
PERIODICA PQI.YTECItNtCA SEF. EL. ENG VOL 44. NO I, PP. IOJ-119 (.VJOOj

ON T H E S C A L A B I L I T Y O F M U L T I D I M E N S I O N A L DATABASES

Istv;ui SZ£PKUTI

ING Naiionale-Nederlanden Hungary Insurance Co. Ltd.
H-1061 Budapest, Andrfissy lit 9, Hungary

e-mail: szepkuti@inf.u-szegcd.hu

Received: August 31. 2000

Abstract

It is commonly accepted in the practice of on-line analytical processing ol databases that the multidi
mensional database organization is less scalable than the relational one. It is easy to sec that the size
of the multidimensional organization may increase very quickly. For example, if wc introduce one
additional dimension, then the total number of possible cells will be at least doubled.

However, this reasoning does not lakelhe fact into account that the multidimensional orga
nization can be compressed. There are compression techniques, which can remove all or at least a
part of the empty cells from the multidimensional organization, while maintaining a good retrieval
performance.

Relational databases often use B-tree indices to speed up the access to given rows of tables.
It can be proven, under some reasonable assumptions, that the total size of the table and the B-trec
index is bigger than a compressed multidimensional representation. This implies that the compressed
array results in a smaller database and faster access at the same time.

This paper compares several compression techniques and shows when wc should and should
not apply compressed arrays instead of relational tables.

Keywords: scalability, multidimensional database, On-line Analytical Processing. O L A P .

1. Introduction

J.I. Motivation

The total number of cells in multidimensional matrices or arrays increases quickly.
Consider an n-dimensional array and assume that we want to add a new dimension
to it. The new dimension will contain at least two elements, otherwise the cells
of the new array will not depend on the new dimension. Let cn+\ > 2 denote the
number of dimension values in the new dimension (c,1 +j := |D„+||). Then, the
total number of cells in the new array will be cn+l times more than in the old array,
it will equal the following expression

|D, x D 3 x ... x D„ x Dn+l\, (I)

where D, denotes the set of dimension values of the i-th dimension (i = 1,2 n.
n + 1). This means an exponential increase in the total number of cells with the
increase of the number of dimensions, given that r, := \Dj\ > 2 for all i. That is
why one may conjecture that multidimensional databases arc not scalable.

mailto:szepkuti@inf.u-szegcd.hu

104 I SZEPKVTI

Fortunately, we do not have to store all the possible cells. There are several
compression techniques, which are able to remove at least a part of the empty cells.
The intention of this paper is to prove the existence of such compression techniques,
which result in a smaller database than the relational (that is tables-based) database
organization while maintaining a faster retrieval performance.

1.2. Scalability

There are a lot of different possible definitions of scalability. For instance PfiNDSE
mentions eleven types of scalability in [6|. These scalability types and their de
scriptions are the following:

Data volumes. Ability to handle very large volumes of input data
(excluding pre-calculated results, indexes, metadata and other over
heads), with acceptable load/calculate/query performance. (Accept
able query response in very large databases may be minutes, whereas
it could be sub-seconds in very small databases.)

Dimension size. Large numbers of members in a single hierarchical
dimension. It includes the capability to administer and update large
dimensions and databases using them.

Dimensionality. Large numbers of base and/or virtual independent
dimensions.

Dimensional model Multiple, Jinked cubes of varying dimension
ality.

Numbers of users. Performance, capacity, security and admin
istrative features to support large numbers of concurrent users plus
administrative capabilities for larger numbers of registered users.

Calculations. Sophisticated multidimensional calculations.
Platforms. Ability to run on multiple server and client platforms.
Functionality. Full range of capabilities to implement many differ

ent types of applications.
Deployability. Ability to deploy acceptable business solutions

without excessive implementation services.
Affordability. Cost effective hardware, software, implementation.
Front-end options. Option to use multiple vendor and third-party

front-end tools to suit different user types.

