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Abstract

In this paper, we give a survey on computational methods developed for steady state solution of
QBD (Quasi Birth-Death) processes. Moreover, we adopt and implement a comparative framework
to evaluate the capability of some chosen methods (spectral expansion, matrix geometric and its en-
hanced versions) in both finite and infinite cases. Numerical aspects concerning complexity, memory
requirement and numerical stability are examined to expose the benefits and vulnerability of each
method.
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1. Introduction

The QBD (Quasi Birth-Death) process was first introduced by WALLACE in [18] and
EVANS in [9] in the late sixties. Basically, the QBD process is a two-dimensional
(phase and level) Markov chain, where state changes are only allowed between
ones having adjacent levels. The QBD process serves as a useful modelling tool
in performance evaluation and system analysis, since it can be used to obtain so-
lutions for several applied queueing models such asM/P H/1/∞, P H/M/n/∞,

P H/P H/1/∞, M AP/P H/n/∞,
n∑

i=1

M APi/P H/1/∞,
n∑

i=1

M APi/P H/1/m

([12, 15, 16]).
Owing to its widespread applicability, the QBD process has gained a lot of

research attention over recent years. For example, many research projects focus on
finding numerical methods for steady state distribution of QBD processes. More-
over, evaluating the capability of those numerical methods also proves an important
research issue and this is the main scope of this paper. Before moving ahead to
detailed discussion, we now begin with the brief review of numerical methods
available in the literature that were developed for steady state analysis of QBD
processes.
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The first numerical procedure known as a matrix geometric method was pro-
posed by NEUTS in [16]. In this work, the geometric relation between level prob-
ability vectors was revealed, which makes the computation more convenient. The
key element of this method is the iterative calculation ofrate matrix R, by which
the geometric relation is defined. However, the original matrix geometric method
has some disadvantages mainly in terms of computational time. Therefore, im-
proving the efficiency (e.g. time and space requirement, numerical stability) of this
computational method is a great research challenge. In recent years, research ef-
forts have resulted in several new computational methods published in the literature
([2, 3, 5, 7, 8, 13, 15, 20]).

The methods proposed by LATOUCHEet al. [13] and NAOUMOV et al. [15] are
improved versions of the classical matrix geometric method. Having an in-depth
analysis of QBD processes and using probabilistic interpretation, LATOUCHE et
al. proposed a really fast and numerically stable algorithm for computing the rate
matrix. The algorithm was speeded up by NAOUMOV et al. with the use of matrix
factorization. These two methods are really popular and have been widely applied
in several works.

Ram CHAKKA developed an exact computational method calledspectral ex-
pansion for QBD processes [5, 6]. Instead of using the geometric relation between
level probability vectors, a special expression of level probability vectors is intro-
duced. The expression is defined by eigenvalues and eigenvectors of the character-
istic matrix polynomial constructed from the process parameters. According to the
author, this method is efficient, accurate and easy to use.

In [20], the authors presented an efficient and versatilefolding method, that
can be applied for finite QBD processes. The odd-even permutation achieved inside
the transition probability matrix and the use of the principle of finite Markov chain
reduction are the key elements of this computational method. In contrast with
matrix geometric based methods, the folding algorithm solves directly the equation
πQ = 0, whereπ is the steady state probability vector,Q is the generator matrix
of the given QBD process. By taking a finite sequence of reduction steps (forward
reduction phase), the original transition probability matrix is brought to a single
-level form, from which a boundary vector can be determined. Since the steady state
solutionπ is expressed as a product of the boundary vector and a finite sequence
of expansion factors, it is calculable (backward expansion phase). Readers are
encouraged to study [19, 20] for more details in the mathematical description as
well as in the applicability of this method.

Nail AKAR et al. approach the solution of QBD processes from a novel
side [2]. Their starting point is the observation of the close connection between
solving the QBD process and solving the Algebric Ricatti Equations arising in
optimal control problem in control theory [1]. Their proposed method then basically
relies on the theory of invariant subspace and on the computation of matrix sign
function with iterative procedure. The rate matrixR is obtained from a calculated
invariant subspace of an adequately constructed matrix. The method is believed to
be fast and stable.

In [3, 4], BINI and MEINI stated a fast, quadratically convergent and nu-
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merically stable algorithm calledcyclic reduction algorithm for QBD problems.
The algorithm is derived from a block cyclic-reduction applied for block tridiago-
nal Toeplitz-like probability transition matrixes, supplemented with the use of FFT
(Fast Fourier Transform) technique. Regarding the time complexity, this algorithm
has been considered to be equivalent with Naoumov’s algorithm.

Another solution for finite QBD processes was sketched in [8]. The authors
provide an exact computational method, which is only based on simple matrix
operations. The explicit analytic solution can be expressed in terms of process
parameters. The authors show that the computation procedure has the same asymp-
totic complexity as other solving techniques. However, the applicability of their
method is limited by the non-singularity condition of certain matrixes.

