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Abstract

Considering parameter optimization tasks, a fundamental advantage of the genetic algorithm lies in
its robustness, i.e. that it is capable of providing a solution of good quality even when the error
surface is unknown or of extreme shape. Its disadvantage is its demand for large system memory
and computational capacity, as well as the fact that because of its stochastic basis it is not to be used
in most real-time applications. However, if the adjustment or training is rarely to be made, or the
comparison of different parameter vectors can be performed rapidly, it is without doubt advantageous
to apply.

The author of this paper has examined and modified the standard methods to improve their
performance. One of these was the implementation of the Special Linear Combination crossover
method. Another one was the Maximum Fitness Guided Migration method. Both methods will be
discussed in detail in this paper. The author has implemented the advanced methods in a computer
program, which was then tested on a shape recognition task.

Keywords: genetic, algorithm, crossover, migration, SLC, MFGM.

1. Introduction

A great part of tasks in practical engineering (including problems in the field of
image processing and shape recognition) can be discussed mathematically i.e. as
a transformation of inputs to outputs. The transformation can be characterized by
numbers or rather by a parameter vector (whose components are these numbers),
which has to be determined in a way that the transformation applied to each input
combination should give correct output as a result.

This is the classical task of parameter identification, for which many numeric
methods offer some kind of solution. These methods can be interpreted as guided
search algorithms, which conduct a search in the parameters’ space. In the course
of this search, the goal is to find the optimal parameter vector. The transformation
defined by this vector is the one that, when applied to different input combinations,
results in a response which is the closest possible one to the expected response. In
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other words: the ‘distance’ (e.g. Euclidean) between the expected and the resulted
responses, and the sum of these distances, thus the error must be minimal [1].

Conventional methods [2] tend to be applied less often, while the applications
of stochastic search algorithms and among them of the classical genetic algorithm
and its advanced forms gain ground. The genetic algorithm works on the model of
the biological evolution. Unlike conventional methods that create the new solution
on the basis of the previous one, it operates on a set of solutions, from which the
best ones will be chosen, and combined with each other to a new, hopefully better
solution. The classical genetic algorithm has a quality that might be surprising at
first, notably that it does not assume any special condition of the search-space, thus
it is able to approximate a function even when the error surface is not differentiable
or the error-surface is ruptured. This is so, because the algorithm does not need the
gradient of the error surface (only the rate of the errors when comparing the errors
that belong to different solutions). Some enhancements of the classical genetic
algorithm result in solutions faster and more robust than the original one without
limiting the area of applicability, others, although introducing limitations, provide
an extra fast and higher quality convergence for some problem types.

2. The Biological Evolution and the Genetic Algorithm

The basic assumptions of the biological genetic model are as follows: The individ-
uals of a species are living in a reproductional community, called population. In the
course of the struggle for life the more viable individual survives, reaches its matu-
rity and will be capable of self-reproduction. The described process is referred to
as natural selection. In the process of reproduction, the parental gene sets combine
and form an offspring that has properties similar to those of its parents. During
this process some error might occur (spontaneous mutation), that can result in an
individual having merely new properties.

The genetic algorithm’s term ‘parameter vector’ corresponds to the term ‘in-
dividual’, thus a ‘set of vectors’ refers to a ‘population’. Generation is referred to
as a set of vectors at a given moment. The biological ‘viability’ is the genetic term
of ‘fitness’, that is the complementer function of error. (It is minimal when the error
is maximal, and vice versa, the transformation is monoton.) The genetic algorithm
uses three operators while it creates the next generation of individuals. These are:
selection, crossover and mutation. In the course of the classical selection, the best
individuals of a population will be chosen for reproduction. The classical way of
reproduction is the one-point bitwise crossover.

This is carried out in the following way: Couples will be formed from the
chosen individuals (parent vectors), and the offspring vector is created by copying
a randomly chosen number of bits from the first parent vector (father), the rest from
the second parent vector (mother). After this, the operation of the classical mutation
is performed at a small probability. This form of mutation means that a randomly
chosen bit of the offspring is inverted. The next generation will be obtained from
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the previous one, in the way that the offspring vectors overwrite the memory area of
the worst individuals. Repeating the steps described above, the individuals of each
next generation will be better and better (seeFig. 1), thus the obtained parameter
vectors give a solution of smaller error [3].

