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Abstract

Synchronized laser scanners are the most popular 3D image capture systems for industrial applications.
The accuracy of the scanned picture is a key factor of the complete system. In this paper, a new
mathematical description of synchronized laser scanners will be presented, which is necessary to the
developed calibration method. The mathematical model is based on the geometrical design of the
triangulation and it can make the application of scanners easier. The calibration method is working by
tests on reference planes, which should be scanned and some reference points should be chosen on it.
Due to the combined relations among the geometrical and system parameters, it is better – as shown
– if the system parameters are estimated step-by-step by a linear error correcting method from the
measured data and from the coordinates of the points on the reference planes. The new mathematical
model allows simulating the function and the errors of the triangulation system easy. The error
analysis of the system can help us to obtain important data from the model to design synchronized
scanners.
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1. Introduction

3D imaging is one of the most interesting challenges of industrial picture pro-
cessing. There are a lot of different methods for 3D image capturing (binocular
stereo, monocular systems, different kinds of structured lighting, etc.). One of the
most popular solutions is the use of laser scanners. This equipment uses a laser
light source, some kind of deflection units (typically galvano-mirrors), electroop-
tical position-sensitive transducer and evaluation electronics for triangulation. A
well-known optical arrangement developed by RIOUX [1] is the synchronized line
scanner, which makes a good compromise between depth resolution and viewing
field possible. At the Department of Control Engineering and Information Tech-
nology, in cooperation with the University of Karlsruhe we extended this method
for field scanning, and a new system was developed for industrial applications with
high resolution and large viewing field [2].

The accuracy of the scanner depends on the amount of uncertainty in the pa-
rameter description. On the other hand, the electro-optical system is very complex.
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Two basic questions arise: a.) How are the different parameters affecting the final
accuracy, and b.) What is the optimal parameter setup for a given application?

To find a solution for this problem a method is necessary for parameter es-
timation and for calculation of the expected quality of the captured image. In the
following we describe a mathematical model and parameter estimation procedure
for laser scanners. The result of simulations will be also presented.

2. Mathematical Model

The mathematical model is based on the geometrical construction of the synchro-
nized triangulation scanner, shown inFig. 1. The light source is a HeNe laser. Its
beam falls on thex mirror rotated by thex scanner. The mirror reflects the beam to
the fixed mirror (r), then the beam falls onto the surface of the object. The illumi-
nated point of the object is projected onto the sensor by the lens after reflection on
the fixed mirror (l) and on the opposite side of thex mirror. The synchronization
is realized by double reflection on thex mirror.

The center of the coordinate system of our model is on the axis of thex
scanner. Thez axis is identical with the incident beam of the laser source, thex
axis is perpendicular to it. The angles of the mirrors and the beam are shown in
Fig. 1. Two beams are indicated in the projection part only. The beam, indexed
with an asterisk (∗), is called the central beam, which goes through the object point
(P) and the center of the lens. The object point is projected to the point on the
sensor, where the central beam reaches the surface of the sensor. The pointE is an
object point, the image of which is in the center of the sensor, in case of the initial
deflecting angle of thex scanner. This means, that the central beam of this point is
on the axis of the lens between the sensor and thex mirror, and it is identical with
the virtual axis of the lens before thex mirror. Parameters of this beam are indexed
with a letterT . The system parameters are defined by the geometrical construction.
They are the position parameterst1, t2, ϑ1, ϑ2 of the fixed mirrors and the initial
deflecting angleωx0 of the x mirror. The maximum value of the deflection angle
ωx is defined by the applications. Relations can be found among the angles of the
deflected beam and the angles of the mirrors.

αx = 2ωx − 90◦, (1)
θ = 2(ϑ1 − ωx) + 90◦, (2)

γ ∗ = ϕ∗ − 2(ωx − ϑ2), (3)

γ T = 90◦ − 2(ωx − ϑ2), (4)

Each object point corresponds to a sensor point. Relations can be estab-
lished using coordinate-geometry but this is so complicated that the model would
be uncontrollable.