Recently, a novel method has been proposed in [7]. The method is named
ETAQA (Efficient Technique for the Analysis of QBD-processes by Aggregation).
In this method, the state space of a QBD chain is divided into several equivalent
classes by a certain specific partitioning rule. Instead of computing the probability
distribution of all states in the chain, only the aggregate probability distribution
of the states in each class is evaluated. The authors show that those aggregate
probabilities contain sufficient information to compute performance measures of
interest such as the mean queue length or any higher moments. The method is proved
to have appealing computational and storage complexity. ETAQA can be originally
applied to a class of QBD processes, in which the downward transitions are directly
towards a single state. If this condition is not fulfilled, further manipulations such
as rearranging the state space partitioning are necessary.

In this paper, we perform a comparative study related to four computational
methods developed for steady state analysis of QBD processes. Namely, the simple
substitution matrix geometric, the logarithmic reduction algorithm of LATOUCHEet
al., the algorithm proposed by NAOUMOV et al. and the spectral expansion method
are included into the comparative study. Our preliminary goal is to give a compre-
hensive numerical comparison of the presently available methods and together with
the results of comparative studies achieved in [5, 11, 14, 17] to construct a com-
plete performance comparison picture. In this sense, both finite and infinite cases
are considered in our work, whereas all the previous studies only deal with infinite
cases. The criteria for comparison in our work include computational complexity
(computational time), memory requirement, and numerical stability. Moreover,
exploiting the fact that the spectral expansion method theoretically provides exact
numerical results, we adopt and implement a comparative framework consisting of
two kinds of stopping scenarios named object and performance parameter based
scenarios for iterative methods.

The rest of this paper is organized as follows. Section 2 gives a brief descrip-
tion of QBD processes. In Section 3 and Section 4 numerical methods for infinite
and finite QBD processes are presented, respectively. Section 5 presents the perfor-
mance comparison between computational methods by delineating the comparative
implementation as well as reporting numerical results. The case study taken into
negotiation is a system of homogeneous processors with breakdowns and repairs.
Section 6 ends the paper with summary and opened works.
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2. Mathematical Description of QBD Processes

Consider a queueing system that can be modeled by a discrete time, two dimensional
Markov process on semi-infinite or finite lattice strip. The process has a Markovian
property and the state of system at observation timen can be described by two
integer random variablesIn and Jn. The former one is bounded and referred to as
a phase, the latter one may be either unbounded (infinite case) or bounded (finite
case) and is referred to as a level of the system. The Markov process is denoted by
X = {In, Jn; n ≥ 0} and its state space is ({0,1, . . . , N}×{0,1, . . .}) in the infinite
case and ({0,1, . . . , N} × {0,1, . . . L}) in finite case, respectively. If the possible
jumps of system’s level in transition are only 0, -1 or 1, the corresponding process
is known as Quasi Birth-Death (QBD) process.

The transition probabilities of the underlying Markov process are given by
the following transition probability matrixes:

• A j : purely phase transitions – From state(i, j) to state(k, j) (0 ≤ i, k ≤
N; i 	= k; j = 0,1, . . .)

• B j : one-step upward transitions – From state(i, j) to state(k, j + 1) (0 ≤
i, k ≤ N; j = 0,1, . . .)

• C j : one-step downward transitions – From state(i, j) to state(k, j − 1)
(0 ≤ i, k ≤ N; j = 0,1, . . .).

A j , B j andC j matrixes have size of(N +1)× (N +1). We assume that forj ≥ M
the transition matrixes become level-independent. That is

A j = A, j ≥ M; B j = B, j ≥ M − 1; C j = C, j ≥ M. (1)

For further computations we introduce the following notations:

• pi, j : the steady state probability of the state(i, j)

pi, j = lim
n→∞ P(In = i, Jn = j) i = 0,1, . . . , N; j = 0,1, . . . (2)

Our task is determining these probabilities in terms of known parameters of
the system.

• v j : the row vector defined as:

v j = (p0, j , p1, j , . . . , pN, j ) j = 0,1, . . . (3)

• e: the column vector of (N + 1) elements each of which is equal to 1.

For j = 0,1, . . . ,M − 1, the balance equations of the system are:

v j = v j−1B j−1 + v j A j + v j+1C j+1. (4)

(It is assumed thatv j−1 = 0 if j < 1). For j ≥ M, the correspondingj -indepen-
dent set becomes the set of vector difference equations with constant coefficients:

v j = v j−1B + v j A + v j+1C, j ≥ M. (5)
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Note that if the system is finite (j ≤ L) then one more boundary equation appears

vL = vL−1B + vL A. (6)

In addition, since the sum of all probabilities must be one, we have:

∞∑
j=0

v j e = 1.0 (7)

for the infinite case and
L∑

j=0

v j e = 1.0 (8)

for the finite case.
In order to get performance measures of the system, one has to know the steady

state probabilities. The next sections will present some most well-known methods
developed for steady state analysis of QBD processes. Although the algorithms
are presented here for discrete time QBD processes, we emphasize that simple
stochastic arguments approve their applicability in continuous time domain as well.