Throughout this paper, we are going to take the database size as the primary
criterion for scalability.

1.3. Results

The results of this paper can be summarized as follows:

ON THE SCALABILITY OF MULTIDIMENSIONAL DATA RASES 105

• It introduces two improvements of the single count header compression
scheme: the logical position compression and the base-offset compression.

• It proves theoretically that, in the worst case, the multidimensional array
representation with single count header compression occupies less space than
the table-based database organization with B-tree.

• Using two benchmark databases (TPC-D and APB-1), it proves empirically
that the size of the multidimensional representation with base-offset com
pression is smaller than the size of the table representation with B-tree, even
if the size of the B-tree is minimal.

• In the case of the TPC-D benchmark database, the size of the multidimen
sional representation with base-offset compression is smaller than the size of
the compressed table representation with B-tree.

• In addition to the size advantages, the paper also proves with experiments
that the retrieval operation is 1.4 - 7.8 times faster in the multidimensional
representation than in the table representation.

1.4. Related Work

The list of scalability types comes from the paper of PENDSE [6],
There are several compression techniques of on-line analytical processing

databases in the literature.
The conjoint dimension appeared in Express. It was the first multidimensional

analytical tool and dates back to 1970 [5]. Now, it is a product of Oracle.
The paper of ZHAO et al. [9] introduced the chunk-offset compression. The

authors of [9] performed extensive experimentation. They compared, among oth
ers, the performance of the cube operator on relational i . e., table-based (ROLAP)
as well as multidimensional (MOLAP) database organization. The cube is an ag
gregation operator, which generalizes the group-by clause of an SQL statement.
They found that their Multi-Way Array method performed much better than the
previously published ROLAP algorithms. Moreover, the performance benefits of
the Multi-Way Array method are so substantial that in their tests it was faster to load
an array from a table, cube the array, then dump the cubed array into tables, than
it was to cube the table directly. In [9], the cube operator was examined, whereas
in this paper retrieval is tested. It is worth to note the similarities, as well. In [9],
just like in this paper, the compressed multidimensional array occupied less space
than the table representation; and, at the same time, the compressed multidimen
sional array results in faster operation than the table-based physical representation.
The retrieval operation is interesting because, for example, the more complicated
aggregation operation uses it in bulk. Therefore, faster retrieval may imply faster
aggregation. The experimentation results of [9] support this statement.

The single count header compression scheme is described in [I] . We used
a variation of this scheme: instead of storing the cumulated run lengths of empty
and nonempty cells, we stored the (Lj, Vj) pairs of logical positions and number

106 / SZTJ>KUTI

of empty cells up to the logical positions (L}). This variation was described in |7|
for the first time.

The Theorem in section Comparison of Physical Database Representations
may be related to Assertion 2 in [7]. This latter assertion says that the multidimen
sional representation occupies less space than the table representation, if the data
ratio (S) of the table is smaller than the density (p) of the multidimensional array.
The difference between the Theorem and Assertion 2 is threefold:

• Assertion 2 does not take any compression into account, whereas the Theorem
assumes a single count header compression.

• That is why Assertion 2 disregards the size of the B-tree in the table represen
tation and the size of the header in the multidimensional array representation.

• The Theorem is proved in the worst case scenario, without any other condi
tions, whereas Assertion 2 gives a sufficient condition.

The rest of the paper is organized as follows. Section 2 describes compression tech
niques. Section 3 improves single count header compression. Section 4 proves that
a variation of single count header compression occupies less space than the table-
based database organization. Section 5 gives the results of the experimentation.
After the Conclusion, the paper ends with the Acknowledgments, the References
and the Appendix.

There are a lot of compression techniques in the literature. In this section we are
going to show only three of them.

