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Abstract

In this paper we present a simulation approach in the field of landmark-based mobile robot navi-
gation. A method is shown to involve statistical traffic analysis for determining critical positioning
accuracy limits in certain points of the environment. We also describe an algorithm to evaluate spatial
uncertainties assuming a navigation strategy. This strategy uses dead-reckoning frequently updated
by absolute position measurements. We have implemented a simulation software to check the effec-
tiveness of the new algorithms. The methods and simulation results are explained through simple
examples.
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1. Introduction

There are several optimisation problems in the field of landmark based autonomous
robot navigation. The fields of optimal trajectory planning and optimal landmark
arrangement can be considered as problems with multiple variables and parameters.
To create new algorithms and test their goodness, simulation methods should be
used. Simulation is also essential to test navigation strategies of concurrent multi-
agent systems which are much more complex than those for single robots.

In this paper we present methods for traffic analysis and simulation of land-
mark based positioning. Planning landmark arrangements in a given environment
is the field where both methods can be effectively used. The required position ac-
curacy at a certain point of the environment may depend on the traffic load. The
landmark arrangement and the current speed have to accord to the determined error
limits.

We also present simple examples to show how the effects of modified param-
eters can be analysed.

2. Introducing the Statistical Analysis of Traffic Flow

One of the most important questions in the course of mobile robots’ research is navi-
gation of multi-agent systems. One of its main fields is the communication between
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robots. They communicate directly or by the use of a central control-system. The
other focus is a route-control based on traffic load statistics examined in navigation
space. An additional problem is the optimal landmark arrangement. Solving this
problem we have the possibility to measure more accurate position and orientation
values. There is a detailed literature available concerning communication tasks.
In our paper we discuss traffic statistics of mobile robots in simplified working
environments.
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Fig. 1. The workspace of analysed traffic flow

To get closer to this question on traffic statistical basis, we should start with a
reduced system. We examine a traffic flow first where our robots are moving only
between two docking nodes. Our workspace can be seen inFig.1. There are four
docking points (A, B, C, D). Let’s choose all the possible routesA−C andA−D
analysing their traffic loads. If we had only a single-agent system, we would use
alwaysA−l−C route. In the case of more robots working concurrently sometimes
we have to use longer routes. The statistical probability of choosing a longer path
is less than that of the shortest one, of course.

There are some additional parameters of road-sections. The speed of move-
ment can be limited by the width of the road-section; it may have smaller priority
in crossings so the robot has to slow down or stop etc. All these limitations and
lengths can be included in the weight values of a weighted graph. The probability
distribution can be examined using these values.

Let’s consider the segment between two nodes as an edge of a graph weighted
with the length of the route-section and additional limitations. We can get the whole
way’s length adding the weights along the edges of the graph. Of course, we would
choose the shortest of them, but if it is over-loaded, we have to choose another way
to reach our target. If we can’t go on the shortest way, we have to use the shortest
of the others. So we use long ways quite rarely.

Our first criterion is to get the shortest way. A graphG = (V, E) is defined,
whereV is the set of all nodes andE is the set of all edges. There are two preferred
nodess, t ∈ V , wheres is the starting andt is the target node. In the case when the
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edges aren’t weighed – all the road-sections have the same length –, searching for
the shortest way is a simple problem which can be solved by a BSF (Breadth First
Search) algorithm. The solution is more difficult in the case of weighed edges. For
example, we try to get froms to t as shown in the following figure.
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Fig. 2. Searching for shortest way – weighed graphs

If we have limitations depending on priorities at crossings, we have to use
directed graphs with different weights fromx to y, and vice versa (figure above).

To solve this problem we should use the algorithms of Ford or Dijkstra. We
assign a lengthd to all nodes in the graph, which determines the shortest way to
this point froms. The initial condition of the algorithms:

d(s) = 0, d(u �= s) = ∞. (1)

The principle of both algorithms is the following:

if there is a waye from x to y and

d(y) > d(x)+ l(e), (2)
then

d(y) = d(x)+ l(e),

wherel(e) is the length of edgee. To solve the shortest way problem, both al-
gorithms (Ford, Dijkstra) are suitable. To choose the better we have to know the
number of nodes and edges.
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Algorithm of Dijkstra
step 0:S← {s}, T ← V − {s}, (1), u0 = s
step 1: (2) for edgese from u0 to x ∈ T
step 2:u0← x ∈ T , d(x) minimal, S ← S + {u0}, T ← T − {u0}
step 3: ifT = {} STOP, else step 1

Algorithm of Ford
step 0: numbering edges (1− e), (1), i ← 1
step 1: (2) for all edges as numbered
step 2:i ← i + 1, if i > v STOP, else step 1

Now we can determine the shortest way to our target. What can we do if we
want to choose another one? We can go on another road section and at the next
node we search for the shortest way. We can evaluate statistical probabilities in
all nodes, so we can choose a way. We have to calculate the shortest way in the
direction of all road-sections.

