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Abstract

The paper shows that the theory of generalised invariant subspace and matrix sign function can be
applied to computing steady state distribution of QBD-M queueing system. This queueing system is an
appropriate and useful modeling tool for system analysis and performance evaluation in computer and
telecommunications network field. Moreover, this computational method is evaluated in comparison
with other well-known and recently developed methods.
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1. Introduction

The search of numerical solutions for queueing models applied in performance anal-
ysis of computer systems and communication networks has practical importance
and is always a hot research topic. In recent years, the extensive application of two-
dimensional queueing systems which state is described by a phase and a level has
been widely witnessed, particularly on the performance evaluation of ATM (Asyn-
chronous Transfer Mode) systems [17]. If the level transitions are only possible
between adjacent ones, such queueing systems are called QBD (Quasi Birth-Death)
processes.

For the steady state solution of this class of two-dimensional Markov chains,
several efficient methods have been developed and improved over recent years
[2, 4, 6, 10, 11, 14]. However, there are only few works dealing with such two-
dimensional queueing systems in which upper-bounded arrival and/or departure
batches occur, i.e. multiple jumps in level dimension are possible. The involvement
of this kind of queueing systems is quite reasonable and useful during modeling
and performance analysis of a variety of problems arising in telecommunication
networks and computer systems field. For example, it may be resorted to during
analysis of ATM devices having input and output links of different speeds (ATM
concentrator, ATM multiplexer [5, 8]), negotiation of processor scheduling sce-
nario [16], modeling SVC based IP-over-ATM scenario [15], analysis of systems of
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processors subject to failures and repairs (examined later in this paper) etc. Thus,
the analytical solution of this kind of queueing systems bears sufficient importance
from the practical point of view which gives credit to the task of developing its
numerical methods.

Being motivated by this observation, our current research focuses on devel-
oping a numerical method for steady state solution of queueing systems with batch
arrivals and batch departures (referred to as QBD-M processes where the letter M
stands for the occurrence of batches). In a certain sense, QBD-M processes can be
considered as an extension of QBD processes and therefore with some skillful ma-
nipulations (e.g. re-blocking), computation methods developed for QBD processes
can be applied. From the technical point of view, direct methods, i.e. methods
without any additional manipulation such as re-blocking, may have some advan-
tages over the former ones and that is why it is worth devoting research efforts in
this direction.

Towards the aim addressed before, this paper proposes a direct computational
method for computing steady state distribution of QBD-M processes. The fun-
damental material of this method is a theory of generalised invariant subspace in
linear algebra, which has been first introduced and applied by Nail AKAR et al.
(see [1, 3]) to teletraffic problems. The capability of this method will be discussed
and demonstrated through a numerical example and will be compared with other
existing computational ones, namely with the method of NAOUMOV et al., the spec-
tral expansion method applied after re-blocking and the iterative method proposed
in [18].

The paper is organised as follows. Section 2 is devoted to an overview of
invariant subspaces and the relation between invariant subspaces and matrix sign
function. Section 3 details basic notations and equations of QBD-M processes and
gives a brief review on existing computational methods that have been developed for
steady state analysis of QBD-M processes. Section 4 discusses the generalised in-
variant subspace based (GIS) method. Section 5 contains numerical demonstration
of the GIS method and a performance comparison between it and other methods.
Finally, some conclusions end the paper.

2. Theory of Invariant Subspace and Matrix Sign Function

2.1. Invariant Subspaces

Let us recall briefly some notations and results related with the theory of invariant
subspaces, which will play a key role in the computation method described later in
Section 4. The main part of this subsection is from [1]. Let Rm be the real linear
space of column vectors ofm real numbers,Rm×n be the linear space ofm × n
matrixes with real entries. Asubspace is a subset ofRm that is closed under the
operations of addition and scalar multiplication. For arbitrary subspacesS1 andS2,
S1 ⊂ S2 denotes either inclusion or equality. IfA ∈ Rm×n , then the image ofA is
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defined as
Im A = {x ∈ Rm | x = Ay for somey ∈ Rn}.

If Im A = Im B, then there exists a nonsingular matrixU such thatB = AU . AS
denotes the image ofS underA.

The set of all eigenvalues of a matrixA ∈ Rm×m is called thespectrum of A
and writtenσ (A). A subspaceS of Rm is said to beA invariant whereA ∈ Rm×m ,
if AS ⊂ S, hereAS = {x ∈ Rm | x = Ay for somey ∈ S}. If a k-dimensional
subspaceS is A invariant, thenAS = S A1 holds for ak ×k matrix A1 and anm ×k
matrix S whose columns form a basis forS, i.e. S = Im S.

Let S + T andS ⊕ T be the sum and direct sum, respectively, of the sub-
spacesS andT . LetS⊕T = Rm and assume thatS andT are invariant subspaces
of a square matrixA of sizem.

