033 0.005042 6 linear tanh

20. MLP 11-4-3 0.991992 0.000671 0.002774 0.000723 17 hyperbolic tangent logistic
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Chosen optimal model MLP 11-10-3 contained 10 hidden neu-
rones activated by exponential function. In the output layer 
exponential function was also the most suitable. The number of 
learning epochs varied between 4 and 112 for twenty selected 
ANN models. From among of three learning methods (conju-
gated gradients, steepest descent and quasi-Newton) the last 
one (using quadratic approximation of objective function near 
the known solution) seemed to be the most suitable for predic-
tion of failure rate of water pipes.

Fig. 2 Real and predicted values of failure rate of water mains

The analysis of the table 3 and figures 2-4 shows that the 
results obtained during the network learning (years 2005-2011) 
are ideally convergent with real data. Only outlier data (year 
2011, distribution pipes and house connections) were not mod-
elled properly by ANN. This fact testifies that it is necessary to 
analyse deeply the data which are used as the training param-
eters in the process of neural network modelling. In some cases 
it is necessary to eliminate the outliers. If there is too much 
eliminated outlier data we should answer the question whether 
the modelling is rational. Unfortunately, real operational data 
are burden sometimes by huge mistakes due to e.g. improper 
or incomplete registration or lack of collecting all information 
in GIS database. In such cases it is necessary to eliminate or 
remain outliers reasonably. Before modelling approach it is 
required to cooperate with exploiters (Water Utilities) and to 
explain all inaccuracy as well as to complete data. 

Concerning water mains (fig. 2) the results obtained using 
optimal ANN model (learning step) were the same as real val-
ues. The prognosis of failure rate (year 2012) was character-
ized by slight discrepancy between real and predicted data. 
But one should remember that the network training was per-
formed only on seven years of exploitation that had probably 
the great influence on the verification quality. The verification 
was done using the data which were not known previously by 
the artificial neural network model. It is not recommended to 
overtrain the network because in such case the generalization 
ability would be lost. As it was mentioned above, the number 
of failures influences the values of failure rate. Especially, in 
the case of water mains the number of years taken into consid-
eration during the learning process is essential because small 

amount of damages occur in each year in comparison to e.g. 
distribution pipes. It was proved [17] that the diameter has the 
great effect on the level of failure frequency. If the diameter is 
smaller, the number of damages is higher. That is the reason 
why more years of operation should be taken into consideration 
when the failure rate of water mains is considered. In this case 
more damages would be registered and the accuracy of predic-
tion could increase.

Fig. 3 Real and predicted values of failure rate of distribution pipes

The prognosis of failure rate of distribution pipes (fig. 3) 
is, from engineering point of view, acceptable. Root   mean-
squared errors in prognosis step (year 2012) for chosen optimal 
model were equalled to 7.8%, 2.9% and 7.9% respectively for 
water mains, distribution pipes and house connections that is 
satisfactory result.

Fig. 4 Real and predicted values of failure rate of house connections

Quite big discrepancies between real and predicted values of 
failure frequency of house connections were observed (fig. 4). 
It is the hint for future researches. Maybe it would be necessary 
to change the neural network architecture or to increase the size 
of learning vector. It is required to collect more records of each 
single input parameter (instead of hundreds we should have for 
example thousands). In such case the training would be more 
efficient. The predicted by ANN value of failure rate λ of house 
connections was over 2.5 times lower in comparison to real one. 
Nevertheless, it was decided to choose the model MLP 11-10-3 
because for other types of conduit (water mains and distribu-
tion pipes) the errors could be acceptable. During the process of 
choosing the optimal model we should take into consideration 
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not only the agreement between predicted by ANN and real 
data, but also the role of conduit type and its influence on the 
reliable operation of the whole water-pipe network.