1st Generation 5th Generation

30th Generation10th Generation

w1 w1

w1w1

error error

errorerror

w2 w2

w2w2

Fig. 1. The convergenceof the parameter vectors (2D case: there are only two components
of ‘w’). The vectors gather around the pits of the error surface.

3. The Implementation of Selection

The use of the classical selection results in a population of individuals too similar
to each other. This similarity could go that far, that they would be the exact repli-
cation of the same individual, which means that the algorithm is stuck at a local
minimum. Therefore, it is well- advised to give some chance to reproduce even for
the individuals that do not perform well at the moment, but evolve in a promising
direction [3]. So, the Fitness Proportional selection (seeFig.2) can be used instead,
which means that an individual will be chosen as a parent at a probability (see (1))
that is proportional to its fitness value.

P(i) = fit(i)/(fit(1) + fit(2) + . . . + fit(n)), (1)

where ‘n’=the number of the individuals of the population.
However, if there are high deviations to be found among the fitnesses of the

individuals in a population, the chance of survival and to reproduce will be practi-
cally zero for the inferior individuals. So the next modification of the proportionate
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selection is expedient: The fitness of an individual is only used to establish a row
of order among them. The larger the fitness value, the higher the position (noted
by pos(i) in (2)) of the individual in the sequence. The probability of becoming a
parent is proportional to the vector’s position in the sequence (seeFig.3):

Roulette wheel.
The length of the arc that belongs
to each individual is proportional
to its ness value.fit

fit(1)

fit(2)

fit(3)

fit(4)fit(5)

Fig. 2. Fitness proportional selection

Roulette wheel.
The length of the arc that
belongs to each individual
is proportional to its ition
in the sequence organized
by its fitness value.

pos

pos(1)

pos(2)

pos(3)

pos(4)pos(5)

Fig. 3. Fitness organized sequence position
proportional selection

P(i) = pos(i)/((n + 1)(n/2)). (2)

It is a useful byproduct of this method that its application does not require the
exact calculation of error for a parameter vector. It is sufficient if their comparison
criterion is fulfilled. This means that the speed of the algorithm can be dramatically
increased, because (if we find a fast method for the comparison of the vectors) it
will not be necessary to calculate the results (and the error) to each of the input
combinations of the training set for the two vectors to compare.

The selection methods discussed above cannot prevent the accidental disap-
pearance of a population’s best individual at 100%. This is because the offspring is
not a copy of a parent; it is the combination of two parents. Therefore the best one
(or the best few but maximum a few percent) of the individuals will be preserved
as they are in the next generation, while of course they can be chosen as parents as
well. This is the elitist strategy, which ensures that with each generation the fitness
of the best individual increases, or does not change in the worst case.
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4. The Implementation of Crossover

To perform the classical one-point bitwise crossover, we generate ak(i) random
number for each parent vector couple, in the range of 1. . . ‘b − 1’, where ‘b’ is the
bitlength of a parameter vector, and ‘i ’ is the index number of the couple. The 1st,
2nd, 3rd, . . . k(i)th bit of the first parent will be copied to the offspring. The remaining
bits of the offspring will be copied from the second parent. (If some characteristics
of the individual, represented by a vector, are defined mostly in the first part of the
vector, it could be feared, that these characteristics will be overwhelmingly defined
by parent A, since during any crossover the first few bits are always copied from
parent A. This undesired effect can be neutralized, if the selection of parent A and
parent B is random. In such a way any particular vector can be parent A as well
as parent B). Thek(i) = 0 and thek(i) = b cases are excluded because it would
not mean the testing of a new combination, and the survival of the best parameter
vectors can be ensured by the elitist strategy.

father

mother

offspring/child

Dimension of parameter vectors: 10
bitlength of parameter vectors: 80, crossing point at: k(1):=31