Conjoint dimension. Let us suppose that the finite relation /? C D , x ... x D„
has a special property: given elements of D\ x ... x Df, (1 < h < k < n and
the unique primary key of R is constituted by D\ Di) cannot be found in the
corresponding projection of R. Thus, in order to eliminate empty cells from the
multidimensional array representation, we can define an equivalent R' relation:

J.5. Paper Organization

2. Compression Techniques

K'= {((</• 4).4+i 4) I ((4
Conjoint x Dt,+\ x ... x D„ such that (d\ 4,4+1 4) € R),

....dh),d,,+i dn) €

where

Conjoint = 7r0, Dh(R).

Here, n denotes the projection operation of relations.

ON THE SCALABILITY OF MULTIDIMENSIONAL DATABASES 107

Definition 1 Let us introduce the density of the multidimensional array 0 < p < I :

number of nonempty cells \R\
total number of cells \D\ x ... x Dk\'

Let p' denote the density of the previously defined relation R'. Obviously, the
density will increase according to the following formula:

, = I A x - x D ^ (3)

|Conjoint|

We have to be careful with conjoint dimensions. Consider, for example, the case
when h — k, that is all elements of the unique primary key are put into Conjoint. One
can see that we could eliminate all empty cells this way and the multidimensional
representation became identical with the table-based one. (The multidimensional
representation of a relation is a multidimensional array or matrix, whereas the table-
based representation is nothing else than a table in a relational database.) Thus,
we have to exclude this extreme case of Conjoint, because it probably degrades the
performance.

Chunk-offset compression. First, then-dimensional array is divided into small
size n-dimensional chunks. Then, the dense chunks (where the density p > 40%)
are stored without any modification. Sparse chunks are condensed using 'chunk-
offset compression.' The essence of this method is that only the existing data are
stored using (offsetlnChunk, data) pairs. Within the chunk, the offset is calculated
as follows:

i = ((...((/* - l)c*_! +**_, - l)...)c 2 + i2 - l)ci+iu (4)

where the calculated i is called one-dimensional index, within the multidimensional
index (/] , . . . , ij denotes the index of dimension Dj and cj = \Dj \ is the number
of dimension values in dimension Dj (1 < j < k).

In this compression method, not all the sparse cells are removed from the
array. In the pessimistic scenario, when all chunks are just slightly denser than
40%, almost 2.5 times more space is needed to store the cell values, because all
empty cells are also stored in this case. This may result in up to 2.5 times more
disk input/output operation than absolutely necessary, when the chunks are read or
written.

Single count header compression. By transforming the multidimensional
array into a one-dimensional array, we get a sequence of empty and nonempty
cells:

(E*F*)\ (5)

In the above regular expression, E is an empty cell and F is a nonempty one. The
single count header compression (SCHC) stores only the nonempty cells and the
cumulated run lengths of empty cells and nonempty cells. In [7], we used a variation
of the SCHC. The difference between the two methods is that the original method

108 s. SZEPKOTI

accumulates the number of empty cells and the number of nonempty cells separately.
These accumulated values are stored in a single alternating sequence. The sum of
two consecutive values corresponds to a logical position. (The logical position
is the position of the cell in the multidimensional array before compression. The
physical position is the position of the cell in the compressed array.) Thus, we have
to look for a given logical position between these sums. In [7], instead of storing a
sequence of values, we chose to store pairs of logical positions and number of empty
cells up to this logical position: (Lj, Vj). Searching can be done directly on the L }

values; we do not have to sum two consecutive values of a sequence. This results
in a simpler searching algorithm, when we want to do logical-to-physical position
transformation. On the other hand, if one has to determine the physical position
from an (Lj, V}) pair, then he or she has to take the difference L } — Vj. In the case
of the original method, this physical position is explicitly stored; it is nothing else
than the accumulated number of nonempty cells. Therefore, the implementation of
the physical-to-logical position conversion may be simpler with the original SCHC.
In the rest of the paper, when we mention SCHC, we refer to the variation of this
compression scheme defined in [7].