Then,S = Im S andT = Im T andU defined byU = [ S T ] satisfy

U−1AU =
[

A11 0
0 A22

]
.

If σ (A11) (σ (A22)) lies in the closed right-half (open left-half) plane, thenS (T ) is
said to be the right (left) invariant subspace ofA. Whenσ (A11)

(σ (A22)) lies outside (in) the open unit disk, thenS (T ) is called the unstable
(stable) invariant subspace ofA.

Let us assume a regular matrix pencilλE − A, which is a polynomial ma-
trix (in the indeterminateλ) of degree one. Thegeneralised eigenvalue problem
for the matrixesA andE of sizem is equivalent to finding the scalarλ for which
the equationAx = λEx has solutionsx 
= 0. Such scalarsλ are called gener-
alised eigenvalues. A solutionx 
= 0 corresponding to an eigenvalueλ is called a
generalised eigenvector. A generalised eigenvalue satisfies the relation

λ ∈ σ (E, A) := {µ ∈ C | det(µE − A) = 0},
whereσ (E, A) denotes the generalised spectrum of the matrix pair(E, A) andC
is the field of complex numbers.

Any subspaceS satisfying

T = ES + AS, dim(S) = dim(T )

is called ageneralised invariant subspace (or deflating subspace) of the pencil
λE − A. Note that whenE = I , we indeed have an ordinary invariant subspace1.

Now, letS andSc be two complementary deflating subspaces of the pencil
λE − A, i.e. S ⊕ Sc = Rm . DefineT = ES + AS andTc = ESc + ASc. These
two subspaces are also complementary [1]. Let S = Im S, T = Im T , Sc = Im Sc,
Tc = Im Tc then there exists a decomposition

U−1EV =
[

E11 0
0 E22

]
, U−1AV =

[
A11 0
0 A22

]
,

1Here and in what followsI denotes the unit matrix with adequate size.
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where
U = [ T Tc ], V = [ S Sc ].

If σ (E11, A11) (σ (E22, A22)) lies in the closed right-half (open left-half) plane, then
S (Sc) is called the right (left) deflating subspace of the matrix pencilλE− A. When
σ (E11, A11) (σ (E22, A22) lies outside (in) the open unit disk, thenS (Sc) is called
the unstable (stable) deflating subspace of the matrix pencilλE − A.

2.2. Computation of Invariant Subspace via Matrix Sign Function

An invariant subspace of a given matrix can be calculated through its matrix sign
function. The definition of a matrix sign function is given as follows.

Definition 1 Let X ∈ Rm×m with no pure imaginary eigenvalue. Let X have a
Jordan decomposition X = T (D + Y )T−1 where D = diag{λ1, λ2, . . . , λm} and
Y is nilpotent and commutes with D. Then the matrix sign of X is given by

Z = sgn(X)

:= T . diag{sgn(λ1), sgn(λ2), . . . , sgn(λm)}.T −1,

where for a complex scalar z with Re(z) 
= 0, the sign of z is defined by

sgn(z) =
{

1 if Re(z) > 0
−1 if Re(z) < 0 .

From our aspect, the most important property ofZ = sgn(X) is that Im(Z − I )
and Im(Z + I ) yield the left and right invariant subspace ofX , respectively. This
property means that an orthogonal basis for the left (right) invariant subspace ofX
which has a dimensionr is given by the firstr columns of the orthogonal matrix in
a rank-revealingQ R decomposition of matrixZ − I (Z + I ).

The matrix sign function can be computed efficiently in several ways. In this
paper a scaling Newton’s scheme with Byers scalar shown inFig.1 is adopted. It
has been verified that this iterative algorithm converges quadratically for all matrix
X for which the matrix sign is well defined

k = 0
Z0 = X
DO

t = | detZk |−1/m

Zk+1 = 1
2(t Zk + t−1Z−1

k )

k = k + 1
W H I L E (||Zk − Zk−1||1 ≥ ε||Zk−1||1)

Fig. 1. The iterative procedure to obtain matrix sign function
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3. QBD-M Processes and Existing Methods for their Steady State Analysis

Consider a discrete-time two dimensional Markov process. Each state of the process
is denoted by two integer valued random variablesIn andJn. In is taking a finite set
of values{0, 1, . . . N} andJn is taking an infinite set of values{0, 1, . . .}. The states
with the same value ofJn (Jn = j) define a level( j), whereas the states with the
same value ofIn (In = i) define a phase(i). Multiple jumps in level dimension are
possible but are required to be upper-bounded. The possible transition probabilities
underlying this Markov process are given by the following matrixes

• A j : purely phase transitions – From state(i, j) to state(k, j) (0 ≤ i, k ≤
N; i 
= k; j = 0, 1, . . .)

