
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 44, NO. 2, PP. 141–157(2000)

CODE GENERATION FROM UML MODELS1

Ákos FROHNER, Zoltán PORKOLÁB and László VARGA

Department of General Computer Science
Eötvös Loránd University, Budapest, Hungary

e-mail: Akos.Frohner@elte.hu, Zoltan.Porkolab@elte.hu, varga@ludens.elte.hu

Received: Nov. 3, 2000

Abstract

Creating a generic, object-oriented, component-based, transactional business system, which covers
the whole lifecycle, is possible only with the integration of commercial tools, component technologies,
newly developed class libraries and by using code generators. Most of the recently used tools for
development techniques are focusing on only one of the layers of the model from the code generation
point of view. As a consequence, the inter-layer connections are lost in the generated code.

In this article, we describe a code generator technique which uses a UML model as a starting
point and generates several layers directly. While generating the code, it preserves the original inter-
layer relationships originated in the model.

Based on our experiences with 4GL systems it is obvious that there is a need to provide
customisation in the generated code. We offer a multi-paradigm approach [1] to let the developer
choose the appropriate solution for her or his implementation.

Keywords: UML, code generation, component, metadata, aspect-oriented programming.

1. Introduction

Nowadays, new programming paradigms have come into view in software tech-
nology. Multi-Paradigm Design [2] by James O. COPLIEN and others, focuses on
helping the designer to create abstraction for arbitrary domains. Object-oriented
design arms the designer with tools that produce modules of a certain shape. As
long as the problem domain lends itself well to object-shaped abstractions, the ob-
ject paradigm works well. However, some problems have little to do with objects.
Multi-paradigm steps above any single paradigm as it helps the designer choose the
right paradigm for each project domain.

We did not intend to limit the expressiveness of a designer with only one para-
digm, thus we show various solutions with various paradigms where it is applicable.

Shortly, we introduce the following paradigms to help the understanding of
thecustomisation techniques (see Section4..):

• Generative Programming
• Generic Programming
• Aspect Oriented Programming

1This work has been supported by the Grants OMFB ALK-00229/98

142 Á. FROHNER et al.

Object-oriented programming is also heavily used, but it is a widely known
paradigm, so we expect that the reader’s knowledge is sufficient to follow the object-
oriented customisation techniques used in this article.

1.1. Generative Programming

Generative Programming (GP) is a software engineering paradigm based on mod-
elling software system families such that, given a particular requirements speci-
fication, a highly customised and optimised intermediate or end-product can be
automatically manufactured on demand from elementary, reusable implementation
components by means of configuration knowledge [3].

In this article we use the idea of GP in various places. At the design level, we
generate sub-layers of the analysis model. At implementation, we generate client
code from UI design models, and database schema from the model of the persistent
layer.

1.2. Generic Programming

Of different programming paradigms the most interesting new paradigm is the
generic programming. The goal of this style is to reveal the foundations and pro-
gramming methods of generic, and therefore reusable, components and libraries.
In the terms of Multi-Paradigm theory we use generic programming in those cases
when the objects have little or no common structure but the behaviour (the methods
used on objects) are similar. Using this approach we can greatly reduce the com-
plexity of a software library. For example, if we have a library withn data structures,
each withk base type andm algorithms, then using the traditional object-oriented
way the complexity of the library isO(k ∗ n ∗ m). The using of the generic pro-
gramming this reduced toO(n + m) [5].

The software library designs that have resulted from this generic program-
ming approach are markedly different from other software libraries: the precisely-
organized, interchangeable building blocks that result from the approach permit
many more useful combinations than are possible with more traditional component
designs. The design is also a suitable basis for further development of components
for specialized areas such as databases, user interfaces, and so on. By employing
compile-time mechanisms and paying due regard to algorithm issues, component
generality can be achieved without sacrificing efficiency. This is in sharp contrast
to the inefficiencies often introduced by other library structures involving complex
inheritance hierarchies and extensive use of virtual functions [4]. The bottom-line
results of these differences is that generic components are far more useful to pro-
grammers, and therefore far more likely to be used, in preference to programming
every algorithm or data structure operation from scratch.