Definition 2 The array storing the (Lj, Vj) pairs of logical positions and number
of empty cells will be called the SCHC header.

3. Improvements

This section gives the description of two compression techniques, which improve
SCHC, if the SCHC header is maximal.

Logical position compression. By mapping the (i\ /*) ̂ -dimensional in
dex into a one-dimensional index, we can create a one-dimensional array (sequence)
from the &-dimensional array:

(E*F*)*. (6)

The meaning of E and F is just the same as in the previous section.
The size of the SCHC header depends on the number of E*F* runs. In the

worst case, there are N = \R\ runs. Then the size of the SCHC header is 2Nt. (We
assume that Lj and Vj are of the same data type and each of them occupies (bytes
of memory.) But in this case, it is better to build another type of header. Instead of
storing the (Lj, Vj) pairs, it is more beneficial to store only the Lj sequence of all
cells (that is not only the L j sequence of runs).

The logical-to-physical position conversion is done through a simple binary
search. The physical position P(L) of logical position L is defined as follows:

The physical position P(L)

• equals j , if there exists Lj such that L — L } \
• is undefined, otherwise.

ON THE SCALABILITY OF MULTIDIMENSIONAL DATABASES 109

P(L) is undefined if and only if the cell at logical position L is empty. The
physical-to-logical position conversion is just a simple lookup of an array element:

L(P) = L P ,

where L(P) denotes the logical position of physical position P.

Definition 3 The compression method, which uses the sequence of logical posi
tions only, will be called logical position compression (LPC). The L } sequence
used in logical position compression will be called LPC header.

The number of E*F* runs is between 1 and N = \R\. Let v denote the
number of runs. Because the size of Lj and Vj is the same, the header is smaller
with logical position compression, if j < v. Otherwise, i f y > v, the logical
position compression does not result in smaller header than the single count header
compression.

The header with logical position compression is half of the SCHC header in the
worst case, that is when v == N. Almost this is the case in the TPC-D benchmark
database: v = 6,000, 568, whereas N = 6,000,965. (For the description of
the relation, we refer to here, see the section entitled Experiments. The TPC-D
benchmark database itself is specified in [8].)

If the header is halved approximately, then a bigger portion of the header fits
into the memory. In a virtual memory environment, this means less pagings and
thus faster operation.

Base offset compression. In order to store the entire L j sequence, we may
need a huge (say 8-byte) integer number. On the other hand, the sequence is strictly
increasing:

L 0 < L \ < ... < L N . \ . (7)

The difference sequence, ALj, contains significantly smaller values. Based on this
observation, we may compress the header further.

Suppose that we need t bytes to store one element of the Lj sequence. In
addition, there exists a natural number / such that for all k = 0, 1,2,... the

L(ic+i)i-] — Lki (8)

values may be stored in 0 bytes and 9 < i. In this case, we can store two sequences
instead of Lj:

(1) L 0 , L / , L2i, Lit,

(2) LQ — LQ, L \ — LQ L / _ | — LQ,
Lt — Li, L / + I — Lt,Ly~\ — Lt,

110 I. SZEPKOTI

where [x\ means the integer part (floor) of x: [x\ — max(y | y < x and y is
integer}.

Definition 4 Sequence (1) will be called the base sequence, whereas sequence (2)
is going to be the offset sequence:

Bk = L k l , (9)

Oj = Lj - B j ^ j , (10)

where k = 0 [^ j^J a n d j = 0 , N — 1. The compression method based on
these two sequences will be called the base-offset compression (BOC). The base
and the offset sequences together will be called the BOC header.

From the definition of the offset sequence, the following formula for the
logical position follows immediately:

L } = B^ + 0}. (11)

Now, let us compare the size of the LPC header to the BOC header. One element
of the base sequence occupies (bytes, whereas one offset sequence element needs
0 bytes. Thus the space requirements of the two techniques is the following:

LPC: Ni,
BOC: ([^ J + \)t + N6.