• B j,s: boundeds−step upward transitions–From state(i, j) to state(k, j + s)
(0 ≤ i, k ≤ N; 1 ≤ s ≤ y1; y1 ≥ 1; j = 0, 1, . . .)

• C j,s : boundeds−step downward transitions–From state(i, j) to state(k, j −
s) (0 ≤ i, k ≤ N; s ≤ j ; 1 ≤ s ≤ y2; y2 ≥ 1; j = 0, 1, . . .). If j < s then
C j,s = 0.

We assume there is a thresholdM, M ≥ y1, such that:

A j = A, j ≥ M; B j,s = Bs, j ≥ M − y1; C j,s = Cs, j ≥ M. (1)

Recall that the well-known QBD (Quasi Birth Death) processes possess similar
properties as the Markovian process described above, except that jumps in level
dimension are allowed only between adjacent ones in QBD’s case. Thus, from
the aspect regarding level changes, the process considered so far is the extension
of QBD process. Therefore, in what follows this process is referred to as QBD-M
process, where the letter M stands for multiple jumps in level dimension. A QBD-M
process has the transition probability matrix of the form shown inFig.2.

P =



A0 B0,1 B0,2 B0,3
C1,1 A1 B1,1 B1,2 B1,3
C2,2 C2,1 A2 B2,1 B2,2 B2,3

C3,2 C3,1 A3 B3,1 B3,2 B3
C3,2 C4,1 A4 B4,1 B2 B3

C5,2 C5,1 A5 B1 B2 B3
C6,2 C6,1 A B1 B2 B3

C7,2 C1 A B1 B2 B3
C2 C1 A B1 B2

C2 C1 A B1
. . .

. . .
. . .

. . .



Fig. 2. The block structure of the transition probability matrix of a QBD-M process with
parametersy1 = 3, y2 = 2, M = 6
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The main task now is to determine the steady state probabilitypi, j = lim
n→∞ P

(In = i, Jn = j) of the state(i, j) in terms of the known parameters of the process.
It is mathematically convenient to introduce the row vectors (called level probability
vectors)v j as

v j = (p0, j , p1, j , . . . , pN, j ) for j = 0, 1, . . . (2)

For j = 0, 1, . . . , M − 1, the balance equations of the system are:

v j =
y1∑

s=1

v j−s B j−s,s + v j A j +
y2∑

s=1

v j+sC j+s,s. (3)

(It is assumedv j−s = 0 if j < s). For j ≥ M, the correspondingj -independent
set is:

v j =
y1∑

s=1

v j−s Bs + v j A +
y2∑

s=1

v j+sCs . (4)

Let e be a column vector with all entries equal to 1. In addition, since the sum of
all probabilities must be one, we have:

∞∑
j=0

v j e = 1.0. (5)

Eq. (4) can be rewritten as a vector difference equation with constant coefficients,
the order of which isy = y1 + y2:

y∑
k=0

v j+k Qk = v j+y1
, j ≥ M − y1, (6)

where

Qk =
{

By1−k for k = 0, 1, . . . , y1 − 1,
A for k = y1,
Ck−y1 for k = y1 + 1, y1 + 2, . . . , y1 + y2.

(7)

Available methods for steady state solution of QBD-M processes fall into two
categories depending on whether the calculation of level probability vectors takes
place in a direct or indirect way. The most well-known indirect solution way is to
perform re-blocking (as shown inFig. 2) in the transition probability matrix of the
QBD-M process to get a standard QBD process, then solving this transformed QBD
process by one of the efficient methods available in literature [2, 4, 6, 11]. Along
this line, the method of NAOUMOV et al. [11] and the spectral expansion method
[6] are most appealing to use due to their fast and accurate performance. We will
refer to these two methods as NA after BL and SE after BL method, respectively.
The direct solution way is represented by the spectral expansion method, that is
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capable to solve QBD-M processes without re-blocking. However, our numerical
experiments do not encourage the use of this direct method, because it is sometimes
inclined to fail in ill-condition troubles.

Recently, a new method has been proposed in [18]. This method makes use
of re-blocking technique and special relations between level probability vectors to
reduce calculation efforts. An iterative procedure has been provided for calcula-
tion of the reduced part of the so called rate matrix. This method is referred to as
ITE method. Theoretically, it has been proved that regarding each iterative step,
the complexity of the ITE method is less than the complexity of matrix geometry
based methods (one of them is Naoumov’s method itself) applied after re-blocking.
Moreover, its gain is also offered by a favourable storage requirement that is def-
initely less than the case of matrix geometry based methods such as the NA after
BL method.

In the next section, we will propose a direct computational method for steady
state solution of QBD-M processes. The method is based on the theory of gener-
alised invariant subspaces and matrix sign function background described earlier in
Section 2.