Classical bitwise crossover of the first parent couple

Fig. 4. One-point bitwise crossover, two-complement code 8-bit parameter vector compo-
nents

Remark: Multiple-point bitwise crossover methods differ only from the method
above in that the offspring’s bits will consist of the concatenation of not just two
bit-sequences (one from the first parent vector (father), another from the second one
(mother)) but more than two alternatively originned sequences follow each other.
The number of these sequences is one less than the number of the crossing-points.
E.g.: when applying 3-point bitwise crossover on 50 bit long vectors, 3 numbers
(p, q, r) have to be chosen at random between 1 and 50, so thatp+q +r < 50. The
offspring’s 1. . . p bits will be transferred bit by bit from the father’s 1. . . p bits, the
p+1 . . . p+q bits from the mother’sp+1 . . . p+q, then thep+q+1 . . . p+q+r
bits again from the father’s bits, and the rest of the bits of the offspring from the
mother’sp + q + r + 1 . . . 50 bits.

There are two possibilities: each component of a child vector will spring
undividedly from the first or from the second vector, or there will be a component
whose bits come partially from the first, partially from the second parent vector (see
Fig. 4).
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It can be proven that even when the component in question comes from two
two-complement coded numbers of different sign or the two components are floating
point numbers whose exponent is of different sign, the result will be likely far outside
of the interval defined by the parent vector components. (For example, the −1 and
+1 two-byte two-complement code integer numbers can result in −32767or in
+32767depending on where the first bit is taken from. The 1 ∗ 10e − 1 and the
1 ∗ 10e + 1 real type numbers when cut after the first bit of the exponent can even
result in a value as high as 10e + 38).

So the problem of this method is, that it cannot fulfill an important criterion of
the biological evolution model: ‘the offspring is similar to its parents’. The problem
was caused by the splitting of a parameter vector component, so in many genetic
applications the position of cutting is restricted to the component-bounds. (This
method in this article will be referred to as Component Frame Restricted crossover
method). This means however, that not only the interval of the search space, but its
resolution is dramatically restricted as well.

i h b ll h d i h i

w1

w2

Fig. 5. V is the number of all the dots in the figure
• represent the parameter of the first population.◦ represent all the other vectors that can
be tried out when using only the selection and the Component Frame Restricted crossover
method. 2-dimensional case, number of vectors: 8,M(1) = 7, M(2) = 4, V = 28

Let ‘V ’ (see (3)) be the number of different vectors that can be tried out when
using only the selection and the crossover operator.

V = M(1) ∗ M(2) ∗ . . . ∗ M(s) (3)

M( j) represents the different numbers of all the parameter vectors’j -th component
j = 1 . . . s, where ‘s’ is the dimension of the parameter vector.

The value of ‘V ’ cannot increase without mutation, because only the mutation
can adjust a vector component to a different value than the original set of values
(seeFig. 5).
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This restriction can be eliminated using another method, where thej -th com-
ponent of the offspring vector comes from the Special Linear Combination (S.L.C.)
of the j -th component of the parent vectors (seeFig. 6). According to this,C( j)
can be calculated by (4).

C( j) = c1 ∗ A( j) + c2 ∗ B( j) (4)

In (4) C( j) is the j -th component of the offspring vector,A andB mark the parent
vectors,c1 is a real number from the interval 0.5 . . . 1, andc2 = 1 − c1. When
one-point crossover is applied, ak(i) random number has to be drawn separately
for each parent couple.C( j) can be obtained by (4) when j ≤ k(i). When j > k(i)
the roles ofc1 andc2 in (4) have to be exchanged.

Remark: Because the selection of parentA and parentB is random, any particular
vector can be parentA and parentB as well, so the 0.5 . . . 1 interval for c1 is
sufficient, the use of the whole 0. . . 1 interval is not necessary.