3. Computational Methods for Infinite QBD Processes

3.1. The Spectral Expansion Method

The main contribution of the so called spectral expansion method published by Ram
CHAKKA [5, 6] is that the solution forEqs. (5) can be expressed in the form

v j =
N∑

k=0

akψk
λ

j−(M−1)
k , j ≥ M − 1, (9)

whereλk is thek-th eigenvalue strictly inside the unit disk andψ
k

is the corre-
sponding left eigenvector of the characteristic matrix polynomial

Q(λ) = B + Aλ + Cλ2,

i.e. they satisfy the equation

λψ
k

= ψ
k
Q(λ). (10)

Combining the form (9) with the firstM level-dependentEqs. (4) and the normalized
Eq. (7), one gets a set of linearly independent equations, which has a unique solution
of v0, . . . , vM−2, a wherea = (a0, . . . , aN ) is the coefficient vector. The detailed
procedure of computing all relevant eigenvalues and eigenvectors is discussed in [6]
in an excellent way, therefore interested readers are referred to it for deeper insight.
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3.2. The Matrix Geometric Method

In the classical matrix geometric method, NEUTS proved that the solution for
Eqs. (5) is given as follows [16]:

v j = vM−1R j−(M−1), j ≥ M − 1, (11)

where matrixR (referred to as the rate matrix) is the minimal non-negative solution
of the quadratic matrix equation given by

B + R A + R2C = R. (12)

OnceR is determined,v j ( j ≥ M) can be expressed in terms ofvM−1. Combining
the form (11) with the firstM level-dependentEqs. (4) and the normalizedEq. (7),
one gets a set of linearly independent equations, which has a uniform solution of
v0, . . . , vM−1.

To compute matrixR with the desired accuracy, several iterative procedures
were offered in the last decade (see [13, 16]). The common feature of these methods
is that all of them were formulated in terms of basic non-negative matrixesG, R,U ,
each of which has identical probabilistic interpretations as follows [13]

• G(i, l) entry of matrixG is the probability that starting from state(i,1) the
chain visits the level 0 and does so by visiting the state(l,0).

• R(i, l) entry of matrix R is the expected number of visits into state(l,1)
starting from state(i,0), until the first return to the level 0.

• U(i, l) entry of matrixU is the taboo probability that starting from the state
(i,1), the Markov chain eventually returns to the level 1 and does so by
visiting the state(l,1), under taboo of the level 0 (i.e. without visiting any
state in the level 0).

In the above definition ofG, R,U matrixes, we may replace the levels 1 and 0
respectively by the levelsn + 1 andn, for anyn ≥ 0.

The relation between the three matrixes is expressed by the following equa-
tions (see [10, 13])

G = (I − U)−1C, (13)
R = B(I − U)−1, (14)
U = A + BG = A + RC. (15)

In addition,G, R,U matrixes are the minimal non-negative solutions of the non-
linear equations

G = C + AG + BG2, (16)
R = B + R A + R2C, (17)
U = A + B(I − U)−1C. (18)
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Note, that once one of the three basic matrixes has been calculated, the other two
are automatically obtained by means ofEqs. (13), (14), (15). Based onEqs. (16),
(17), (18), iterative procedures are proposed to computeG, R,U . In the case of
positive recurrent QBD, the successive substitution procedure shown inFig.1 can
be used.

k = 1
U = A
G = (I − U)−1C
DO

k = k + 1
U = A + BG
G = (I − U)−1C

W H I L E (||e − Ge||∞ ≥ ε)

R = B(I − U)−1

Fig. 1. The iterative procedure of the matrix geometric method

This numerical algorithm has a complexity ofO(73(N + 1)3IU ), whereIU is the
necessary iterations needed to achieve a given accuracyε.

3.3. The Logarithmic Reduction Algorithm by Latouche et al.

LATOUCHE and RAMASWAMI revealed in [13] the probabilistic interpretation hid-
den in the iterative procedure shown inFig. 1. At eachk-th iterative step, matrix
Gk is evaluated. The elementGk(i, l) is the probability that, starting from the state
(i,1), the chain eventually visits the level 0, and does so by visiting the state(l,0),
under taboo of the levelk + 1 and above. In other words, in thek-th step, only
those paths are considered, whose length does not exceedk. Thus, at the beginning
of the algorithm, the chain is allowed to move no higher than the level 1. With each
new iteration, the chain is allowed to visit one level above the previous maximum.