4. Generalised Invariant Subspace Based Method

4.1. Formal Description

Let us construct the following matrix polynomials and hypermatrixes

Q(λ) = Q0 + Q1λ + Q2λ
2 + . . . + Qyλ

y, (8)

D(λ) = Q(λ) − λy1.I = D0 + D1λ + . . . + Dyλ
y, (9)

G =


0 0 . . . . . . −D0
I 0 . . . . . . −D1
0 I . . . . . . −D2
...

...
. . .

0 0 . . . I −Dy−1

 ,

E =


I

I
. . .

I
Dy

 , T =


I
0
0
...
0

 . (10)

By introducing the row vectors

wk = [ vk+(M−y1)
. . . vk+M . . . vk+(M+y2−1) ] for k ≥ 0 (11)
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and by algebraic manipulations one can easily show that

wk+1E = wk G k ≥ 0, (12)
vk+(M−y1)

= wk T k ≥ 0. (13)

Note thatG, E have sizey ∗ (N + 1) × y ∗ (N + 1), wk has sizey ∗ (N + 1).
The main observation is the singularities of the matrix pencilλE − G, i.e.

the roots of det(λE − G) = 0 are exactly the roots of the equation det(D(λ)) = 0.
In [6], an excellent discussion shows that when the system is stable, the equation
det(D(λ)) = 0 has exactlyy1 ∗ (N +1) roots in the open unit disk andy2 ∗ (N +1)
roots outside the unit disk (including the one atλ = 1). Consequently, if the system
is stable then the matrix pencilλE − G hasmu = y2 ∗ (N +1) singularities outside
the unit disk (including the one atλ = 1) andms = y1∗ (N +1) singularities in the
open unit disk. Letm = mu +ms = y ∗ (N +1). LetV1 andV2 be the unstable and
stable deflating subspaces of the pencilλE − G, respectively. LetV1 = Im V1 and
V2 = Im V2 for some matrixesV1 andV2 of sizem × mu andm × ms , respectively.
Also let U1 := EV1 + GV1 = Im U1 andU2 := EV2 + GV2 = Im U2 for some
matrixesU1 andU2 of sizem × mu andm × ms, respectively. Define

U = [ U1 U2 ] andV = [ V1 V2 ] (14)

then from the theory of generalised invariant subspace presented in Section 2 we
have

U−1EV =
[

E11 0
0 E22

]
andU−1GV =

[
G11 0
0 G22

]
(15)

andσ (E11, G11) andσ (E22, G22) lie outside and in the open unit disk, respectively.
Defining

[ p
k

q
k ] = wk[ U1 U2 ]

and post-multiplying the model (12) by V , we have two un-couple generalised
difference equations forp

k
andq

k

p
k+1

E11 = p
k
G11 k ≥ 0, (16)

q
k+1

E22 = q
k
G22 k ≥ 0. (17)

Since the system is considered under the condition of stability,wk must not be
divergent ask → ∞, which is fulfilled only if

p
0

= w0U1 = 0. (18)

Moreover, sinceσ (E22, G22) lie in the open unit disk,E22 is nonsingular and we
can write

q
k

= q
0
Fk, (19)

where thems × ms matrix F is found as

F = G22E−1
22 . (20)
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Let us partitionU−1 as

U−1 =
[

L1
L2

]
, (21)

where the size ofL1 andL2 is mu × m and ms × m, respectively, then

vk+(M−y1) = wkT = (p
k
L1 + q

k
L2)T = w0U2Fk L2T k ≥ 0. (22)

By this equation we have derived the geometric form of the probability vector

vk+(M−y1) = gFk H with k ≥ 0 g = w0U2 andH = L2T . (23)

Eq. (23) reveals the fact that all vectorsvj ( j ≥ M − y1) can be expressed in terms
of vM−y1

, . . . , vM , . . . , vM+y2−1. Note thatEqs. (3) with 0 ≤ j ≤ M − 1 and
Eqs. (18) then form the set of linear equations in which the number of unknowns
is (M + y2) ∗ (N + 1). The number of equations is the same, but among them
there are only(M + y2) ∗ (N + 1) − 1 linearly independent ones. That means we
have to replace one equation by the normalizedEq. (5) for getting a set of linearly
independent equations. Using (23), it can be easily shown that the equivalent form
of (5) is

M−y1−1∑
j=0

v j e + w0U2(I − F)−1L2T e = 1. (24)

Solving this set of equations one gets the probability vectorsv0, . . . , vM−y1
,

. . . , vM+y2−1, based on whichw0 and through it the restv j ( j ≥ M − y1) can
be calculated.

4.2. Computational Algorithm

Based on the previous section, one can see that the main task is to find bases for the
unstable and stable deflating subspaces of the pencilλE−G, leading to construction
of the matrixesU andV defined in (14). Following the same way in [1], we note
that the stable (unstable) subspaces of the matrix pencilλE − G are equal to the
left (right) deflating subspaces of the pencilλX −Y , where the two matrixesX and
Y are defined as

X = G + E, Y = G − E .