Dimension of parameter vectors: s:=10
operator constants: c :=0.8, c :=0.2, crossing point at: k(1):=41 2

Vector 'A' (father)

Vector 'B' (mother)

Vector 'C’ (child)

Special Linear Combination crossover of the first parent couple
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Fig. 6. One-point Special Linear Combination crossover, two-complement code 8-bit pa-
rameter vector components

As a result of the S.L.C. crossover method, the offsprings 1. . . k(i) com-
ponents will be moresimilar to (and not – if the Component Frame Restricted
crossover method were used –exactly the same as) the components of parentA
and thek(i) + 1 . . . s components more like the ones of parentB. This way the
S.L.C. crossover method can scan the search space much more flexibly, and it is
much more capable of fine tuning the parameter vectors. However, it unjustifiedly
prefers solutions that are located in the geometrical center of the ‘s’-dimensional
rectangle defined by the ‘s’-component original parameter vectors, instead of their
neigbourhood. Therefore, it might be expedient to take the value ofc1 (or after the
exchange the value of c2) from the[1− q, 1+ q] real interval, where 0< q < 0.5.
As the genetic algorithm is usually started from the random population of original
vectors, the crossover method mentioned above gives a rough scan of the parameter
vectors’ space at the beginning. Later, as more and more parameter vectors find a
specific optimum pit of the error surface becoming this way similar to each other,
the child vectors (that spring from the S.L.C. crossover of the parent vectors) will
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be geometrically close to the parents as well. This means that the search will be
increasingly concentrated at the optimum pit, and the algorithm converges.

In general, it is also possible to determine each component of the offspring
vector from the corresponding component of the parent vectors. The use of a more
complicated function than the linear function increases the time consumed, so it is
only recommended if it is suggested by special a priori information on the search
space.

The one-point crossover methods mentioned above also have their multi-point
versions.

5. The Realization of Mutation

In the case of the classical bitwise mutation this means the inversion of one bit,
which can result in a dramatic change of the offspring vector. (E.g. the change
of one bit in the exponent of a real number.) More gentle versions are the value
oriented mutations, which means that the component of a vector should be slightly
increased or decreased by adding to or subtracting from it a small positive number,
or by multiplying it by a number close to+1. It is also possible to change the value
of a component by applying a function to it. All of these can be done by using fixed
or random numbers for the modification. When more drastic changes are needed
to be made, it is possible to overwrite some components of the offspring vector
by a random number. There could be a different frequency applied for mutations
causing smaller changes and for others causing greater changes [3].

6. The Scanning of the Error Surface – Convergence

When there is one population of the individuals and the used genetic algorithm
applies the Fitness Organized Sequence Position Proportional selection, the Special
Linear Combination crossover and some kind of rarely occurring mutation, it can
be seen that the parameter vectors concentrate more and more in the neighbourhood
of the error surface’s optimum pits (seeFig. 1). When in addition to this, elitist
strategy is used, it could be hoped that the vectors of the elite will represent different
local minima of the error surface.

However, this could only be expected if the shape and size of the pits on the
error surface were similar, which is most often not the case. Thus, the vectors that
somehow got close to a pit of steeper slope could quickly displace the representatives
of the other local minima from the elite, and so significantly lower their chance of
survival. Finally, every individual of the population will be focused around this
local optimum. The biological analogy is well known, and the solution of the
nature for the problem is the refreshing of blood (i.e. the set of genes) by an
immigrant individual of another population. This idea led to the application of the
multi-population genetic algorithms.
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7. Multi-Population Genetic Algorithms

These algorithms work on the same basis as in the case of one population. The
difference is that at start the parameter vectors are divided into disjoint sets, i.e.
populations. The three basic genetic operators (selection, crossover and mutation)
are separately executed on the individuals of each population. There is a separate
elite in each population. In the course of the generations each population evolves in
its own way, thus the individuals of different populations will have different good
and bad qualities. Our goal is to unify all the good qualities in one individual.

To achieve this, sometimes (at a small probability) we move an individual
from one population to another (migration). The good qualities of the immigrant
will be hopefully passed toward the individuals of the acceptor population making
them even more perfect [3]. The migration is often realized by the simple exchange
of two individuals of different populations. This way, it is not to be feared, that the
individuals completely disappear from a population that is chosen most of the time
as a donor.