The main idea of the logarithmic reduction algorithm is derived from the
stochastic observation mentioned above. In the new approach, during each iterative
step, the chain is always allowed to proceed up to a multiple of twice the level
attained at the previous iteration step. As a consequence, a logarithmic reduction in
the number of iterations required to achieve convergence is performed. The iterative
procedure is shown inFig. 2.

The complexity of this algorithm isO(25
3 (N + 1)3IL), whereIL is the nec-

essary iterations needed to achieve a given accuracyε.
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T0 = (I − A)−1B
T2 = (I − A)−1C
k = 0
S = T2
� = T0
DO

k = k + 1
Ti = (I − T0T2 − T2T0)

−1(Ti )
2 i = 0,2

S = S +�T2
� = �T0

W H I L E (||e − Se||∞ ≥ ε)

G = S
U = A + BS
R = B(I − U)−1

Fig. 2. The logarithmic reduction algorithm by Latouche et al.

3.4. The Algorithm by Naoumov et al.

Based on the theory of matrix factorization, NAOUMOV et al. [15] developed further
the logarithmic algorithm. Their computation algorithm reduces the complexity of
the basic loop of each iteration step, herewith produces better performance. This
improved iterative procedure is detailed inFig.3.

The complexity of this improved algorithm isO(19
3 (N + 1)3IN ), whereIN is

the necessary iterations needed to achieve a given accuracyε.

4. Computational Methods for Finite QBD Processes

Imposing a limit on the maximum value ofJn leads to a QBD process having finite
state-space{In, Jn; n ≥ 0}. Let the maximum value of variableJn be L, then the
Eqs. (5) still hold, except that the range ofj is limited to L.

4.1. The Spectral Expansion

Using spectral expansion implies the form [5]:

v j =
N∑

k=0

akψk
λ

j−(M−1)
k +

N∑
k=0

bkφk
β

L− j
k , M − 1 ≤ j ≤ L . (19)
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S = A − I
V = B
T = C
W = A − I
DO

X = −S−1V
Y = −S−1T
Z = V Y
W = W + Z
S = S + Z + T X
V = V X
T = T Y

W H I L E (||Z ||∞ ≥ ε)

R = −BW−1

Fig. 3. The logarithmic reduction algorithm improved by Naoumov et al.

Hereλ
′
s are theN +1 eigenvalues of least absolute value determined fromEq. (10).

β
′
s are theN + 1 eigenvalues of least absolute value satisfying equation

φ(C + Aβ + Bβ2) = βφ. (20)

ψ
′
s andφ

′
s are eigenvectors corresponding toλ

′
s andβ

′
s, respectively. Once the

necessary eigenvalues and eigenvectors are determined, the set of linear simultane-
ous equations, which is composed ofEqs. (4), (6), (8), must be solved to determine
v0, . . . , vM−2, a, b, wherea = (a0, . . . , aN ) andb = (b0, . . . , bN ).

4.2. Matrix Geometric, Latouche’s and Naoumov’s Methods

The matrix geometric solution is given by [2, 5]

v j = w1R j−(M−1)
1 + w2RL− j

2 , M − 1 ≤ j ≤ L , (21)

Here,w1, w2 are the unknown vectors of sizeN + 1. R1 and R2 are the minimal
non-negative solution of quadratic matrix equations

B + R1 A + R2
1C = R1, (22)

C + R2 A + R2
2 B = R2. (23)

To computeR1 andR2 the matrix-geometric, Latouche’s algorithm or Naoumov’s
algorithm can be used. Once those matrixes are calculated, the set of linear si-
multaneous equations, which is composed ofEqs. (4), (6), (8), must be solved to
determinev0, . . . , vM−2, w1, w2. For more detailed description, see [2, 5].
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5. Numerical Comparison of Computational Methods for QBD Processes

5.1. Implementation

One observes that the computational procedure for obtaining the steady state prob-
abilities of a QBD process consists of two phases1:

• In the first phase: either, all relevant eigenvalues and corresponding eigen-
vectors of the characteristic matrix polynomial are determined if the spectral
expansion method is applied; orR matrix (R1 andR2 in case of finite process)
is calculated if the MG, LA, NA are applied.

• In the second phase: a finite set of linearly independent equations must be
solved for fundamental unknown probability vectorsvj (0 ≤ j ≤ M − 2)
as well as for either additional vectors (vM−1 in the infinite case;w1, w2 in
finite case) if MG, LA, NA is used; or coefficient vectors (a in infinite case;
a, b in finite case) if SE is used.

