PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 44, NO. 3-4, PP. 288%(2000)

HARDWARE IMPLEMENTATION OF PHONG SHADING USING
SPHERICAL INTERPOLATION

Abbas Ali MOHAMED, Laszlé SIRMAY-KALOS and Tamas IBRVATH

Department of Control Engineering and Information Technology
Faculty of Electrical Engineering and Informatics
Budapest University of Technology and Economics
H-1521 Budapest, Hungary
e-mail: abbas@seeger.iit.bme.hu

Received: 21 Dec. 2000

Abstract

Computer image generation systems often represent curved surfaces as a mesh of planar polygons that
are shaded to restore a smooth appearance. In software rendering Phong shading has been one of the
most successful algorithms, because it can realistically handle specular materials. Since it requires
the rendering equation to be evaluated for each pixel, its hardware support poses problems. This
paper presents a reformulation of the Phong shading algorithm that is based on interpolating on the
surface of spheres. The reformulation results in simpler formulae that can be directly implemented

in hardware. The software simulations and the VHDL description of the shading hardware are also
presented.

Keywords: reflectance functions, BRDF representation, real-time graphics, Phong shading

1. Introduction

Computer graphics aims at rendering complex virtual world models and presenting
the image for the user. To obtain an image of a virtual world, surfaces visible in
pixels should be determined, and the rendering equation or its simplified form is
used to calculate the intensity of these surfaces, defining the colour values of the

pixels. The rendering eqyatioﬁ] [expresses the output radiant®! (X, \7) of a

surface poink at directionV as the function of the local surface properties and the
incoming radiance'" emitted by the light sources or reflected off other surfaces

from directionL:

|°“t(>*<,\7)=/|‘”(>*<, [)- (L, %, V) -cost"dar, 1)

Q/

whereé'" is the angle between the igco[ning directiorand the surface normal
at the reflection poink, i.e. co®’"™ = L - N if the vectors have unit lengtt, is
BRDF (bi-directional reflected distributed function), afidis the set of possible
incoming directions forming a hemisphere.

284 A. A. MOHAMED et al.

@ Lightsource 1
“ v

Lightsource 2

»

<y

Window

Fig. 1. Radiance calculation in local illumination methods

If the indirect illumination coming from other surfaces is ignored and only
directional and positional light sources are presihis a Dirac-delta type function
which simplifies the integral to a discrete sum:

19X, V) =Y 1", L)) - £ (L), X, V) - cosa™,)
|

wherellin is the incoming radiance generated by light sodr@ég. 1). Note that
this model does not account for the multiple reflections of the light, only the direct
illumination of the light sources is taken into account.

The BRDF functionf, is responsible for the optical properties of the sur-
face. In practice BRDF functions are mathematical formulae that have some free
parameters that can be set to mimic a given material.

2. Simple Optical Material Models

Some materials are dull and reflect light dispersely and about equally in all directions
(diffuse reflections); others are shiny and reflect light only in certain directions
relative to the viewer and light source (specular reflections).

First of all, consider diffuse — optically very rough — surfaces reflecting a
portion of the incoming light with radiance uniformly distributed in all directions.
Looking at the wall, sand, etc. the perception is the same regardless of the viewing
direction Fig. 2). If the BRDF is independent of the viewing direction, it must also
be independent of the light direction because of the Helmholtz symnigtthids
the BRDF of theseliffuse surfaces is constant on a single wavelength:

fr,diffuse(l:a \7) = kd (3)

Specular surfaces reflect most of the incoming light around the ideal reflection
direction, thus the BRDF should be maximum at this direction and should decrease

HARDWARE IMPLEMENTATION 285

_; A N Lin
L
CING)
Fig. 2. Diffuse reflection
ﬁ b} N in

PF

<t

Fig. 3. Specular reflection

sharply Fig. 3). ThePhong BRDF [8] was the first model proposed for specular
materials, which uses the following function for this purpose:

cosy _ (R- V)"

f L,V) =ks- - M 4
r,Phong() S cosd’ S (N] L) ()

whereR is the mirror direction of. onto the surface normal, ami L, N andV
are supposed to be unit vectors.

BLINN [1] proposed an alternative to this BRDF, which has the following
form: o
cos'$ K (N-H)"

o ginn (N, H) = ke - =kKs - —=——=—, 5
r,BImn() S cosh’ S (N-L) ()
whereH is the halfway unit vector betwednandV defined as
- L+V
He =tV 6)
L+ V|

Unlike the Phong and the Blinn models, which are only empirical construc-
tions, the @OK—TORRANCE BRDF [3] is derived from physical laws and from

286 A. A. MOHAMED et al.

the statistical analysis of the microfacet structure of the surface and results in the
following formula:

- P(H) FO. H-L)

4N - L)(N - V)
i 2'(N-H#)-(#N-V)’2 (N-H)-(N- L)’ | @
(V- H) (L - H)

where P is the probability density of the microfacet normals, d&nds the wave-
length () dependent Fresnel function computed from the refraction index and the
extinction coefficient of the material ().