CODE GENERATION FROM UML MODELS 143

1.3. Aspect-Oriented Programming

4 Traditionally, programs involving shared resources, multi-object protocols, error
handling, complex performance optimisations and other systemic, or cross-cutting
concerns have tended to have poor modularity. The implementation of these con-
cerns typically ends up being tangled through the code, resulting in systems that
are difficult to develop, understand and maintain.

Aspect-oriented programming is a technique that has been proposed specifi-
cally to address this problem. One can separate the above mentioned concerns on
source level into aspects and weave them into the original code using an automated
tool before compilation. The granularity of the weaving points and the language of
the aspect is determined by the actual implementation of the weaver.

For implementation purposes we have chosen Java, since the parallel con-
structs are a standard part of the language and there is a general purpose aspect-
weaver called AspectJ. This tool has been developed in the last couple of years at
Xerox Palo Alto [14].

In AspectJ, aspects are programming constructs that work by cross-cutting the
modularity of classes in carefully designed and principled ways. So, for example,
a single aspect can affect the implementation of a number of methods in a number
of classes.

1.4. Unified Modelling Language

The Unified Modelling Language [6] is a general-purpose visual modelling lan-
guage that is designed to specify, visualise, construct and document the artifacts of
a software system. The UML is simple and powerful. The language is based on a
small number of core concepts that most object-oriented developers can easily learn
and apply. The core concepts can be combined and extended so that expert object
modellers can define large and complex systems across a wide range of domains.

In this paper we use only a small subset of the whole modelling language:
static class diagrams and some semantical constructs. The used notation is in the
full specification [13].

1.5. XMI

UML is sufficient to visualise the design, but it was necessary to develop a standard
which enables the exchange of meta-information (XML MetadataInterchange)
among design, implementation and runtime systems. OMG has introduced XMI
[16] for this purpose.

Also, XMI is intended to be a ‘stream’ format. That is, it can either be
stored in a traditional file system or streamed across the Internet from a database or
repository.

144 Á. FROHNER et al.

In this article this format is used to export the design data from any OOAD
design tool and base the implementation of the model transformation and code
generation facilities on its model-architecture.

2. Design Model

The classical approach of software engineering identified the software life-cycle
as a rigid sequential process: it starts with the analysis phase followed by the
separate design and implementation steps. Nowadays, this bounded approach is no
longer tenable. The accelerated process of software manufacturing requires iterative
and sometimes even parallel execution of the analysis – design – implementation
steps. However, this iterative/parallel software engineering process is not supported
efficiently by recent CASE tools.

We intend to simplify and make this process partly automated by generating
layer specific design models. Layer specific models are views within the original
model specialized for the target domain of some software technology step, (i.e.
analysis, database design, UI design etc.). To allow iterative and parallel modi-
fications at each level, we give a method tore-generate the layer specific design
models.

We give a formal description of the process with examples.
As an example application we have chosen a simplecar retail system which

was extended by various aspects at the analysis and design level.

2.1. Analysis

In the analysis level new classes are added to describe the usage patterns (e.g. ‘in
which garage is the car parked?’, ‘who is the test driver of a new model?’) in the
company. Further analysis steps also removed a class, which was unnecessary at
this level (engine).

In the database design new classes are added to more precisely specify the car
itself (e.g. the type of engine), while also considering some of the existing details of
the persistent layer (e.g. records of cars with diesel engine are stored in a separate
table than others). Another class is removed, which was not necessary from this
point of view (person).

The first figure (seeFig. 1) shows the first version of the analysis model, with
the following classes:Vehicle, Car, Person, Engine.

2.2. Initial Generation of the Layers

In the first phase the layer specificsub-models are generated within the original
design model to represent the specificlayers.

CODE GENERATION FROM UML MODELS 145

Vehicle

Person Car Engine

Analysis

Fig. 1. Analysis - version 1

The sub-models are specialised for the target domain: they contain interfaces,
classes and methods specific to the target language:

• Database or persistent layer
• Business logic
• Middle tier
• User interface (view, list, editor)

Fig. 2 illustrates the generation of such sub-models in our example car retail
system.