1. k = 0, T1 = 0
2. Run SE
3. Determine TS E , E( j)S E

4. DO
4.1. k = k + 1

T2 = 0
4.2. Run step k of METHOD

t = time of step k
T1 = T1 + t

4.3. Solve the set of equations
T2 = Time of solving the set of equations

4.4. Compute E( j)M ET H O D

W H I L E ( 1
E( j)SE

(|E( j)S E − E( j)M ET H O D |) ≥ ξ)

5. # of iterations = k
6. TM ET H O D = T1 + T2

Fig. 4. The iterative procedure applied in Scenario I for comparison

When using iterative methods for comparison, two scenarios are offered for stopping
the iterative procedures.

• Scenario I: Performance parameter based criteria
Theoretically, performance parameters such as the mean number of jobs in
the system (E( j)) can be exactly calculated with spectral expansion due to
its non-iterative feature. If one of them is adopted asreference value then

1As mentioned before, currently four methods have been implemented. They are Matrix Geometric
(MG), Latouche’s method (LA), Naoumov’s method (NA) and the Spectral Expansion (SE)
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the stopping criteria for the rest of iterative methods may be introduced as
follows.
Let one of the performance measures (e.g. the mean queue length) calculated
by matrix geometric method or by its improved versions becomp. value. The
term‘relative bias’ or ‘relative difference’ is defined as:

relative bias= |reference value− comp. value|
reference value

(24)

and is compared with the stopping criterionξ in order to stop the iterative
procedure shown inFig. 4 where METHOD term may be MG, LA or NA. In
the infinite process, during one iterative step, matrixR is evaluated. In case
of finite process the evaluation relates to bothR1 andR2.

• Scenario II: Object based criteria
The stopping criterion of the first scenario sometimes does not work, because
the bias between the results belonging to the SE and other method cannot be
reduced further, however many iterations are performed (see later). In these
cases, we must use the original stopping criterionε related to the object of
the iterative procedure itself, which was described in Section 3.

The implementation of the methods was carried out in C using Meschach
library2 for matrix operation and solving a linear set of equations. All results
reported are obtained by a program running on the Sun SPARCstation Ultra60 with
sparc processor. The reported time is measured in seconds and is composed of the
time of two computation phases.

5.2. Numerical Comparison

In what follows we compare the algorithms through a case study of the processor
system with repairs and breakdowns [6]. The system is a set of homogeneous pro-
cessors whose number isN . The processors break down from time to time. Single
and independent failures of processors, as well as multiple and simultaneous failures
are possible. The failed processor returns to operative state after successful repair.
Single and independent repairs of processors, as well as multiple and simultaneous
repairs are possible. Being in its operative state, each processor serves jobs, one
at a time. Each job can occupy at most one operative processor at a time. Failure,
repair and service time are assumed to be exponentially distributed. This system is
modeled by a two dimensional, continuous Markov process in the following way:

• I (t) is the operative state of the system, representing the number of operative
processors at timet , I (t) = 1, . . . , N ,

• J (t) is the number of jobs in the system at timet , J (t) = 0,1, . . .

2Meschach library for matrix operation is developed at the School of Mathematical Sciences,
Australian National University by David E. Stewart and Zbigniew Leyk and it is free via netlib
(ftp.netlib.org/c/meschach).
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Now, we have to construct the transition matrixesA, B,C of the process, which
have analogous interpretation with the discrete definitions given in Section 2. Let us
notice thatwhen a new job arrives or when a completed job departs from the system,
the operative state does not change, unless there is an independent coincidence
towards such a change. Hence, change in the operative state of the system is
reflected only in the matrixesA and Aj . Taking into account that

• the individual processors break down independently at rateξ and are repaired
independently at rateη,

• the global simultaneous breakdowns of all currently operative processors
occur at rateξ0 and the global simultaneous repairs of all currently inoperative
processors occur at rateηN

the A matrixes are given by:

A = A j ( j = 0,1, . . .) =




0 Nη ηN
ξ0 + ξ 0 (N − 1)η ηN
ξ0 2ξ 0 ηN

. . .
. . .

. . .

η + ηN
ξ0 Nξ 0




(25)
When the operative stateI (t) = i , jobs are assumed to arrive according to an
independent Poison process with rateσi . For all j ( j = 0,1, . . .), the rate matrix
of the one-step upward transitions (initiated by the arrivals of single jobs) has the
form:

B = B j = diag[σ0, σ1, . . . , σN ]. (26)

Let us assume that each operative processor has an exponentially distributed ser-
vice time with parameterµ. The one-step downward transitions take place by
the departures of single jobs. The departure rate depends on the current state
(I (t), J (t)) = (i, j) and it is given by the entryCj (i, i) of matrix C j . If i > j ,
then every job has a processor for getting service, and not all operative processors
are occupied. Hence the departure rate of jobs isj.µ. If i ≤ j , then all the operative
processors are occupied by jobs, hence the departure rate of jobs isi.µ. We arrive
at:

C j = diag[0,min( j,1).µ, . . . ,min( j, N).µ]. (27)

Note that for j ≥ N , C j does not depend onj . Consequently, the thresholdM is
given byM = N .