With this transformation, the generalised eigenvalues of the pencilλE − G in
(outside) the unit disk are moved to the open left-half (closed right-half) plane.
There is one generalised eigenvalue ofλX − Y at the origin.

SinceλE − G does not have any generalised eigenvalue atλ = −1, the
matrix X is nonsingular and we can defineZ = X−1Y . The left (right) invariant
subspace ofZ is equal to the left (right) deflating subspace of the pencilλX − Y .
One now may make use of the matrix sign function to compute the left and right
invariant subspace ofZ . However,Z has one eigenvalue on the imaginary axis, at
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the origin because of which the matrix sign function cannot be directly applied and
therefore further transformation is needed. Letγ , µ be left and right eigenvectors
of Z corresponding to the eigenvalues at the origin, i.e.

γ Z = 0, Zµ = 0, (25)

then the matrixZe defined as

Ze = Z + µ.γ

γ .µ
(26)

is free of imaginary-axis eigenvalues, and the left (right) invariant subspace ofZe
is equal to the left (right) invariant subspace ofZ . It is not difficult to show that the
vectorsγ andµ defined as

γ = [ π π . . . π ], µ =


µ

0
µ

1
...
µ

y−1

 , (27)

whereπ is the stationary probability vector ofQ(1), i.e. π Q(1) = π , πe = 1 and

µ
0

= D0e, µ
i
= µ

i−1
− Die for 1 ≤ i ≤ y − 2, µ

y−1
= e

satisfy (25).
Using matrix-sign function iterations onZe to find bases for the unstable

and stable deflating subspaces of the pencilλE − G leads to construction of the
matrixesU andV defined as in (14). The algorithm of step-by-step computation
can be summarized as follows

1. DefineD(λ) as in (9).
2. Define the matrixesG, E , T as in (10).
3. DefineZ = (E + G)−1(G − E), γ , µ as in (27) andZe as in (26). Then find

S = sign(Ze) by the quadratically convergent iteration shown inFig.1.
4. • Construct matrixQr in the rank-revealing QR decomposition

S + I = Qr Rr�r and define

V1 = leading mu columns of Qr

• Construct matrixQl in the rank-revealing QR decomposition
S − I = Ql Rl�l and define

V2 = leading ms columns of Ql

• Construct matrix̂Qr in the rank-revealing QR decomposition
[ EV1 GV1 ] = Q̂r R̂r �̂r and define

U1 = leading mu columns of Q̂r



STEADY STATE ANALYSIS OF QBD-M PROCESSES 169

• Construct matrix̂Ql in the rank-revealing QR decomposition
[ EV2 GV2 ] = Q̂l R̂l�̂l and define

U2 = leading ms columns of Q̂l

5. DefineU , V as in (14) and letE22 andG22 be the lower rightms ×ms blocks
of U−1EV andU−1GV as in (15), respectively. Then defineF as in (20).

6. Solve a set of linearly independent equations forvj , 0 ≤ j ≤ M − y1 − 1
andw0.

7. DefineL2 as in (21) and also

g = w0U2 andH = L2T

to obtain the matrix-geometric expressionvk+(M−y1) = gFk H for k ≥ 0.

5. Comparative Performance Study

In order to evaluate the generalised invariant subspace based method delineated
above in comparison with existing other ones, the system of homogeneous proces-
sors with repairs and breakdowns is chosen to be negotiated. Batch arrivals are in
presence by considering MMCPP (Markov Modulated Composed Poisson Process)
job arrival process. Batch departures occur due to GE (Generalised Exponential)
service time of each processor. The system is modeled by a QBD-M process. The
detailed description of this system is found in Appendix A. For determining steady
state probabilities, four computational ways were implemented. They are:

• ITE method: Using an iterative method developed in [18];
• NA after BL method: Using the method of NAOUMOV et al. [11] after

reblocking to get a standard QBD process;
• SE after BL method: Using the spectral expansion method [6] after reblock-

ing;
• GIS method: Using generalised invariant subspace based method.