At a given nodeu we have to decide on which way to go. We have to determine
the length of road-sections to all neighbour nodes(K (u)), and also the shortest way
to target fromK (u). If we add them we can getdu,i = d(u, t, xi ∈ K (u)), where
i ∈ 1− n(u), the number of neighbour nodes ofu.

du,i = ssw(xi ∈ K (u), t) + l(eu,xi ),

wheressw is the function to search for the shortest way. We can compute the
statistical probabilities of choosing road-sections according to

pu,i =
1

du,i

n(u)∑
j=1

1

du, j

.

These probabilities have to be multiplied to determine the probability of getting
from s to t on a given way:

Pv =
v(v)∏
i=1

pui ,1ui
=

v(v)∏
i=1




1

dui ,1ui

n(ui )∑
j=1

1

dui , j


 .

Now we can determine the traffic load of a given node or an edge using the
above result. We get it so that we add all the statistical probabilities on this node or
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edge. The traffic load of the start and target point is 1, of course. The traffic load
probability of a node is given with the following equation:

ξu =
∑
Vu,k

PVu,k =
∑
Vu,k




v(v)∏
i=1




1

dui ,1ui

n(ui )∑
j=1

1

dui , j





 ,

wherevu,k are the ways froms tou. We can get the traffic load probability of an edge
s, determining all thePvu probabilities to the two neighbouring nodes multiplied
with the probability of the edge afterv. Adding these probabilities we get:

ξe =
∑
Vu1,k

πu1,k PVu1,k+ =
∑
Vu2,k

πu2,k PVu2,k .

We have to give additional limitations by determining loads of edges and nodes. We
can specify that the robot should not go back on the same way. It is also practical to
specify not to use the same road-section twice. This would be a loop without any
sense. If we do not take these restrictions in account, the evaluation of probabilities
is also much more complicated, because of the endless loops. Then we should use
a recursive solution, where we define anε probability value as a limit for stopping
the evaluation.

Considering the restrictions we confront with other problems. We have to
redefine the method of the shortest way calculation. The result ofssw will be the
shortest way, which goes only on road-sections not used previously. The easiest
way to solve this problem is to modify the graph ofssw, and to remove the used
edges. It is important not to remove any of the nodes.

Let us examine the problem discussed above. In the simplest case we navigate
between two docking points. Let us see the load distribution in two cases. In the
first figure we represent the wayA − C. The shortest way has the highest load, of
course, which can be seen in the figure. Another important fact is that the loads are
higher at nodes.
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Fig. 3. Result of analysis (two docking points)

Let us see the behaviour of the loads in such environments. Robots can move
from any docking nodes to any other one. The probabilities of moving from a node



220 M. VOGEL et al.

to another are equal. We can realise that the highest load is concentrated at the
middle crossing.
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Fig. 4. Result of analysis (four docking points)

The statistic distribution is not necessarily equal between two docking nodes.
Let us suppose that there is a manufacturing node inA which produces mostly for
C, but its products are used also inB andD. There is a small traffic also between
C andD. The statistic distribution can be seen inFig.4.

As mentioned above, the statistical analysis of traffic loads gives the pos-
sibility to determine the critical points where position should be evaluated more
accurately. The landmark density at a given position must be higher at such critical
points. For example, now we can state that the landmarks should be placed in cross-
ings first of all. Summarised, we have to place landmarks considering the statistical
probability of the traffic load. In the following section we present a method to
simulate the behaviour of position uncertainties depending on the locations relative
to the landmarks.