To reduce the complexity of the relations, we project the center of the co-
ordinate system (O) through the fixed mirrors (r) and (l), which resultsR andL.
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Fig. 1. Synchronized triangulation geometry

According to geometry, pointR is the virtual center of the deflected beams. If the
image of an object point falls onto the center of the sensor, the central beam starting
from the object point is going virtually to the pointL. It can be proved that these
points are independent of the deflection. In addition, the angleεT , which can be
found between the deflected beam and the central beam of the projection, is also
independent of the deflection.

εT = 180◦ − 2(ϑ2 − ϑ1). (5)

Taking into account the above mentioned fact, a circle can be found containing the
virtual pointsR andL and the object pointE, the image of which is the center of
the sensor. The center of the circle is indicated asC (SeeFig.2).

There exist the followinggeometrical relations, which can be proved (they are
prominent in the calibration procedure): a) The pointsR, L and the pointF (virtual
focus) are on the circle, which we call as reference circle; b)LF = OF = RF; c)
CF is perpendicular toLR; d) LD = RD, whereD is the point of intersection of
CF andLR.
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The coordinates of virtual centersR(xR, zR), L(xL, zL) and virtual focus
F(xF , zF ) can be determined from the system parameters using the following equa-
tions:

xR = 2t1

1 + 1

tan2 ϑ1

, zR =
−t1

2

tanϑ1

1 + 1

tan2 ϑ1

, (6)

xL = 2t2

1 + 1

tan2 ϑ2

, zL =
−t2

2

tanϑ2

1 + 1

tan2 ϑ2

, (7)

xF = t2 tanϑ2 − t1 tanϑ1

tanϑ2 − tanϑ1
, zF = (t2 − t1) · tanϑ1 · tanϑ2

tanϑ2 − tanϑ1
. (8)

The center pointC(xC, zC) and the radius (r) of the reference circle can be deter-
mined from theLFR triangle.

xC = K1(xL + xF ) − K2(xR + xF ) − zL + zR

2(K1 − K2)
, (9)

zC = K1K2(xL − xR) + K1(zR + zF ) − K2(zL + zF)

2(K1 − K2)
, (10)

where

K1 = xF − xL

zL − zF
, K2 = xF − xR

zR − zF
, (11)



CALIBRATION PROBLEMS 275

and the radius is given by the following equation:

r =
√

(xF − xC)2 + (zF − zC)2. (12)

The importance of these parameters lies in the fact that they are independent of the
deflection.

To reduce the complexity of description of the projection, the projection axis
can be straightened (SeeFig. 3). The distance from the lens to the detector isa;
from the lens to the axis of thex mirror is b. The length of the optical axis from
pointE to pointO is l, and from pointO to pointZ is lz, respectively. The distance
of the object point from the virtual axis ish. The image of the object point on the
sensor is measured from the center of the detector indicated byx∗a .
It can be proved that a positivex∗

a belongs to a negativeh and vice versa. This
means that as the sensor detects an image point with a positive coordinatex∗a , the
object point is inside the reference circle, otherwise it will be found outside the
reference circle.

The relations which are determined according toFig. 3 can be simplified,
so the parameters of the optical projection can be evaluated from the following
equations:

l = 2r · sin(δ1 + δ2), (13)

lz = l · a · tanεT − b · x∗
a

x∗
a + a · tanεT

, (14)

h = −(l + b) · x∗
a · tanεT

x∗
a + a · tanεT

, (15)

where

δ1 = arctan
zR − zL

xR − xL
= constant, (16)

δ2 = 180◦ − θ = 90◦ − 2(ϑ1 − ωx). (17)

The parameterslz andh yield the coordinates of the object point in the coordinate
system fixed to the virtual axis. The required coordinates can be determined after
a coordinate transformation from the coordinate system fixed to the virtual axis to
the coordinate system fixed to the non-moving mirrors and to the detector. After
the transformation the coordinates of the object pointP(xP, z P) are the following:

xP = h · sinγ T − lz · cosγ T + xL

z P = −h · cosγ T − lz sinγ T + zL

}
. (18)

The importance of the model is that the complicated equations (Eqs. (6)–(12))
should be evaluated only once before the measurements and the distance values can
be computed easily using simple relations (Eq. (4) andEqs. (9)–(14)).
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Fig. 3. a) Projection axis straightened, b) optical geometry, c) angles in the circle

3. Calibration Method

The calibration of the synchronized scanners means the determination of system
parameters. It can be seen from the equations that the inverse function of system
parameters is not a simple relation. Therefore, another way is chosen to determine
the system parameters.