In all the cases taken into account in this section, in order to keep the service
capacity constant, the service rate of each processor was set toµ = 1. For simplicity
σi = σ for all 0 ≤ i ≤ N . Other parameters areη = ηN = 0.1 andξ = ξ0 = 0.05.

The criteria for comparison are

• computation complexity,
• numerical stability,
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• and memory requirement.

The system is negotiated in both infinite and finite cases. The relevant char-
acteristics of the system that affect the operation of the computational methods are
the total average incoming load, the total average service rate (service capacity) and
dimension of the system. These parameters are defined by means of parametersσ ,
µ, N and the transition matrixes.

In the infinite case, the total average incoming load should be less than the
total average service rate, otherwise the system becomes unstable. In the finite
case the system is always stable, but there will be lost events if the number of jobs
exceeds the size of buffer (overload condition). For a system with finite buffer, our
experiences show that the buffer’s size has negligible impact on the computation
time, therefore in all the cases reported below the buffer size was chosenL = 100.

5.2.1. Computational Complexity

First, we examine the dependency of computational time on the system load, stop-
ping accuracy and the system’s size. In the following tables, the termsI andT will
refer to the number of needed iterations and the total computation time (measured
in seconds), respectively.

Effect of system load. For the system of infinite buffer, the condition of stability
is σ < 0.666667∗ N . Table 1 shows the number of the necessary iteration
steps and computation time for a given relative biasξ , while the load of the
infinite system is increasing.

Table 1. Stability and complexity of computational methods in infinite QBD case

ξ = 1e − 3, N = 10
σ Stability TS E IMG TMG IN A TN A IL A TL A

6 Y 0.03 629 0.27 9 0.03 8 0.03
6.6 Y 0.03 6633 3.00 12 0.03 11 0.03
6.66 Y 0.04 66461 29.73 16 0.03 15 0.03
6.666 Y 0.04 664736 274.89 19 0.03 18 0.04
6.6666 Y 0.04 6721786 2808.67 22 0.03 22 0.04
6.66666 Y 0.04 - - - - - -
6.666666 Y 0.04 - - - - - -
6.6666666 N - - - - - - -

In Table 1, the term ‘-’ is jotted down several times, even when the system
was still stable. This is the case when the software package was unable
to compute the rate matrix meeting a given relative bias either because the
number of iterations is extremely high (MG case) or the fossilized result
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calculated by LA and NA differs from the result of SE considerably. The
first cause is illustrated inFig. 5, where the needed iterations of MG increase
with system load (through the arrival rateσ ) in a exponential way.
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Fig. 5. Complexity of MG versus load of an infinite system (N = 10)

To expose the second cause, we have carried out further experiments as fol-
lows. We check the system on the verge of stability and choose the stopping
criteria according to the Scenario II withε = 1e − 12. Numerical results are
presented inTable 2.

Table 2. On the verge of stability of an infinite system (N = 10,ε = 1e − 12)

σ IL A Rel. diff. IN A Rel. diff.
(arrival rate) of LA of NA

6.66666 29 0.0069 28 0.0077
6.666664 30 0.0015 29 0.0012
6.666665 31 0.0383 30 0.0449
6.6666652 31 0.0209 30 0.0217
6.6666654 31 0.0154 30 0.0246
6.6666656 31 0.0343 30 0.0497
6.6666658 32 0.2473 31 0.2736
6.666666 33 0.3933 32 0.4013

As one can see, if the stability edge is approached very closely (remember
that the service capacity of the studied system is 0.666667∗ N), the methods’
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results show quite large bias and practically the relative biasξ = 0.001 was
never reachable. This explains why the computation procedure was unable
to finish in case Scenario I was applied with relative biasξ = 0.001.
For finite systems, the impact of the offered load on the computation time
and number of necessary iterations can be seen inTables3, 4.

Table 3. Computation time and number of iterations versus loadσ (finite system,ξ = 10−3,
N = 10)

σ TS E IMG TMG IN A TN A IL A TL A

3.00 0.07 42 0.06 5 0.05 4 0.05
5.00 0.07 188 0.22 7 0.06 6 0.06
6.00 0.06 455 0.35 9 0.06 8 0.06
6.60 0.07 1230 0.56 10 0.06 9 0.06
6.66 0.07 1353 0.73 10 0.06 9 0.06
6.666 0.06 1357 0.78 10 0.06 9 0.06
6.6666 0.07 1358 0.87 10 0.06 9 0.06

For both cases of finite and infinite processes, numerical results presented
in Tables 1, 3, 4 clearly show that if the offered load is not heavy, the bias
related with total computation time between SE, LA and NA is negligible.
The computational time of MG tends to overstep the time of other methods if
the offered load approaches the saturation condition (meanwhile the system
is kept stable or is still able to operate without loss). Otherwise it operates
nearly with the same efficiency.
Increasing the load (by increasing the arrival rateσ ) has no significant effect
on the computation time of spectral expansion, Latouche’s and Naoumov’s
methods, i.e. their execution times are almost constant (seeFig. 6). The
significant impact on the computation time of MG can be explained by slow
convergence leading to a high number of iterations needed (as shown in
Fig. 5).
It is interesting that in the finite case, for a given relative bias, the number of
necessary iterations of MG method is not strictly increasing with the traffic
load. After the saturation point, the number of iterations needed for a given
relative bias tends to decrease which reduces the computation time in the way
shown inFig. 6.