All methods have been implemented in C using the Meschach library for matrix
operations2. All program running and the CPU time measurements have been
performed on IBM RISC system/6000 570 station. In all scenarios, the accuracy
for stopping the iterative procedures was set to be 1e − 9. The computation time
was measured until the point at which the program is able to compute the level
probability vectors. That is in the case of the GIS method, time is stopped after
step 5.
Fig. 3 illustrates the effect of system load on computation time. The system load
is required not to be greater than 1 in order to keep the infinite system stable. The

2 Meschach library for matrix computation is developed at the School of Mathematical Sciences,
Australian National University by David E. Stewart and Zbigniew Leyk and it is available via netlib
(ftp.netlib.org/c/meschach).
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Fig. 3. Computation time versus system load (N = 30, y1 = 7, y2 = 2)

curve shows that the GIS method is robust to the traffic load. Its computation
time remains constant while varying the traffic load. In contrast, execution time
of the ITE method and the NA after BL method exhibit strong and slightly load-
dependent nature, respectively. From this point of view, the generalised invariant
subspace based method can be ranked among the best methods ranging with the
spectral expansion method. However, the GIS method is definitely better to use
compared to the SE method due to two aspects. First, the GIS method is faster
than the SE after BL method, as shown inFig. 3. Secondly, the GIS method avoids
the procedure of computing all relevant eigenvalues and associated eigenvectors,
which is compulsory to be done in the case of SE after BL method. Therefore,
numerical problems related to ill-conditions such as too close eigenvalues and the
computational difficulty deriving from the presence of complex eigenvalues and
eigenvectors are no longer imposed.

Fig. 4 shows the computational time as a function of the maximum size of
arrival batch (y1), while the maximum size of departure batches (y2) is fixed. One
can observe fromFig. 3 andFig. 4 that the GIS method has larger computation time
compared to the NA after BL method in all reported cases, but in general it is faster
than the SE after BL and than the ITE method as the saturation point is approached
(i.e. the system load tends to 1).

For a deeper insight into the operation of the GIS method, we take a closer
look at the execution time of each step of the step-by-step algorithm presented in
Section 4.2. It is expected that the major computation time will be devoted to the
iterative procedure in step 3 and four QR rank revealing operations in step 4, plus
the time of matrix multiplications and inversion in step 5. In fact, numerical results
show that the iterative procedure for matrix sign function converges quite fast after
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Fig. 4. Computation time versus upper bound of arrival batches (N = 30, y 2 = 2, load =
0.6)

a few iterations. The time required for iterative computation in step 3 is nearly the
same as the time needed for QR operations in step 4. This tendency is valid over all
the sets of system parameters. This situation is demonstrated inFig.5, where the
individual time of each step is depicted for different system loads. The figures also
give explanation about the load-insensitive nature of the algorithm. It is observable
from the figures that the system load only influences the time of step 3, but that
effect is indeed very small. Step 4 and step 5 are not affected by the system load at
all. The time of step 5 in all cases only takes about 10 percent of the total amount
of time needed.
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For the accuracy of computation of each method we check the infinity norm
of the residual of the solution vector||v −vP||∞, wherev = (v0, v1, . . . , vM , . . .),
P is the transition probability matrix of the QBD-M process. Let us denotevP =
(x0, x1, . . . , x M , . . .). Since bothv andvP are of infinite size, we only take their
first M +1 sub-vectors into account and computemaxj ||v j −x j ||∞ for 0 ≤ j ≤ M.
FromTable 1 andTable 2, it turns out that the residual error of the GIS method is
slightly increasing when a system load is approaching 1. However, compared to
the other algorithms, in a wide range of system parameters, the GIS method has the
smallest residual error. It is also noteworthy that unlike the methods applied after
re-blocking (NA and SE after BL), the achieved accuracy of the GIS method does
not suffer deterioration observed in some cases (seeTable2 for y2 ≥ 6 cases) and
only exhibits negligible fluctuations at varying system parameters.

Table 1. Computation error versus system load (N = 30, y1 = 7, y2 = 2)

Load NA after BL SE after BL ITE GIS

0.1 8.161874e-16 5.987853e-09 1.837527e-14 1.955901e-16
0.2 1.395965e-15 7.346733e-14 1.089881e-12 2.769594e-16
0.3 4.025900e-15 8.085196e-08 9.767948e-12 1.628065e-16
0.4 3.331434e-15 1.956147e-12 3.687938e-11 1.037581e-16
0.5 1.380291e-15 1.819238e-08 7.485544e-11 1.563794e-16
0.6 2.395972e-15 4.972458e-13 1.240864e-10 1.173762e-16
0.7 5.839951e-16 8.120562e-11 1.882883e-10 2.880204e-16
0.8 1.097247e-15 2.355659e-11 2.463647e-10 4.775837e-16
0.9 8.208073e-16 6.714674e-10 3.119365e-10 2.224955e-15
0.95 7.823879e-16 2.977887e-12 3.473892e-10 1.787801e-15
0.99 6.468402e-16 3.345734e-06 3.773965e-10 2.866264e-14

Another benefit of the GIS method relies on the form (23). Using that form of level
probability vectors, one has no difficulty to provide closed form expressions for
performance measures by which easy implementation of computation is available.
For example, by some simple algebraic manipulations, the average number of jobs
in the systems can be expressed as

Kavg =
M−y1−1∑

j=0

jv j e+w0U2
[
(I − F)−2 + (M − y1 − 1)(I − F)−1] L2T e. (28)