The question is when the header with BOC is smaller than with LPC. In order to
give a simple sufficient condition, let us estimate the size of the BOC header from
above as follows:

N - I
/

+ 1 11 + Nd < { — + 1 | i + NO <

We obtained a sufficient condition:

\l N t

7 + <<• < 1 3)

ON THE SCALABILITY OF MULTIDIMENSIONAL DATABASES I ! I

That is, if (12) holds, then the header with BOC will be smaller than with
LPC. jj tends to 0. if N tends to oo. Therefore, for sufficiently large /V values, it is
enough to check the following approximate inequality:

L-+Q<i (14)

In the case of the TPC-D benchmark database, a suitable value of / was 64, with (= 8
and 8 = 4. The header decreased from 45.8 Megabytes to 23.6 Megabytes, to its
51.6%. The left side of inequality (14) divided by the right side gives approximately
the same result:

-4-8
i %51.6% (15)

i
w hich proves the usability of this approximate inequality.

We could decrease the size of the header in the TPC-D benchmark database
to its 1/2 by applying LPC instead of SCHC. On the other hand, the header with
BOC is 51.6% of the header with LPC. That is the original header was compressed
to its 25.8% (from 91.6 Megabytes to 23.6 Megabytes). The base array was small,
it occupied 732.5 Kilobytes of memory only. The offset array was 22.9 Megabytes.
Both the base and the offset arrays fit into the physical memory. If not. then the
binary search may be implemented in such a way that the virtual memory pagings
are minimized:

(1) First, the binary search is done on the base array.
(2) Then, when the adequate /-long section is found, the binary search is contin

ued in the offset array.

4. Comparison of Physical Database Representations

In addition to the empirical results mentioned in the previous section, it is also
possible to prove that, in the worst case, the multidimensional representation of a
relation with SCHC occupies less space than the table representation of the same
relation. (Here the multidimensional representation consists of the compressed
array and the SCHC header, the table representation includes the table plus the
B-tree.)

Definition 5 In this section, we are going to use the following notations:
S = data ratio in the table (0 < 8 < 1); it equals the total size of the columns outside
the key divided by the size of the row;
9 = size of the record identifier (RID) in the B-lree (9 > 0);
5 = size of one row in the table (S > 0);
(= size of the one-dimensional index (t > 0);
N = number of elements in relation R C D\ x ... x Dn (N > 0);

112 /. SZEPKOll

CT = cost of table-representation (Cr > 0);
CM = cost of multidimensional array representation (CM > 0).

Costs. The cost of table representation will include the size of the table (NS)
plus the size of the B-tree. In the worst case scenario, CT will equal the following
expression:

In the worst case, the B-tree is twice as big as in the best case. In the best case,
almost all pages of the B-tree are full. These pages store, among others, the keys
and RIDs of rows corresponding to the keys. In addition, the pages have to store
the RIDs of their children. The size of all keys is (1 - S)NS. The size of all RIDs
(including the RIDs of rows and RIDs of children) is 2N6. That is why the size of
the B-tree may be estimated with (1 — 8)NS + 2N8 in the best case. In the worst
case, its estimation is 2(1 — 8)NS + 4NQ.

The cost of multidimensional array representation will consist of the size of
the compressed array (SNS) plus the size of the header. In the worst case, it will
equal:

The compressed array does not store the keys, that is why there is a 8 coefficient in
the first member of the sum. In the worst case, the number of runs equals N. Thus
the size of the SCHC header is 2Ni.

Remark / The cost definitions do not contain all the possible cost elements, only
the most important ones. For example, the B-tree pages store a flag as well, which
shows whether the page is a leaf page or not. In the multidimensional representation,
the dimension values have to be stored, too.

Theorem 1 The multidimensional database organization with single count header
compression occupies less space than the table-based organization with B-tree.