Effect of stopping accuracy. If we claim more precise relative bias, then it takes
longer to get numerical results because more iterations are needed. This ten-
dency, however, is only considerable when MG is used. Generally speaking,
the stricter the stopping criterion (related to the first scenario), the larger the
complexity of the iterative procedure (seeTable4).
However, we just cannot assert that arbitrarily small relative bias is always
reachable. The explanation for this is that after a certain number of iterations,
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Table 4. Effect of the system load and the desired relative bias (ξ ) on computation time
(finite system)

N = 10,σ = 3.0, E( j)spect.exp=5.19970358
ξ TS E IMG TMG IN A TN A IL A TL A

1e-03 0.070 42 0.060 5 0.050 4 0.050
1e-06 0.070 107 0.130 7 0.060 6 0.060
1e-09 0.070 172 0.130 7 0.060 6 0.050
1e-12 0.070 236 0.280 8 0.060 7 0.060

N = 10,σ = 6.0, E( j)spect.exp=33.55243677
ξ TS E IMG TMG IN A TN A IL A TL A

1e-03 0.060 455 0.350 9 0.060 8 0.060
1e-06 0.060 1119 0.680 10 0.060 9 0.060
1e-09 0.070 1784 0.950 11 0.060 10 0.070
1e-12 0.070 2428 1.320 11 0.060 10 0.060

N = 10,σ = 6.666,E( j)spect.exp= 51.0021848
ξ TS E IMG TMG IN A TN A IL A TL A

1e-03 0.060 1357 0.780 10 0.060 9 0.060
1e-06 0.070 43377 24.780 15 0.070 14 0.070
1e-09 0.070 510683 278.350 19 0.070 18 0.060
1e-12 0.070 1176710 635.940 20 0.070 19 0.070

the performance measure produced by the iterative methods converges to a
certain value. Letting the iterative procedure go on by making the stopping
criteria ofScenario I smaller does not bring a significant change in this value,
and so on the relative bias. This situation occurs mainly on the verge of
stability border and is illustrated inFig.7. As we see, allowing longer run of
the LA and NA iterative algorithms by decreasing the stopping criteria onε
does not mean better relative bias, it becomes unchanged.

Effect of the system’s size. The capability of the applied methods in question can
also be examined by changing the dimension of the system.Table5 shows
the results for the infinite case that are obtained whenN is changing. The
parameter set isσ = 0.6 ∗ N (moderately loaded system),µ = 1.0 and the
relative biasξ = 1e − 3. Table 6 reports the same investigation for the finite
caseσ = 0.6 ∗ N (moderately loaded system),µ = 10/N and the relative
biasξ = 1e − 3.
One can observe that the total computation time increases with the system’s
size. In the case of infinite systems, the MG method seems a bit more time-
consuming than the other ones. However, in the case of finite systems, all the
four methods show almost the same efficiency related to computation time.
The reasons for this may lie in two factors. First, the required relative bias
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Fig. 6. Computation time versus load of a finite system (N = 10,ξ = 10−3)

Table 5. Computation time versus system’s dimension (infinite system,ξ = 10−3, σ =
0.6 ∗ N)

N TS E IMG TMG IN A TN A IL A TL A

5 0.0100 410 0.0600 8 0.010 7 0.0100
10 0.0400 629 0.3800 9 0.020 8 0.0300
15 0.2200 848 0.8800 9 0.200 8 0.2000
20 1.0500 1067 2.9200 10 1.030 9 1.0500
25 4.8000 1285 8.4200 10 4.750 9 4.7900
30 15.770 1504 22.300 10 15.680 9 15.680
35 42.780 1722 53.980 10 42.550 9 42.580
40 97.030 1941 114.61 11 96.770 10 96.810
45 202.38 2159 229.61 11 201.86 10 201.900
50 377.31 2377 420.58 11 376.9 9 10 377.080

is quite loose and secondly, the system is not considered in heavily loaded
condition.
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Table 6. Computation time versus system’s dimension (finite system,ξ = 10−3, σ =
0.6 ∗ N)