The calibration method is based on measurements on reference planes. The
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system parameters can be estimated step-by-step by an error correction method.
The planes are illuminated at different deflection angles and some reference points
Pi j are chosen on it.Fig. 4 shows the calibration measurements and the reference
planes. Though the orientation of the planes is optional, the simplest choice is if
they are parallel to each other. It is necessary to find some object pointsEi on the
planes, the image of which is in the middle of the detector. The coordinates of all
pointsPi j (xi j , z j ) andEi should be noticed. The number of deflections isq, the
number ofEi points isk, respectively.
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Fig. 4. Reference planes for calibration

The first step of the calibration is to determine the virtual deflection center
(R), where the deflected beams intersect. The equation of the straight linei is

z j = mi xij + bi . (19)

Due to measurement errors,mi and bi can be estimated by an error-correction
method. The most simple solution is the linear Least-Squares estimation. The
linear model is given by

y = Xibi + ei , (20)

where

y =




z1
z2
...

zn


 , Xi =




xi1 1
xi2 1
...

...
xin 1


 , bi =

[
mi
bi

]
. (21)

The Least Squares estimation of the parameter vectorbi is

b̂i = (XT
i Xi)

−1XT
i y. (22)
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The reduced form of the estimated parameters is the following:

b̂i =
[

m̂i

b̂i

]
= 1

n ·
n∑

j=1

x2
i j −


 n∑

j=1

xi j




2

×




n ·
n∑

j=1

xi j z j −
n∑

j=1

xi j ·
n∑

j=1

z j

n∑
j=1

x2
i j ·

n∑
j=1

z j −
n∑

j=1

xi j ·
n∑

j=1

xi j z j


 . (23)

Theb̂i vector contains the estimated parameters of the straight lines. Now the most
probable intersection point should be estimated. Each straight linei contains the
point R, so the following equation can be written

zR = m̂i xR + b̂i , (24)

wherem̂i andb̂i are estimated in the previous step. The equations can be summa-
rized by the following matrix form:

y = Xb + e, (25)

where

y =




b̂1

b̂2
...

b̂q


 , X =




−m̂1 1
−m̂2 1

...
...

−m̂q 1


 , b =

[
xR
zR

]
. (26)

The Least-Squares estimation gives the estimated coordinates of the pointR:

b̂ =
[

x̂R
ẑR

]
= 1

q ·
q∑

i=1

m̂2
i −

(
q∑

i=1

m̂i

)2

×




−q ·
q∑

i=1

m̂i b̂i +
q∑

i=1

m̂i ·
q∑

i=1

b̂i

−
q∑

i=1

m̂i ·
q∑

i=1

m̂i b̂i +
q∑

i=1

b̂i ·
q∑

i=1

m̂2
i


 . (27)

The way of estimation of the system parameters was shown above. Only the most
important steps of the estimation will be given here without the mathematical details.
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The virtual deflection center (R) is the image of the center of the coordinate
system (O) reflected by the fixed mirror (r). Therefore, the mirror lies on the
bisecting perpendicular straight line of the sectionRO, so the parameters (axis
intersectiont1, angleϑ1) of the mirror (r) can be estimated.

The initial deflecting angle (ωx0) can be determined fromEq. (2). The angleϑ1
of the fixed mirror (r) is already known. The step angleωxi of the moving mirror
can be set accurately on the scanner. The necessary relations are the following:

ωxi = ωx0 + ωxi , (28)

θ̂i = arctanm̂i , if m̂i > 0
θ̂i = 180◦ + arctanm̂i , if m̂i < 0

}
. (29)

Using a Least-Squares estimation, the initial deflecting angle can be determined.
The next step is to determine the reference circle, which is required to calculate

the center and the radius of the circle. We will use the notedEi points (k pieces) and
the virtual deflection center (Ek+1 = R) because they are on the circle. Ifk +1 ≥ 3,
the circle is determined.