Proof. The worst cases will be compared with each other. Consider the physical
representations of relation R. The size of the table representation of R is at most
CT, whereas the size of the multidimensional array representation is at most CM.
Let us take the quotient of these two positive numbers:

CT = /VS + 2(I -8)NS + 4N8. (16)

CM =8NS4-2Nt. (1 7)

CT _ NS4-20 -&)NS4-4N6 _ 3 - 25 -h 4 |
CM~ ~ 8NS4-2Ni ~ S + 2£

(18)

We are going to prove that > 1. The following equation holds:

(19)

ON T H E SCALABILITY OF MULTIDIMENSIONAL DATABASES 113

It is true, because t is the size of the one-dimensional index and therefore it must
not be larger than the size of the key, which is (1 - S)S. We may think of the
one-dimensional index as a compression of the key.

Since ^ < 1 — 5, the denominator can be increased as follows:

3 - 2 < 5 + 4 f 3 - 2 5 + 4 |
•> > L

5 + 2^ 5 + 2 (1 - 5)

3 - 25 + 4 |

2 ^ 5
(20)

Because 5 < 1 < 1 + 4 | (5 < 1, # and S are positive), we can decrease the
counter in the following way:

3 - 2 5 + 4 § 2 - 2 5 + l + 4 | 2 - 2 5 + 5
2 - 5

(21)

We have obtained that
2-8 2-8

> 1, which means that the table representation with
B-tree occupies more space than the multidimensional database organization with
single count header compression.

In order to visualize the ratio let us put these values into a table (see
Table I).

Table I 6/S = 20%

5
t/S
0% 20% 40% 60% 80% 100%

0% - 9.50 4.75 3.17 2.38 1.90
20% 17.00 5.67 3.40 2.43 1.89 -
40% 7.50 3.75 2.50 1.88 - -
60% 4.33 2.60 1.86 - - -
80% 2.75 1.83 - - -

100% I.SO - - - - -

9/S = 20% means that the record identifiers of the B-tree are 1/5 of the length
of a row in the table. Similarly, t/S compares the length of the one-dimensiona!
index to the length of a row. 5 denotes the data ratio, that is the size of the non-key
columns divided by the size of a row.

5. Experiments

Experiments were made to verify the theoretical results. Two benchmark databases
were tested:

• the TPC-D benchmark database [8];
• and the APB-1 benchmark database [4].

114 i SZGPKQTI

The specifications of both benchmark databases can be downloaded freely
from the Internet. (See the URLs in the References.) Moreover, the specifications
include programs, which are able to generate the benchmark databases.

The TPC-D benchmark database was prepared by the program called DB-
GEN. The size of the created database was 1 GB (the scale factor given to DBGEN
was equal to 1). Then a relation was derived from the database with three dimen
sions: Product, Supplier and Customer. One measure attribute (Extended Price)
was chosen for testing purposes. A similar relation was used in [2], [3] and [7].

The APB-lv2 File Generator obtained three parameters: It used 10 channels,
the density was 1%, and it assumed 10 users. From the created relations, we worked
on the one. which was stored in the file called histsale.apb. The four dimensions
(Customer, Product, Channel and Time) and one measure attribute (Dollar Sales)
were kept and used in the testing.

The table-representation of relation R consists of one table and a B-tree index.
The multidimensional representation of the same relation will be constituted by the
following things:

• The compressed array;
• The base and the offset arrays of the header;
• One array per dimension to store the dimension values.

The space requirements of the two physical representations of the TPC-D
database and the APB-1 database are described in Table 2 and Table 3. (The
description of hardware and software, which were used during testing, can be found
in the Appendix.)

Table 2 Table representation

File Size in bytes Size in bytes
TPC-D APB-1

Table 120,019.300 644,436,000
B-tree index 159,617.024 650.792,960
Total 279,636,324 1,295,228,960

It is interesting to compare the size of the multidimensional representation
with the size of the table representation compressed with different software products.
This comparison can be found in Table 4 for the TPC-D benchmark database,
whereas for the APB-1 benchmark database in Table 5.