One failure of water mains or distribution pipes have higher 
impact than even tens of damaged house connections at the 
same time. Such situation was observed on Friday 3.07.2015 
in Polish city (number of citizens is equalled to ca. 700 000) 
which is considered in this paper. In the early morning the huge 
damage of water main with the diameter 1200 mm has occurred. 
During several hours water was not delivered to the most of citi-
zens. In some districts the water pressure in water-pipe network 
was significantly lower. It had the great impact on operation of 
hospitals and industry. In such case the reliability level of water-
pipe network which deliver water to critical infrastructure (e.g. 
hospitals, industry) should be higher than in the rest of the city. 
That is the reason why other water resources for e.g. hospitals or 
duplication of water conduits should be planned and designed. 
The failure of water main had an influence not only on the qual-
ity of water delivering, but also on life quality. Near the place of 
damage the traffic jam has been occurring for long hours, public 
transport was forced to change the route and on the road surface 
the thick mud layer was observed. 

Taking into consideration mentioned above situation, choos-
ing the optimal neural network model should be connected 
not only with the agreement between predicted by ANN and 
real data, but also with the effects of improper estimation of 
failure rate. Incorrect prediction of failure rate indicator λ of 
house connections would not have such great consequences as 
improper forecasting failure frequency of water mains or distri-
bution pipes. Other neural network models (tab. 2) were char-
acterized by higher mean-squared errors during the prognosis 
of failure rate λ of significant types of conduit (water mains and 
distribution pipes) which are important for reliable operation 
of the whole water-pipe network. It was the reason why model 
MLP 11-10-3 (which was characterized at the prognosis step 
in 2012 by the best convergence between real and predicted 
values of failure rate indicator) was chosen as the optimal one.

4 Conclusions
The obtained results modelling using artificial neural net-

works might be concluded as follows:
•	 failure rate indicator λ, (fail./(km·a) of water mains, distri-

bution pipes and house connections in one Polish city was 
predicted with the acceptable, from engineering point of 
view, error;

•	 multilayer perceptron with one hidden layer was chosen as 
the most suitable for modelling purposes;

•	 neural network architecture contained 11 input signals 
(sale, production, consumption and losses of water, num-
ber of water-meters, length and number of failures of water 
mains, distribution pipes and house connections); 

•	 three neurons (failure rates of three conduits types) were 
put to the output layer;

•	 operating data from years 2005-2011 were used for training 
the network; 

•	 verification was performed on the basis of operational data 
from 2012; 

•	 model MLP 11-10-3 was chosen as optimal, hidden and 
output neurons were activated by exponential function and 
the learning was done using quasi-Newton approach;

•	 the learning process was characterized by the correlation 
(R) and determination (R2) coefficients for water mains, 
distribution pipes and house connections which were 
equaled to 0.9921, 0.9842; 0.8685, 0.7543 and 0.9945, 
0.9891, respectively. 

The problem stated in this paper seems to be crucial because 
it is necessary to estimate the level of failure rate properly and 
relatively quickly. ANN are convenient method of quick param-
eters prediction. The methodology suggested in this paper had 
significant changes in comparison to earlier approaches pro-
posed for failure rate of water pipes prediction. The input signals 
were different than previously. Input neurons described the gen-
eral character of water-pipe network, e.g. sale, production, con-
sumption and losses of water or number of water-meters. Such 
approach seems to be reasonable especially in the case when the 
operational data are not registered carefully or there is lack of 
exact information about age, pipe-laying depth, type of soil or 
temperature and other operational parameters. On the other hand 
such information as the amount of water pumped to the system 
or sold water are registered as a general rule. The agreement 
between real and predicted by ANN data could be acceptable and 
proved that it was possible to include different input parameters 
for learning purposes. The main feature (the generalization abil-
ity without knowing the relationships between input and output 
vector) of ANN was checked and proved.

Moreover, it is necessary to remember that assessing the 
failure frequency of water pipes should be carried out together 
with impact of water leakages on the soil (suffusion processes) 
[18] and with the estimation of reliability level of sewerage 
systems, e.g. storm water system [19, 20]. These two municipal 
systems are very important for proper functioning of the whole 
buried infrastructure and should be considered together.
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