Vehicle

EngineCarPerson

DBVehicle
(from DB))

DBEngine
(from DB))

DBPerson
(from DB))

DBCar
(from DB))

IEngine

(from IDL)

IPerson

(from IDL)

ICar

(from IDL)

IVehicle

(from IDL)

PersonList
(from UI)

PersonEditor
(from UI)

PersonView
(from UI)

VehicleView
(from UI)

VehicleEditor
(from UI)

VehicleList
(from UI)

persistent layer
middle tier

UI − editorsUI − viewsUI − lists

Fig. 2. Generated model layers

146 Á. FROHNER et al.

2.3. Re-generation Algorithm

The sub-model generation itself is a platform specific process which needs a lot of
design-style specific decisions, thus we do not intend to describe the details.

The reusable part of the process is the algorithm which merges the modifi-
cations made at different layers. Once a layer specific sub-model is generated, the
designer may change certain classes and relationships both in the original and in
the generated layer. The re-generation algorithm shall transfer the changes from
the original layer to the generated layer, meanwhile preserving as much of the
modifications as possible.

To describe the algorithm formally we need to introduce several notations:

Gk = 〈V k, Ek〉, (1)

V k = {nodes of layer k}, (2)

Ek ⊆ V k xV k . (3)

For example, the first version of the analysis model isGA
0 , while the subsequent

versions are marked withGA
i . From thei th version of the analysis model the

generated layerk is marked byGk
i .

Genk : G A
→ Gk, (4)

Di f f Gen : G AxG AxGk
→ Gk, (5)

Gk = Di f f Gen(G A
i−1, G A

i , Gk
i−1), (6)

DepNodes : V
→ 2V , (7)

DepNodes(v) = {w ∈ V | w depends-on v}, (8)

DepEdges : V
→ 2E , (9)

DepEdges(v) = {〈v,w〉 ∈ E | ∀w ∈ V ∧ v ∈ DepNodes(v)}, (10)

DepSet (〈V, E〉) = {〈DepNodes(v), DepEdges(v)〉 | v ∈ V }, (11)

DelSetk
i = Genk(G A

i−1 \ G A
i) ∪ (Gen(G A

i−1) \ Gk
i−1), (12)

DelSetk
i = DelSetk

i ∪ DepSet (DelSet k
i), (13)

Di f f Gen(G A
i−1, G A

i , Gk
i−1) = (Gen(G A

i) ∪ Gk
i−1) \ DelSetk

i . (14)

The algorithm is basically a generic graph transformation process, so it can be
applied on different levels of the model graph.

The UML static design model is categorised into packages, containing classi-
fiers (class, interface or data type), which are made of features (attribute or method).

On the macroscopic level thegraph (1) is made ofpackages, where theedges
(3) are theimport dependencies among them. Thedepends-on (8) relationship
simply maps to the edges in the formal algorithm.

CODE GENERATION FROM UML MODELS 147

On the level ofclassifiers the nodes areclasses andinterfaces, where the edges
areinheritance, association andimplements relations. Thedepends-on relationship
maps tois-a (inheritance),has-a (aggregation) andimplements (class implements
an interface) relations.

On the microscopic level offeatures the nodes areattributes, methods and
classifiers, where the edges are containment and type relations. Thedepends-on
relationship is quite complex:

• an attributedepends-on a classifier of its type
• a methoddepends-on a classifier type of any of its parameter or return types
• a feature (method or attribute)depends-on the classifier, where it is defined

In the actualsub-model re-generation process these levels of the algorithm are
sequentially applied on the model, achieving full refinement step-by-step.

2.4. Re-generation Example

To clarify the formal algorithm the following example demonstrates one step of the
process on one level, with the sub-model of the database layer. To have an overview
of this step, with all the involved classes seeFig.3.