Examining these BRDF models, we can come to the conclusion that the
reflected radiance formulae are relatively simple functions of dot products (i.e.
cosine angles) of the pairs of unit vectors, including, for example, the light vector
L, halfway vectorH, normal vectoiN, etc.

For example, using the Blinn BRDF for specular reflection and also allowing
diffuse reflection, the reflected radiance is

140V = P D [Ks(N - F™ + ko (N D] ®)

3. Phong Shading

The radiance values are needed for each pixel, which, in turn, require the rendering
equation to be solved for the visible surface. The rendering equation, even in its
simplified form, contains a lot of complex operations, including the computation
of the vectors, their normalization and the evaluation of the output radiance, which
makes the process rather resource demanding.

The speed of rendering could be significantly increased if it were possible to
carry outthe expensive computations just for a few points or pixels, and the rest could
be approximated from these representative points by much simpler expressions. One
way of obtaining this is the tessellation of the original surfaces to polygon meshes
and using the vertices of the polygons as representative points. These techniques
are based on linear (or in the extreme case, constant) interpolation requiring a value
of the function to be approximated at the representative points, which leads to
the incremental concept. These methods are particularly efficient if the geometric
properties can also be determined in a similar way, connecting incremental shading
to the incremental visibility calculations of polygon mesh models.

In this paper only triangle mesh models are considered, thus the geometry
should be approximated by a triangle mesh before the algorithms can be used. Itis
assumed that the geometry has been transformed to the screen co-ordinate system
suitable for visibility calculations and projection. In the screen co-ordinate system

HARDWARE IMPLEMENTATION 287

the X, Y coordinates of a point are equal to the corresponding coordinates of that
pixelinwhich this point can be seen, and theoordinate increases with the distance
from the viewer, thus it is the basis of visibility calculatiorisd.4). Note, on the

other hand, that the vectors used by the rendering equation are not transformed,
because the viewing transformation is not angle preserving thus it may distort the
angles between them.

Viewing transformation
>

: NS .
— 45~ < Lightsource
N

—
— N —>
L Camera window Screen L
y V Single pixel v
T Eye at
X Eye at finite infinity
distance
z . .
World coordinate system Screen coordinate system

Fig. 4. Transformation to the screen coordinate system

As mentioned, interpolation can be used to speed up the rendering of the
triangle mesh, where the expensive computations take place just at the vertices and
the data of the internal points are interpolated. A simple interpolation scheme would
compute the color and linearly interpolate it inside the triangle y&aub shading
[4]). However, specular reflections may introduce strong non-linearity, thus linear
interpolation can introduce severe artifacts (lefEad.5).

The artifacts of Gouraud shading can be eliminated by a non-linear interpo-
lation called FONG shading §] (right of Fig. 5). In Phong shading, vectors used
by the BRDFs and the rendering equation are interpolated from the real vectors at
the vertices of the approximating polygon; the interpolated vectors are normalized
and the rendering equation is evaluated for each pixel. Originally, the interpolating
function is linear. For example, the normal vector of a piX€] Y) is

N(X,Y) = ar(X,Y) - Ny +ax(X,Y) Ny +ag(X,Y) - Ns, (9)

wherea (X, Y) = ax X + ayY + ap (i = 1,2, 3) is a linear weighting function
and N; is the normal vector at vertex The interpolation criterion requires that
g;(X,Y) = 1 at vertexi and 0 in the other two vertices. From this criterion, the
parametersaix, ajy, o) of each weighting function can be determined.

It is usually simpler to replace the two-variate interpolation scheme by two
one-variate schemes, one running on the edges of the triangle and the other running
inside horizontal spans called scan-linegy(6).

288 A. A. MOHAMED et al.

Fig. 5. Comparison of linear interpolation i.e. Gouraud shading (left) and non-linear inter-
polation by Phong shading (right).

Fig. 6. Decomposition of the two-variate interpolation inside the triangle to one-variate
interpolations

HARDWARE IMPLEMENTATION 289

Thus it is enough to consider a one-variate interpolation either on the edge
of the triangle or inside the scan-line. Let us introduce a generic interpolation
parametet, which can be obtained from the pixel coordinates. If the interpolation
in a scan-line is considered, then

X — Xstart
Xend - Xstart

wheret is a running variable along the pixels in each scan-line,0 at the start of
the scan-line antd = 1 at the end of it.