N TS E IMG TMG IN A TN A IL A TL A

5 0.0200 13 0.0100 3 0.0100 2 0.010
10 0.0600 455 0.3500 9 0.0600 8 0.060
15 0.3700 112 0.4400 7 0.3400 6 0.340
20 1.3700 42 1.3500 5 1.3000 4 1.300
25 5.6100 26 5.4400 4 5.4100 3 5.410
30 17.880 19 17.550 4 17.5800 3 17.69
35 47.460 15 47.070 4 47.0700 3 47.08
40 107.08 12 106.56 4 106.430 3 106.34
45 217.29 11 216.64 3 216.770 2 216.62
50 405.62 10 404.67 3 404.700 2 404.73

5.2.2. Numerical Stability

Table 1 also confirms the stability of SE, LA and NA over MG. Differing from
the MG case, the deterioration is not observed at the verge of the system’s stability.
However, if the considered system has a finite buffer, the computational methods do
not show any failure during their operation. Experiences show that SE is sensitive
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to the accuracy of computed eigenvalues. When a turning parameter (referred
to as theta θ) should be used during the procedure calculating eigenvalues and
eigenvectors (see [5]) and the system load is very close to the saturation point,
some violations in numerical result occur. The situation is illustrated inFig.8.
Taking a look at the neighborhood ofa4, one can observe a failure exhibited in
two facts. The first is that the results calculated with differentθ-s are diverse. The
second is that the fundamental rule, according to which the average number of jobs
in the system must increase with the offered load, is violated.
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Fig. 8. On the verge of the system’s stability

5.2.3. Memory Requirement

Let us turn now to the question of memory.Table7 shows the memory requirement
needed during phase 1 of the computational procedure using each method. In the
SE case, due to the computation algorithm of eigenvalues and eigenvectors dis-
cussed in [5], and based on the Schur decomposition implemented in the Meschach
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library the maximum amount of necessary memory space is 11(N + 1)2+2(N +1)
floating points when an infinite system is investigated. It is needed for storing (com-
plex) eigenvalues and (complex) eigenvectors, as well as for allocating auxiliary
matrixes. If the computation is for the finite system, then further more (complex)
eigenvalues and (complex) eigenvectors must be stored. This fact leads to the need
of 13(N + 1)2 + 4(N + 1) floating points.

If MG is used, then for the iterative procedure, the auxiliary matrixes require
4(N + 1)2 floating points. Since theR matrix must also be stored, the total mem-
ory requirement is 5(N + 1)2. This memory amounts to 8(N + 1)2 for LA and
10(N + 1)2 for NA. When a finite system is investigated, instead ofR, R1 andR2
matrixes must be stored. It means that(N + 1)2 more floating points are needed.
If the Meschach library is left intact, then each matrix inverse operation that occurs
in each iteration of MG, LA and NA, claims additional memory. Consequently if
the number of iterations becomes extra large (MG case) then the program may have
abnormal termination due to the lack of memory.

Table 7. Memory requirement

Method Needed floating points Needed floating points
(Infinite case) (Finite case)

SE 11(N + 1)2 + 2(N + 1) 13(N + 1)2 + 4(N + 1)
MG 5(N + 1)2 6(N + 1)2

LA 8(N + 1)2 9(N + 1)2

NA 10(N + 1)2 11(N + 1)2

6. Conclusions

In this paper, we have dealt with the evaluation of numerical methods of a class of
queueing models called Quasi Birth-Death process, that has a wide range of appli-
cation in performance analysis of computer systems and telecommunications net-
works. We have reviewed the latest numerical methods for steady state analysis of
QBD processes and subjected some of them to performance comparison. The com-
parative framework has been introduced by using two different stopping scenarios
for iterative methods, and has been done for both infinite and finite cases. Important
numerical aspects such as time complexity, numerical stability and memory require-
ment have been examined through a test example of a non-trivial repair-breakdown
processor system.

Based on the discussion of numerical results, we have tried to give a thorough
comparison of the performance of the computational methods. We have observed
that a problem really arises when the QBD system approaches the stability bor-
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der. When the system is slightly loaded, spectral expansion, matrix geometric,
Latouche’s and Naoumov’s method are almost equally efficient, which does not
hold for heavy load. In case of heavy load, it is not practical to use matrix geo-
metric method because of its extremely long running time. Approaching closely
the saturation point of the system, Latouche’s and Naoumov’s method may pro-
duce results with large difference compared to the result of spectral expansion due
to some possible numerical problems of spectral expansion. Therefore, in a tight
neighborhood of the saturation point it might not be advisable to use the spectral
expansion method.

We are extending the comparative work in two directions. On the one hand,
more practical examples should be involved as test systems. The more queueing
phenomena are studied, the more overall and consistent comparative states can
be concluded. On the other hand, it is desired to involve some other methods
mentioned in the first section into the comparative study. At present, elaboration of
both directions is under way.
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