Vehicle

Person Car Engine

Analysis

DBEngine

(from DB))

DBCar

(from DB))

DBTaxi

(from DB))

DBDiesel

(from DB))

DBInjector

(from DB))
DBLimusin

(from DB))

DBPerson

(from DB))

DBGarage
(from DB))

DBDriver
(from DB))

DBVehicle
(from DB))

DBVehicle
(from DB))

DBEngine
(from DB))

DBPerson
(from DB))

DBCar
(from DB))

DBTax i
(from DB))

DBDiesel
(from DB))

DBInjector
(from DB))

EngineCar

Garage

Person

VehicleDriv er

Limusin

Fig. 3. Model generation - Overview

The starting point of the sub-model generation is the analysis model (see Section
2.1..), the static class structure of a car retail system.

In the analysis, the following classes were identified:Vehicle, Car, Engine
andPerson, which can be formalised into the following set of nodes and edges:

148 Á. FROHNER et al.

V A
0 = {Vehicle, Car, Engine, Person},

E A
0 = {〈Person, Car〉, 〈Car, Engine〉, 〈Vehicle, Car〉}.

2.4.1. Modifications in the Database Layer

The generation of the database layer’s sub-model produces the following set of
nodes:

V D B
0 = {DBVehicle, DBCar, DBEngine, DBPerson}.

The generated classes in the database layer may contain specific information
for the target domain, such as

• omitted methods (no functionality is necessary in the database)
• changed type of attributes (int→ NUMBER(38), string→ VARCHAR(255))
• special fields (eg. object_id)

DBVehicle
(from DB))

DBEngine
(from DB))

DBPerson
(from DB))

DBCar
(from DB))

DBTaxi
(from DB))

DBDiesel
(from DB))

DBInjector
(from DB))

Fig. 4. Generated DB layer

During the refinement of the database scheme it was realised that the two types
of engine (diesel and injector) cannot be fit into the same table, thus new classes
are introduced as subclasses ofDBEngine: DBDiesel andDBInjector. There were
also special requirements for taxis (eg. an increased number of obligatory check in
servicing for warranty), which implied the introduction of theDBTaxi class. The
database designers were unconcerned of the person associated with the car, thus the
DBPerson class was removed from this layer.

After these modifications the changed set of nodes and classes are the following:

CODE GENERATION FROM UML MODELS 149

V D B
0 = {DBVehicle, DBCar, DBEngine, DBTaxi, DBDiesel, DBInjector},

E D B
0 = {〈DBCar, DBEngine〉, 〈DBVehicle, DBCar〉,

〈DBCar, DBTaxi〉, 〈DBEngine, DBDiesel〉,
〈DBEngine, DBInjector〉}.

2.4.2. Modifications in the Analysis Model

Parallel to the development, further interviews with the customer may change the
original analysis model.

In the case of the car retail system, the customer emphasised the need of
dealing with situations where he has to know more about ‘where is a test car parked?’
and ‘who would drive a test car?’. The analysis model is changed by introducing
theGarage andDriver classes.

To identify the type of a given car it was required to describe its general style
instead of the details, thus theEngine class is dropped and theLimusin class is
introduced.

EngineCar

Garage

Person

VehicleDriver

Limusin

Fig. 5. Analysis - version 2

The changed set of nodes is:

V A
1 = {Vehicle, Car, Person, Driver, Garage, Limusin}.

2.4.3. Re-generation of the Database Layer

After the changes in the analysis and database layer, it is necessary to execute the
re-generation process to have a consistent design model.

150 Á. FROHNER et al.

Some intermediate sets of the formal re-generation process (the edges are
omitted for simplicity):

DelSetD B
1 = 〈{DBEngine, DBPerson}, {. . . }〉, (15)

DepSet(DelSetD B
1) = 〈{DBDiesel, DBInjector, DBDriver}, {. . . }〉, (16)

DelSetD B
1 = 〈{DBEngine, DBPerson, DBDiesel, (17)

DBInjector, DBDriver}, {. . . }〉,
V D B

1 = {DBVehicle, DBCar, DBTaxi, DBLimusin, (18)
DBGarage}.

There are two deleted nodes (15): theDBEngine class was deleted in the database
layer itself; thePerson class was deleted in the analysis model, but the original
generation process produced its counterpart asDBPerson.