This method however involves hidden dangers. To explain this let us assume
that there is a population called ‘P ’, chosen as donor at the moment, and a population
called ‘Q’, that is now the acceptor. Let us also assume that the fitness of the best
individual in ‘P ’ is better than the fitness of the best one in ‘Q’. In this case there is
a chance of choosing an individual from ‘P ’ whose fitness is better than the fitness
of anyone in ‘Q’. This individual will most likely displace (by its offsprings) the
earlier members of the elite in ‘Q’, so the population ‘Q’ will be transferred to the
local minimum already scanned by population ‘P ’ (seeFig.7.a). The phenomenon
has its biological analogy as well: the mammals brought to Australia by man have
rapidly gained living-space at the cost of the native species without changing genes
with theirs. Because in general between two populations one is always better than
the other, it is not recommended to realize the migration by a simple change of
individuals.

The problem of rescanning mentioned above cannot be avoided at a safety
factor of 100%, however, its chance can be significantly decreased by the use of
the Maximum Fitness Guided Migration method. The M.F.G.M. method makes
an individual migrate only, if the maximal fitness in the donor population is less
than the maximal fitness in the acceptor population. This means that the immigrant
cannot overwrite the acceptor’s elite, but it has a chance to pass its good features
onto the members of the acceptor population (seeFig.7.b).

8. A Practical Application of the Genetic Algorithm

The advanced genetic algorithm was implemented in a computer program. To test
its performance the software simulation of a real-life image recognition problem
was used. The exact position of a rotating disc counter had to be detected.

To obtain the accuracy required the identification of the least significant digit
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Fig. 7.a. The possible undesired result of the classical ‘migration by exchange’ method:
The concave hexagonal shape of the original populationQ cannot be passed on
to the individuals possessing the greater size quality of the original population
P. This way, the suboptimal error-minimum pit already scanned by population
P will be rescanned by populationQ as well. Remark: The fitness of the exact
match is one. If the target object cannot be fully covered, or if it is overcovered
the fitness is smaller. The minimum fitness value is zero.

was not sufficient; four positions between had to be recognized as well (seeFig.8).
There was a great deal of noise to be expected in the real images. The original
32× 64 pixel 8-bit image was reduced to 8× 8 pixel 16 bit one. This was the input
of a neural network of 256 inputs, 2 layers (500+ 50 neurons) and 50 outputs [4].
This NN could be separated into 50 subnets of 256 inputs, 2 layers (10+1 neurons)
and 1 output (seeFig. 9). There was a full connection between the 2 layers of a
subnet, but there were no cross-subnet weights.

The 50 subnets were trained in 50 separate sessions. The training process was
realized by a self-developed genetic-based computer program. One training session
meant the adjustment of 2570 parameters. The number of learning samples was
650. This was different for each subnet, and consisted of only noiseless images of
the rotating disc counter. The testing set was created based on the idealised images.
These images were then distorted by a high amplitude random noise.

Testing results have shown that while the rate of noisy and unchanged pix-
els did not exceed 30 percent, the rate of correct identifications was above 99%.
However, if the noise rate exceeded 30%, the rate of correct recognitions dropped
rapidly. The training of one subnet took approximately 2–4 hours on a 300 MHz
PC.
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The task is to create a polygon in shape and size exactly like this one:

Fig. 7.b. The advantage of the Maximum Fitness Guided Migration method: A higher
possibility for the combination of the individuals’ good qualities. The concave
hexagonal shape of the original populationQ can be combined with the greater
size quality of the original populationP, and so a deeper or even an absolute
optimal error-minimum pit can be found. Remark: The fitness of the exact match
is one. If the target object cannot be fully covered, or if it is overcovered the
fitness is smaller. The minimum fitness value is zero.

Fig. 8. The five sub-digit positions on the least significant digit disc of the rotating disc
counter that had to be identified

9. Conclusion

The results show that the improved genetic algorithm (when it is applied for pa-
rameter optimization tasks of large dimension numbers) can provide a good quality
solution even if the parameter-space is unknown, if sufficient computer power is at
hand. The use of the method is not recommended in applications, where training
is to be carried out often and the result has to be obtained in a relatively short time
interval.
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