The size of the uncompressed table-representation was minimal, because the
B-tree was completely saturated. (The complete saturation was achieved in the
following way. First the table was ordered by the key. Then the records with odd
record number were added to the B-tree in increasing order. This resulted in a
completely unsaturated B-tree. Finally, the records with even record number were
added to the B-tree in increasing order.) Despite this fact, the compression programs

ON THE SCALABILITY OF MULTIDIMENSIONAL DATABASES 1 15

Table 3 Multidimensional representation

File Size in bytes Size in bytes
TPC-D APB-1

Compressed array 48,007,720 99,144.000
Base array 750,128 1,549,128
Offset array 24,003,860 24,786,000
Dimension 1 800,000 8,320
Dimension 2 40,000 84,500
Dimension 3 399,984 117
Dimension 4 119
Total 74,001,692 125,572,184

Table 4 TPC-D benchmark database

Compression Size in bytes Percentage
Uncompressed table representation 279,636,324 100%
ARJ 92,429,088 33%
gzip 90,521,974 32%
WinZip 90,262,164 32%
PK2IP 90,155,633 32%
jar 90,151,623 32%
bzip2 86,615,993 31%
WinRAR 81,886.285 29%
Multidimensional representation 74,001,692 26%

could decrease the size of the table representation to 1/3 of its original size in the
TPC-D database and to its 1/10 in the APB-1 database.

The best one could decrease the size of the TPC-D database table represen
tation to its 29%. The multidimensional representation is only 26% of the table
representation. The multidimensional representation may be considered as another
type of compression, which is better than all the other examined programs because

• it results in a smaller database size
• and it allows faster access to the cells than the uncompressed table represen

tation.

In case the of the APB-1 benchmark database, we obtain a slightly different
result: The size of the multidimensional representation is not smaller than the
compressions of the table representation, but it is comparable with them.

The speed of the retrieval operation was also tested. Random samples were
taken from the relation. The elements of the sample were sought in the table
representation one by one through the B-tree. Then the same sample elements were

116 I SZEPKUTI

Table 5 APB-1 benchmark database

Compression Size in bytes Percentage
Uncompressed table representation 1,295,228.960 100%
jar 124,462,168 10%

124,279,283 10%
WinZip 118,425,945 9%
PKZIP 117,571,688 9%
ARJ 115,085,660 9%
bzip2 99,575,906 8%
WinRAR 98,489.368 8%
Multidimensional representation 125,572,184

sought in the multidimensional representation, as well, with the help of the BOC
header. The sample size was 100, 500, 1,000, 5,000, 10,000, 50,000 and 100,000
in the experiments. Table 6 and Table 7 show the results of these tests.

Table 6 Speed of retrieval in the TPC-D benchmark database

Sample Table Multidimensional Quotient
Size representation representation
100 2.90 2.12 1.37
500 8.91 4.97 1.79

1000 10.93 7.04 1.55
5000 164.86 51.35 3.21

10000 321.11 87.17 3.68
50000 1568.72 222.36 7.05

100000 3148.17 402.02 7.83

In columns 2 and 3 of Table 6 and Table 7, the length of the retrieval operation
is shown in seconds. The last column gives the quotient of the second and the third
columns. It says that the multidimensional representation with BOC results in a 1.4
- 7.8 times faster operation than the table representation depending on the sample
size. The quotient as a function of sample size is drawn in Fig. I .

6. Conclusion

There are several different definitions of scalability. If an on-line analytical pro
cessing (OLAP) tool is strong in one definition, it may be still weak in some others.