We have chosen two points from them in every combination. Each section
between pointsEi andE j is a chord of the circle, and its bisecting perpendicular
contains the center of the circle. The center can be determined by Least-Squares
estimation of the intersection points of bisecting perpendiculars. The determination
of the radius can be performed easily, as the center and some other points of the
circle are known.

The intersection of the mirror (r) and the circle gives the intersection point of
the fixed mirrors (F). The pointL can be determined using the geometrical relations
a) and c) on page273. If we drop a perpendicular from pointR to the lineCF,
the intersection with the circle gives the pointL. The pointL is the image of the
center of the coordinate system (O) reflected by the fixed mirror (l). The mirror
(l) is the bisecting perpendicular straight line of the sectionLO, so the parameters
(axis intersectiont2, angleϑ2) of the mirror (l) can be estimated.

Now we have all system parameters of the synchron scanner in the coordinate
system of the fixed mirrors. The position and the orientation of the scanner in real
environment can be determined by capturing data from fixed reference object. The
transformation from the coordinate system fixed to the scanner to the coordinate
system fixed to the reference object is given by the measured data. The inverse of
the transformation matrix gives the reverse transformation matrix. We can get the
real data from any object using the reverse transformation.

The mathematical model and the calibration method can be applied for both
3D triangulation and light-strip methods. Although the model describes line scan-
ners, it can be used for 3D range finders with double deflection too, because the
projection is independent of the parameters of the vertical synchronized scanner.
The parameters of the vertical scanner can be estimated by a similar calibration
method as described above.
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4. Examination

The examinations of some optical parameters can help us to design synchronized
scanners. The viewing field of the system is shown inFig.5. (The following typical
parameters are the used:t1 = 150 mm,t2 = −150 mm,ϑ1 = 47.5◦, ϑ2 = 130◦,
soεT = 15◦. The lens and detector parameters area = 40 mm,b = 100 mm, the
width of the detector is 12 mm.)

Fig. 5. Viewing field (εT = 15◦)

The straight lines contain the object points related to the deflection in the
intervalωx = 33◦−53◦. The object points, the images of which fall onto predefined
locations on the detector (+6 mm;+4.5 mm;+3 mm; etc.), are on the arcs.

The resolution is given by the distance between an object point and another
object point, the image of which is in the center of the detector at the same deflection
(seeFig. 6). The tangent of the function is the reciprocal form of the resolution.
The non-linearity can be seen on the figure, but the resolution at ‘nearer’ object
points (inside the circle) is approaching linear and independent of the deflection.

The tests of the calibration are shown inFig. 7. The system parameters are
known and some calibration points (object point) were determined. An error was
added to the coordinates of the object points and the ‘new’ system parameters
were estimated by the calibration method. The figure shows the distance among the
original object points and the new calibration points determined by the ‘new’ system
parameters. The test shows that the accuracy of theoretical resolution (determined
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33°

43°, 53°

Fig. 6. Resolution (εT = 15◦)

Fig. 7. Calibration error analysis

from the pixel number of the detector) can be reached when the system parameters
are unknown and should be estimated by calibration. However, it is true for certain
system parameters only, so we need a-priori knowledge about the parameters and
we have to investigate calibration tests such as shown inFig.7.

5. Summary

A new mathematical model of a synchronized scanner and its application for cali-
bration was presented. The mathematical model is based on the geometrical con-
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struction of the triangulation. The system parameters can be determined from the
geometrical data by combined relations, but they should be evaluated only once
before the measurement series. The distance values can be easily determined from
the system parameters and from the measurement values. The calibration method
works by test images from reference planes. The system parameters are estimated
step-by-step by a linear error correcting method from the measured data and from
the coordinates of the points on the reference planes. The error analysis of the
system can help us to obtain important data from the model to design synchronized
scanners. Both the error analysis of the calibration method and the experimental
results show that the error of the calibration method can be kept in the range of the
maximum resolution. It means that measurements based on calibration give results
as accurate as possible according to the resolution.
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