Three classes are dependent upon the deleted ones (16): DBDiesel andDBIn-
jector is-a DBEngine; DBDriver is-a Person.

The closure of the deleted node set is (17), so the new version of the database
layer’s sub-model consists of only five nodes (18).

DBEngine
(from DB))

DBCar
(from DB))

DBTaxi
(from DB))

DBDiesel
(from DB))

DBInjector
(from DB))

DBLimusin
(from DB))

DBPerson
(from DB))

DBGarage
(from DB))

DBDriver
(from DB))

DBVehicle
(from DB))

Fig. 6. Re-generated DB layer

3. Source Code Generation

The source codes shall be generated from the sub-models instead of the analysis
model itself. The generated sources are platform specific, thus a sub-model can be
the origin of more than one source code in different languages.

The usual targets are:

• SQL database schema

CODE GENERATION FROM UML MODELS 151

• Java or C++ for business logic
• Java or C++ for user interface
• meta information for various generic drivers
• IDL for the middle tier

The generated sources might be modified by the programmers to tailor them
to the actual requirements. Unfortunately, these modifications are hard to track,
thus it is hard to feed them back into the design model.

Two approaches can be used to deal with this problem:

1. Reverse engineering: parsing the modified source codes and building up the
modified design model.

2. Re-generation of the sources: re-generation of the sources from the modified
design model and merging the changes from both evolution paths in the same
manner as the sub-models are generated and re-generated.

The sub-model generation algorithm can be implemented as a transformation
on the model graph, but one does not have this clean architecture if the target graph
is projected into source code. Although it is possible to reverse engineer source code
into model graphs – since the base languages are already well defined, standardised
–, it is a never ending battle to follow the changes of the frequently used language
extensions, frameworks and non-standard implementation details in these tools.

We intend to delegate the actual graph transformations on the source code level
to the most appropriate tools – to the compilers itself, thus we offer a multi-paradigm
approach [2]. We call these tools and techniquescustomisation techniques.

4. Customisation Techniques

The customisation uses the same graph manipulations as the model re-generation,
but delegates the task to different tools, like C++ compiler and aspect weaver.
These tools parse the sources and build up syntax graphs internally and execute the
modification requests on these graphs internally.

4.1. Polymorphism

The polymorphism can be exploited in two areas: the design level, where the
previously described re-generation algorithm helps its usage, and in the source
code generation to preserve implementation level changes. In the first example (see
Fig. 7) it is used at design level.

From the analysis model there are two sub-models generated: single object
view and list view, both for the user interface. In the lists theshowView()method
is polymorphic. If one does not need subclass specific behaviour forTruck andBus
classes in this method, then the generatedTruckList and BusList classes can be
dropped.

152 Á. FROHNER et al.

Vehicle

Truck Bus

TruckView BusView

VehicleListVehicleView +showView()

TruckList BusList

analysis

UI − views UI − lists

Fig. 7. Customisation via polymorphism - Simplification

The re-generation algorithm preserves this design decision and will prevent
the re-insertion of the deleted classes.

The second example demonstrates the usage of inheritance in source code
generation as a customisation technique.

Adding or modifying the behaviour of a class can be achieved by subclassing
the target class and overriding the necessary method (seeversion 1 andMyCarEditor
in Fig. 8).

When the design is modified – thecolour attribute is added – the change
will be populated into the UI design and into the source code as well. Since the
modification is separated into a new class which will not be overwritten even if the
source is re-generated, the source level changes are preserved.

However, this technique has a drawback: it cannot deal with the case, when
a feature or class is deleted from the design. In such cases a compile time error
occurs, which will force to implementer to modify the source by hand to follow the
changes.

4.2. Aspect Weaving

Using an aspect weaver the drawback of inheritance disappears, since an aspect
can only be introduced into existing classes. Although it makes the customisa-
tion process easier it has the disadvantage of using another tool in the developers’
toolcase.