If we take the database size as the primary criterion for scalability, then the
compressed multidimensional physical database representation may be more seal-

ON T H E SCALABIIJTY OF MULTIDIMENSIONAL, DATABASES I 17

Table 7 Speed of retrieval in the APB-1 benchmark database

Sample Table Multidimensional Quotient
Size representation representation
100 6.36 2.54 2.50
500 15.63 7.31 2.14

1000 28.73 14.53 1 1.98
5000 230.13 65.59 3.51

10000 444.74 116.97 3.80
50000 2214.60 510.21 4.34

100000 4450.14 1033.93 4.30

0 20.000 40.000 60.000 80.000 100.000

T P C - D APB-1

Fig. I

able than the table-based one, because the former one results in smaller database
size.

In many OLAP applications, the stored data is used in a read-only or read-
mostly manner. The database of a lot of applications is refreshed only periodically
(daily, weekly, monthly, etc.). In these applications, it is acceptable that the data is
loaded and compressed using batch processing outside working hours. Moreover,
it does not make any difficulty in SCHC, LPC and BOC, if we want to update an
already existing (that is nonempty) cell.

On the other hand, if we want to fill in an empty cell or empty a nonempty

118 / SZEPKUT!

one. then we have to insert a new cell in the compressed array or delete an existing
one from it, which is a much more expensive operation. The relational databases
were designed to cope with a large number of update, insert and delete transactions.
That is why it may be more benclicial to use the table representation, if we have to
insert or delete frequently.

Speed is extremely important in the field of OLAP. Memory operations arc
faster than hard disk operations often with more orders of magnitude. If we can
compress the OLAP database so that the entire database fits into the (physical)
memory, then we may be able to speed up the OLAP transactions significantly.
This is another reason why it is advantageous to find better and better compression
techniques.

Acknowledgments

I would like to thank Prof. Dr. Janos Cs ir ik for his invaluable comments on earlier versions

of this paper, and Mr. Nigel Pendse for sending me his paper entitled Scalability.

References

(IJ E G G E R S . S. J . - O L K E N , F . - S H O S H A N I , A . , A Compression Technique for Large Statistical
Databases. VLDH. 1981.

| 2) G U P T A . H . - H A R I N A R A Y A N , V . - R A J A R A M A N . A . - U L L M A N , J . D . . Index Selection forOLAP.

Proceeding ofICDE, 1997.
131 H A R I N A R A Y A N , V . - R A J A R A M A N . A . - U L L M A N . J . D. , Implementing Data Cubes Efficiently.

ACMS1GMOD, 1996.
[4] O L A P Counci l /APB-1 O L A P Benchmark, Release 11

http://www.olapcouncil.org
(5) P E N D S E . N. , The Origins of Today's O L A P Products, (c) Business Intelligence Ltd., 1998.

http://www.olapreport.com/origins.html
16] P E N D S E , N . , Scalability, (c) Business Intelligence Ltd., 2000.

http://www.olapreport.com
|7] SZEPKUTI, I . . Multidimensional or Relational? / How to Organize an On-line Analytical Pro

cessing Database, Technical Report, 1999.
[8| T P C B E N C H M A R K ™ D (Decision Support) Standard Specification. Revision 1.3.1.

http://www.ipc.org
| 9 | Z H A O , Y . - D E S H P A N D E . P. M . - N A U G H T O N . J . F., An Airay-Based Algorithm for Simultaneous

Multidimensional Aggregates. Proceedings of the ACM SIGMOD. 1997.

http://www.olapcouncil.org
http://www.olapreport.com/origins.html
http://www.olapreport.com
http://www.ipc.org

ON THE SCALABILITY OF MULTIDIMENSIONAL DATABASES I 19

Appendix

The table below shows the hardware and software, which were used for testing.

Computer Toshiba Satellite 300CDS
Processor Intel Pentium MMX
Processor speed 166 MHz
Memory size 80 MB
Hard disk manufacturer IBM
Hard disk size 11 GB
File system ext2
Page size of B-tree 4KB
Operating system Red Hat Linux release 6.2 (Zoot)
Kernel version 2.2.14-5.0
Compiler gcc version cgcs-2.91.66 19990314/Linux
Programming language C

1