3. Simulated Position Uncertainties along a Planned Path

An autonomous mobile robot has to evaluate its current position in its working
environment. Most of the autonomous vehicles are equipped with several internal
sensors (gyroscopes, odometers, accelerometers…) for relative position measure-
ments. The navigation strategy, which can be realised based on these relative
measurements is called ‘dead-reckoning’. This strategy assumes that the initial
point of the navigation is definite and the position error remains acceptable until
the robot reaches the next point with known coordinates (goal or sub-goal) in the
environment. The main characteristic feature of relative positioning methods based
on internal sensors is the accumulating position error. The navigation system has
to evaluate the error of position estimation and if it exceeds a certain limit, it has to
cancel it by some kind of absolute measurement. A practical method to do this is to
update the position by landmark measurements. In this case the robot is provided
with a landmark database which helps to detect and identify the available landmarks.
Not only artificial markers but also features of the environment detectable by the
robot’s sensors can be used as landmarks. Landmark based positioning systems can
be very different in physical realisation but the position evaluation is usually car-
ried out using triangulation or trilateration. The more landmarks around the current
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position, the better for the robot to recognise its location. Because of the limitation
of processing power on board the robot, it is not always possible to measure plural
landmarks simultaneously, even though there are many landmarks available. In
this situation the system has to select a landmark to measure out of the landmarks
available from the current position. A control system using dead-reckoning updated
with landmark measurements usually integrates the following tasks:

• position estimation based on sensor parameters and kinetic model,
• evaluation of estimation error,
• selection among the available landmarks,
• position evaluation based on landmark measurements,
• velocity optimisation to obtain the required positioning accuracy.

We developed a simulation-software to study the behaviour of systems based
on the above principles. Our simulation results gave valuable information about
such systems in general although we chose our kinetic and sensor models accord-
ing to the latest developments in our laboratory. The sensor system in our model
consists of an odometer as internal sensor and a special laser range-finder – the
LABrador – as global positioning sensor. The Landmark Based Random Deflected
Optical Range-finder (LABrador) is a positioning sensor developed at the Mobile
and Microrobot Group of the Department of Control Engineering and Information
Technology (BUTE). This onboard sensor is able to detect, capture and track reflec-
tive landmarks on the way. It can continuously measure the distance of the selected
landmarks.

Our model assumes that the robot tracks two point-type landmarks and mea-
sures their distances with a certain sample period. We used the simulation to
estimate the position uncertainties along the theoretical path in function of current
location relative to the landmarks. We analysed the behaviour of position uncer-
tainties at different velocities if the sample interval of the distance measurement
remains constant.

The simulation can give help to optimise landmark arrangements and estimate
critical velocities along the planned trajectory. The critical values of acceptable
position error limits should be determined during the trajectory planning.

3.1. Estimation of Dead-Reckoning Errors

Dead-reckoning methods can be of many kinds. The most widely used naviga-
tion method for mobile robot positioning is odometry. It provides good short-term
accuracy and allows very high sampling rates at low prices. Odometry means inte-
gration of incremental motion information over time, which leads to accumulation
of errors. These errors increase proportionally with the travelled distance. The er-
rors can be of systematic and non-systematic types. The errors caused by unequal
wheel diameters or misalignment, for example, can be considered as systematic
errors. Main non-systematic errors are caused by wheel slippage and by travel over
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unexpected objects. Systematic errors accumulate constantly and on most smooth
indoor surfaces non-systematic errors can be ignored on lower distances [2]. In our
simple model of dead-reckoning performance we made simplifications and we took
only predictable systematic errors into account. We rewrite here the well-known
equations for odometry [KLARER 1988; CROWLEY and REIGNER 1992]:

x

WL

WR

R(x,y)

y

Fig. 5. Differential drive

c = conversion factor: lin. displacement/encoder pulses
D = nominal wheel diameter
g = gear ratio

The incremental travel distances for left and right wheel:

�WL = cNL ,

�WR = cNR .

The displacement of the robot’s center-point is calculated according to:

�R = (�WL +�WR)/2.

The incremental change of orientation:

� = (�WR −�WL)/d,

whered is the wheel-base of the vehicle. The robot’s new co-ordinates and the
value of current orientation can be computed according to

i = i−1 +�i ,

xi = xi−1 +�Ri cosi ,

yi = yi−1 +�Ri sini .