CODE GENERATION FROM UML MODELS 153

Car

− type : String

Car2

− type : String
− colour : String

CarEditor

− typeEdi tor : TextField

+ checkType()

CarEditor2

− typeEditor : TextField
− colour : TextField

+ checkType()
+ checkColour()

M yCarEditor

+ checkType()

source
version 1. version 2.

Fig. 8. Customisation via polymorphism - New base class

Using aspects, the graph manipulations happen in the aspect weaver which
introduces the code sections from the aspects into the source code.

If the source code is generated from the design model and the aspects are
written by a programmer, then this process is basically a way to preserve the hand
made modifications.

If the aspects are introduced at the design level, then this is a way to add
crosscutting concerns in the original manner of AOP.
In this example a general security policy is introduced, which shall be applied to
all descendants of theItem class (seeFig.9). TheallowExecution() andallowCre-
ation() methods are inserted before the code sections of the user interface methods.
TheallowExecution() simply throws a security error upon lack of authorization.

4.3. Parametrisation with Meta Information

In the object-oriented world, specialised classes are used created to provide a specific
behaviour. This approach provides an excellent way to check the consistency at
compile time, but it has some drawbacks:

• Lots of small and trivial classes are created,
• The code tends to be large due to the number of classes,
• Any modification requires the recompilation and installation of the class

hierarchy.

For faster development and more flexible architecture, a generic solution can be
created. The generic architecture accepts meta information, which is usually re-
stricted to the class descriptions. Based on this information, the basic behaviour
can be provided without the need of small and trivial classes.

154 Á. FROHNER et al.

I tem

− price
− description
− picture

I temEditor

++ editPrice()
++ editDescription()
++ editPicture()

I temList

++ showItem()
++ selectI tem()
++ deleteI tem()

Policy

++ allowCreation()
++ allowExecution()

<<Aspect>>

I temView

++ showPrice()
++ showDescription()
++ showPicture()

Fig. 9. Customisation via aspects

Actually, the generic architecture generates the basic behaviour on-the-fly;
it is done before the compilation in an ordinary environment.2

The meta information can be placed on the client on demand, using the in-
stallation of a minimal amount of code on the user’s computer. It provides the
advantage of dynamic code installation without the need of Java-like environment:

+ Minimal amount of code in the client
+ Meta information on demand – minimal amount of information
+ Meta information at execution – dynamic update of the client
– Slower execution
– Lack of compile time consistency checking

Fig. 10 illustrates the class hierarchy for the user interface of a simpleCar
class. Thegenerated hierarchy provides the advantage of compile time checking.
The generic hierarchy has a similar structure, but it can be used not only for the
Car class.

5. Implementation

We chose XMI[16] as the basis of the sub-model and code generating processes.
Since XMI is becoming a de-facto standard among the CASE tools, it makes this

2see a PropertyEditor based on JavaBean’s BeanInfo

CODE GENERATION FROM UML MODELS 155

Car

− type : String

CarEditor

− typeEditor : TextField

+ checkType()

CarEnumerator

− carList : List

CarViewer

− typeLabel : Label

GenericViewer

− label : Label

+ showObject()

GenericEditor

− fields : TextField[]

+ editObject()

GenericEnumerator

− list : List

+ showObjects()

GenericUI

− classInfo : MetaClass

+ setClass()

generated

generic

Fig. 10. Generated and generic user interface

set of algorithms and generators inter-operable with other vendors’ designer and
developer environments.
One possible scenario goes from the analysis model, through the sub-models to a
generic user interface or generic database backend.

In this scenario the XMI information may be directly deployed into the generic
package. It postpones several consistency checks to run-time, but eliminates the
code generation, which can be a desirable speed-up in the early phase of develop-
ment.

When a mature design is reached the generic behaviour can be turned into
static source code based on the same meta information. In the source code more
accurate semantic validations and better optimisations can be executed at compile
time to produce better quality applications.

156 Á. FROHNER et al.

XMI

User Interface

generic UI

generation

UI Design

Analysis

Database
generation

generic DBI

DB Design

deployment

DB schema

UI source

Fig. 11. XMI translation phases

6. Conclusion

CASE tools are currently supporting only specific areas of the development process
with limited customisation possibilities.