For the sake of completeness, the comparative results are summarized inTable3.
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Table 2. Computation error versus maximum departure batch size (N = 30, y 1 =
10, load = 0.6)

y2 NA after BL SE after BL ITE GIS

1 1.496724e-15 7.008743e-05 1.304302e-10 3.930233e-17
2 1.179457e-15 7.282278e-14 2.084226e-10 1.087955e-16
3 3.816726e-15 2.170779e-15 1.839186e-10 6.130667e-16
4 1.120249e-15 2.443699e-13 1.656975e-10 1.789820e-16
5 1.319358e-15 9.813286e-14 1.609332e-10 2.146837e-16
6 4.780242e-04 4.780242e-04 1.478210e-10 8.572997e-16
7 9.414644e-04 9.414644e-04 1.434201e-10 3.099843e-16
8 1.880715e-03 1.880715e-03 1.348634e-10 4.624654e-16
9 3.764807e-03 3.764807e-03 1.283634e-10 4.950161e-16

Table 3. Summary of comparative results

ASPECTS\METHOD GIS ITE NA after BL SE after BL

Robustness to yes no yes, but yes
system load not strictly
Time complexity moderately the fastest good the most time

good under certain consuming
conditions

Numerical the best acceptably good good
accuracy good

6. Conclusions

The paper has two main contributions. First, we have revealed that beyond the
results of previous work published so far in [1, 3], the application range of the theory
of generalised invariant subspaces can also be extended to steady state analysis of
such queueing models, in which batch arrivals and batch departures with arbitrary
size below a given threshold occur. Such queueing systems (referred to as QBD-
M processes) have a wide range of applicability. They are frequently arising in
modeling and performance analysis of telecommunication networks and computer
systems, therefore the computational method we have proposed for their steady
state solution indeed deserves practical credit.

The second main contribution of the paper is twofold. The application of
QBD-M model to a system of homogeneous processors subject to breakdowns
and repairs, with bursty arrivals and bursty departures of jobs has been justified.
Moreover, performance comparison between the proposed computational method
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(abbreviated as GIS) and other ones developed for QBD-M process has been carried
out through this case study.

Based on our negotiation, the advantages of the GIS method can be summa-
rized as follows:

• It is numerically stable and robust to traffic load.
• The GIS method is more advisable to use than the spectral expansion method

not only because it performs faster but also because it avoids the calculation
of eigenvalues and associated eigenvectors, therefore contingent numerical
problems are no longer faced.

• In contrast with the new iterative method proposed in [18], the GIS method
does not suffer any restriction stemming from the relation between upper-
bounds of arrival and departure batches.

• In most cases, the proposed method produces results with the smallest com-
putational error.

• The use of the proposed method makes it easy to give a closed form expression
for performance measures.

Although the proposed method is not considered as the fastest one, the afore-
mentioned benefits will make its utilization and implementation reasonable for
numerical analysis of a wide range of problems.

A. A Case Study – Multiprocessor System with Breakdowns and Repairs

We take the system of homogeneous processors whose number isN . The processors
break down from time to time. Single and independent failures of processors, as
well as multiple and simultaneous failures are possible. Failed processor returns to
operative state after successful repair. Single and independent repairs of processors,
as well as multiple and simultaneous repairs are possible. Failure and repair times
are assumed to be exponentially distributed. The inter-arrival time of job arrivals,
as well as the service time of each processor is assumed to have GE distribution.
The system has a buffer of infinite size.

This system is modeled by a continuous time, two dimensional Markov pro-
cess. At any timet , the state of the system is denoted by a couple of integers
I (t), J (t) in the following way:

• I (t) is the operative state of the system, representing the number of operative
processors at timet , I (t) = 1, . . . , N .

• J (t) is the number of jobs in the system at timet , J (t) = 0, 1, . . .

First of all, we construct the generator matrix of this process. Similar to the discrete
case, let us introduce the following transition matrixes

• A∗
j : purely phase transitions – From state(i, j) to state(k, j) (0 ≤ i, k ≤

N; i 
= k; j = 0, 1, . . .)
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• B∗
j,s: boundeds−step upward transitions–From state(i, j) to state(k, j + s)

(0 ≤ i, k ≤ N; 1 ≤ s ≤ y1; y1 ≥ 1; j = 0, 1, . . .)

• C∗
j,s : boundeds−step downward transitions–From state(i, j) to state(k, j −

s) (0 ≤ i, k ≤ N; s ≤ j ; 1 ≤ s ≤ y2; y2 ≥ 1; j = 0, 1, . . .). If j < s then
C j,s = 0.

As one can see, we have assumed that the upward and downward transitions in
level dimensionj are not only one step, but may be up toy1 and y2 steps. Note,
that there will be a boundaryM, above which the transition matrixes become level-
independent.