The system in our model is equipped with a landmark-based absolute position-
ing device. The frequency of landmarks is determined based on the worst-case
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systematic errors of the odometry. Many researchers have developped algorithms
that estimate the worst-case position uncertainty of a moving robot [KOMORIYA
and OYAMA 1992]. In these approaches the computed position is surrounded by
a characteristic ‘error ellipse’. This ellipse grows with the travel distance until an
absolute measurement resets its size.

We can modify the odometry equation involving the error derived from the
wheel speed (ignoring other errors):

Xi+1 = fi(Xi , W i + Ei), Ei = Error,

Xi =
[

xi
yi
i

]
,

W i =
[

WR
WL

]
.

The distribution of estimation error with certain existing probability forms an ellipse
in the X − Y plane [1]. It grows its size and changes its shape as the robot moves.

We simulate this error increasing only the standard deviation of the position
uncertainty between two points of absolute measurement. In these points we update
the robot position with the information obtained by measuring landmarks. The
shape of the simulated error distribution is kept constant until the next measurement,
but its standard deviation is incremented proportionally with the travelled course.
The shape of the distribution is calculated again at the next control point.

3.2. Simulated Landmark Measurements

Let we assume a two-dimensional environment where we use point type landmarks.
Our theoretical system is able to measure the distances of two landmarks at the same
time (or almost the same time). The relative orientation of the landmarks is used
only for verification but not directly for position evaluation. In this case we consider
only two distance values. We also assume that the error of distance measurement is
quasi distance-independent. This condition is almost true for a laser range-finder.

The distance measurements are performed equidistantly in time. As a result
we get two values after each measurement. The statistical parameters of the mea-
surement can be given if they are known. During our simulations normal distribution
was supposed.

A circular boundary can be given around both selected landmarks. The in-
tersection of these boundaries gives the estimated location of the robot. To each
point of this area we can order a value, which corresponds to the probability that
the robot is located there. The simulation software calculates the co-ordinates of
four intersection points with a given worst case error and interpolates between these
marginal points applying a two-dimensional distribution function (in our case it is
a 2D normal distribution).
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The planned path is stored as a spline. After giving the control points of the
path and the co-ordinates of the landmarks the time parameter should be determined.
As the sample period of the landmark measurement is constant, the adequate points
of the trajectory should be defined where these measurements are performed. As
the first step the statistical distribution of the position is evaluated in these points.
The next operation is the interpolation considering the estimated odometer errors.
The result is presented in form of a map matrix. The elements of the matrix give
the probability of crossing the corresponding area unit with a realised trajectory. It
can be visualised easily as a 2D image.

Fig. 6. Effect of two markers not far enough from each other

3.3. Simulation Example

In this paper we present a simple example. The robot travels through a constriction
caused by two obstacles. Two landmarks are placed at corners of the mentioned
obstacles.

In Fig. 7 we have displayed only the distribution of robot positions in each
point where measurements were performed. In the figure we can see how the
shape of the spatial uncertainty changes along the course. The width of the ellipses
perpendicular to the robot motion decreases approaching the obstacles. Besides
this the radius in the direction of motion increases. In real systems a smaller radius
in all directions of the ellipse (smaller standard deviation) is one of the criteria for
the landmark selection. The tolerance perpendicular to the course is usually tighter
for the robot motion than in the direction of the motion. The effective width in
each point can be easily calculated determining a criterion for triggering landmark
measurements.

In Fig. 8 we show the effect of dead-reckoning errors. The speed is constant
on the whole path. The uncertainty grows with a certain rate until the moment of
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Fig. 7. Position uncertainties

 

Fig. 8. Dead-reckoning

Fig. 9. Effect of slowing down

the next absolute measurement. It’s obvious that the sample rate might be critical
at narrow places. If the sample rate is relatively slow – but the sampling can be
triggered – optimal points of measurement should be determined using continuous
uncertainty estimation.

The third figure shows the effect of slowing down. The velocity parameter
offers a good opportunity to minimise uncertainties if sample rate is limited. In an
inverse interpretation we can determine velocity limits not to exceed a given limit
of position error.
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4. Conclusion

The results of this paper are summarised as follows:
A method is proposed to involve statistical traffic analysis for determining

critical positioning accuracy limits in certain points of different working environ-
ments.

An approach is described to evaluate spatial uncertainties assuming a navi-
gation strategy, which uses dead-reckoning updated frequently by landmark mea-
surements.

Both methods were implemented in simulation software to check the effec-
tiveness of proposed algorithms. Some of the simulation results are also presented.
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