Our goals were to:

• connect the analysis, design and implementation phases

• provide customisation spots for designers and implementers

• populate modifications in one layer to the whole system

We have achieved these goals by formalising a generic re-generation algorithm to
connect the different design layers in three levels of detail, and describing various
source-level customisation techniques to extend this algorithm to the implementa-
tion’s target language.

Although we have achieved these goals we intend to extend our research in
the following areas:

• modular generator back-ends for the XMI framework

• complexity metrics for the design model

• generation of behavioural elements from UML state and collaboration dia-
grams

With our future goals we aim to cover more aspects of the design and provide more
easily configurable and predictable tools for the developers.

CODE GENERATION FROM UML MODELS 157

References

[1] BOOCH, G.,Object-Oriented Analysis and Design, The Benjamin/ Cummings Publishing Com-
pany, 1994.

[2] COPLIEN, J,Multi Paradigm Design for C++, Addison-Wesley, 1998, ISBN: 0-201-82467-1.
[3] CZARNECKI, K. – EISENECKER, W. U., Generative Programming, Addison-Wesley, 2000,

ISBN: 0-210-30977-7.
[4] STROUSTRUP, B., The C++ Programming Languages Special Ed., Addison-Wesley, 2000,

ISBN: 0-201-70073-5.
[5] M USSER, D. R. – ATUL, S.,STL Tutorial and Reference Guide, Addison-Wesley, 1996, ISBN:

0-201-63398-1.
[6] A LBIR,S. S.,UML in a Nutshell, O’Reilly, 1998, ISBN: 1-56592-448-7.
[7] FROHNER, Á., An Object Meta Information Framework,European Conference on Object-

Oriented Programming (ECOOP) Workshop Reader, 1997.
[8] FROHNER, Á., Layered Design Visualisation,European Conference on Object-Oriented Pro-

gramming (ECOOP) Workshop Reader, 1998.
[9] K ICZALES, G., Aspect Oriented Programming,AOP Computing Surveys 28(es) (1996), p. 154.

[10] KICZALES, G. – LAMPING, J. – MENDHEKAR, A. – MAEDA, C. – LOPES, C. V. –
LOINGTIER, J-M. – IRWIN, J., Aspect-Oriented Programming,Proceedings of the European
Conference on Object-Oriented Programming (ECOOP), Finland. Springer-Verlag LNCS 1241.
June 1997.

[11] L ISKOV, B., Data Abstraction and Hierarchy,SIGPLAN Notices, 23 No. 5. May, 1988.
[12] RUMBAUGH, J. – BLAHA , M. – PREMERLANI, W. – EDDY, F. – LORENSEN, W., Object

Oriented Modelling and Design., Prentice Hall, 1991.
[13] Unified Modeling Language 1.1, Rational Software Corporation, 1997. September 1.,

http://www.rational.com/uml
[14] Xerox, Palo Alto Research Center,AspectJ Home Page. http://www.aspectj.org/
[15] Sun Microsystems Inc.:The Source for JavaT M Technology,

http://www.javasoft.com/
[16] XMI at OMG: http://cgi.omg.org/cgi-bin/doc?ad/99-10-13
[17] XMI at IBM: http://www-4.ibm.com/software/ad/standards/xmi.html

http://www.rational.com/uml
http://www.aspectj.org/
http://www.javasoft.com/
http://cgi.omg.org/cgi-bin/doc?ad/99-10-13
http://www-4.ibm.com/software/ad/standards/xmi.html

	Introduction
	Generative Programming
	Generic Programming
	Aspect-Oriented Programming
	Unified Modelling Language
	XMI

	Design Model
	Analysis
	Initial Generation of the Layers
	Re-generation Algorithm
	Re-generation Example
	Modifications in the Database Layer
	Modifications in the Analysis Model
	Re-generation of the Database Layer

	Source Code Generation
	Customisation Techniques
	Polymorphism
	Aspect Weaving
	Parametrisation with Meta Information

	Implementation
	Conclusion