The task now is building up the transition matrixes (A∗, B∗ and C∗). Let
us notice that when a new batch arrives or when a completed batch departs from
the system, the operative state does not change, unless there is an independent
coincidence towards such a change. Hence, change in the operative state of the
system is reflected only in the matrixesA∗ and A∗

j .

A.1. Building up A∗ Matrixes

As we mentioned before, there are two kinds of possible failures and repairs.

• The individual processors break down independently at rateξ and are repaired
independently at rateη.

• The global simultaneous breakdowns of all currently operative processors
occur at rateξ0 and the global simultaneous repairs of all currently inoperative
processors occur at rateηN .

The A∗
j matrixes arej -independent and are given by:

A∗ = A∗
j ( j = 0, 1, . . .) =



0 Nη ηN
ξ0 + ξ 0 (N − 1)η ηN

ξ0 2ξ 0 ηN
. . .

η + ηN
ξ0 Nξ 0


(29)

For numerical negotiation, the concrete values were chosen asξ = ξ0 = 0.05, η =
ηN = 0.1.

A.2. Building up B∗ Matrixes

The arrival process is assumed to be anN phase MMCPP (Markov Modulated
Composed Poisson Process) with(σi , θi ) parameters relating to GE inter-arrival
time distribution in phasei . Due to the interpretation of GE (see [12]), the arrival
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point process is Poisson with batches arriving at each point having geometric size.
The probability that a batch has sizes in phasei is given by(1 − θi)θi

s−1.
Furthermore, suppose that when the operative stateI (t) = i , the arrival

process is in phasei . The B∗ matrixes are now ready to be written

B∗
j,s = diag[σ0, σ1, . . . , σN ] ∗ P(batch size =s). (30)

Using the GE distribution and limiting the maximum batch size toy1, the distribution
of batch size in phasei is defined by

P(batch size=s) =
{

(1 − θi )θ
s−1
i 1 ≤ s ≤ y1 − 1,

θ
y1−1
i s = y1.

(31)

It follows

B∗
j,s = diag[(1 − θ0)θ

s−1
0 σ0, (1 − θ1)θ

s−1
1 σ1, . . . , (1 − θN )θ s−1

N σN ]
if 1 ≤ s ≤ y1 − 1 (32)

and
B∗

j,s = diag[θ y1−1
0 σ0, θ

y1−1
1 σ1, . . . , θ

y1−1
N σN ] if s = y1. (33)

For numerical negotiation allσi = σ , θi = {0.1 ∗ i} where{x} operator means a
fraction ofx .

A.3. Building up C∗ Matrixes

Let us assume that each operative processor has GE service time with parameters
(µ, φ). The actual departure rate depends on the actual stateI (t) = i , J (t) = j and
that is given by the entryC∗

j,s(i, i) of matrix C∗
j,s . Similarly to [7], the following

remarks are considered:

• The batch size associated with a service completion is bounded by one more
than the number of jobs waiting to commence service at the departure instant.

• Therefore ifj > i ( j = number of jobs,i = number of operative processors),
the maximum batch size isj − i + 1. Combined with the assumption that
the maximum of departure batch size isy2, we get the form

P(batch size=s) =
{

(1 − φ)φs−1 1 ≤ s ≤ min( j − i + 1, y2) − 1,

φmin( j−i+1,y2)−1 s = min( j − i + 1, y2).

(34)
Furthermore, in this case the service rate relating with batch departure isi.µ.

• For j ≤ i , since there is no job waiting to be serviced the departing batch has
size 1 with probability one. That is

P(batch size= s) =
{

1 if s = 1,
0 otherwise. (35)
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In this case the service rate relating with batch departure (with size one) is
j.µ.

Taking all the aforementioned aspects into consideration we arrive at

C∗
j,s = diag[0, min( j, 1).µ, . . . , min( j, N).µ] ∗ P(batch size= s). (36)

Note thatC∗
j,s(i, i) does not depend onj if

• j ≥ i (note that the maximum value ofi is N)
• the termP(batch size= s) does not depend onj , which is fulfilled when

j − i + 1 ≥ y2.

The first condition is fulfilled ifj ≥ N , the latter one is true whenj ≥ y2 + N − 1.
That is for j ≥ N + y2 − 1

C∗
j,s = C∗

s = diag[0, µ, . . . , N .µ] ∗ P(batch size= s) 1 ≤ s ≤ y2 (37)

is j -independent. Taking this point into account it follows that the thresholdM is
given byM = N + y2 − 1.

The choice for numerical test isµ = 10/N andφ = 0.5.
Based on matrixesA∗, B∗, C∗, the generator matrix of the continuous time

QBD-M process can be easily defined. Using the transformation delineated in [13]
we obtain the embedded discrete time QBD-M process which has the same steady
state distribution as the original continuous one and for which the computational
methods have been applied.
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