Phong shading implies that at every pixel the vectors being involved in the
BRDF are interpolated, normalized and their dot product is computed, then sub-
stituted into the simplified rendering equation. To be general, Ietﬁus consider the
interpolation of two vectoré andu that can be any from the light vectorviewing
vectorV, normal vectomN, etc.

The generic formulae of the computation of the cosine of the angle between
d(t) andv(t) are then:

t

U(t) = (1 - t)astart + taends

Lo ()
Cuml
U(t) = (1 — t)Ustart + tUend.
g0 = 2O
lv(®)]
cosd = i° - 1°. (10)

Note thatinthese operations the interpolation is always followed by a normalization,
since dot products provide the cosine angle only if the vectors are unit vectors. The
normalization, on the other hand, involves 3 multiplications, 2 additions, a square
root and 3 divisions, which is rather expensive to compute.

Thus in this paper we propose a new interpolation scheme that can eliminate
the expensive normalization operations and provide the cosine angle by a simple
formula, which can even be implemented in hardware. The new interpolation works
on the surface of unit spheres, that is why we call it spherical interpolation.

3.1. Spherical Interpolation of a Single Viector

Suppose that we intend to interpolate between two unit vedt@sdd, in a way
that the interpolanii(t) is moving uniformly between the two vectors and its length
is always one. An appropriate interpolation method must generate the great arc
betweend; and,, and as it can easily be shown, this great arc has the following
form:

sin(1 —t . sinty _
_sind—ty . sinty

u(t - : Uo, 11
() Siny ! Siny 2 ()

290 A. A. MOHAMED et al.

where coy = Uy - U, (Fig. 7).

-~ Sphere
0 P

v

Fig. 7. Interpolation of vectors on a unit sphere

In order to demonstrate that this really results in a uniform interpolation, the
following equations must be proven faft):

|U(t)| =1, dUy-U(t) =costy, Uy-0(t) =cogl—1t)y. (12)

That is, the interpolated vector is really on the surface of the sphere, and the angle
of rotation is a linear function of parameter
Let us first prove the second assertion (the third can be proven similarly):

sin(l —t sint
_sind -ty sinty

Uq - 4(t - - cos
1-u® siny siny Y
siny - cost sinty - cos sint
= y. Y y 4 - 4 - COSy = costy. (13)
siny siny siny

Concerning the first assertion, i.e. the norm of the interpolated vector, we can use
the definition of the norm and the previous results, thus we obtain:

GO = Gt - Get) = (S'”(l—_t)y AL A) T

1 - uz
siny siny

sin((1—t)y +ty)
siny

ost +sinty cogl—t)y =
v siny V=

_ sin(l —t)y c

- =1 (14
siny (14)

3.2. herical Interpolation of a Pair of Vectors

Having discussed how vectors can be interpolated without modifying their length,
we can start examining how the angle between two interpolated vectors can be

HARDWARE IMPLEMENTATION 291

determined. Let us assume thit) is interpolated fronty to G, while v(t) is
interpolated fromv; to v,, and we are interested in c®&) = U(t) - v(t) (left of
Fig. 8).

One obvious possibility is to use the previous results separate(fpand
v(t) and to compute the dot product for eachHowever, we can realize that a
similar interpolation can be obtained keeping one vector —isayfixed and the
other is rotated by the composition of its own transformation and the inverse of the
transformation of the other vector (right Big.8). It means that while'(t) = v,
is fixed,U'(t) is interpolated betweeim andu, which is obtained by rotating, by
the inverse of the rotation from to vs.

Fig. 8. Interpolation of two vectors

The new end poinii, can, for instance, be expressed by quaternion multipli-
cations [L0]. The unit quaternion that rotat@sto v, is

v .V 171le2
g = |cos=,sin= - ——

v .
C = - = | COS—, SIN— -
2702 |51 x vl

wherev is the angle between andv,. Applying the inverse of this quaternion to
U, we get:

[0,TU,] =q*-[0,0] - q

(V1 X U2) x ((V1 X V2) x Up)
14 cosv '

= [O,Uz—(ﬁlxﬁz)xﬁz—i-

Vector U'(t) is obtained by spherical interpolation froi to U, thus the angle
between this vector and the fixeédis:

cosf(t) =U'(t) - vg
sinl—ty . .
siny (Ug-v1) +
sin(l—t sint
= u - COSH; + — Y - COSH,
siny siny
C0SsH; Cosy — C0Sb,

siny

sinty ., .
- (U - vy)
Y

= costy - cosh; + sinty - , (15)

292 A. A. MOHAMED et al.

where coy = Uy - U,. Note that this interpolation does not give exactly the same
values as interpolating the two vectors separately. Since the interpolation is only
used for approximating the vectors, this is as acceptable as the separate spherical
interpolation.

Let us express cdas and (cosf; cosy — costr)/siny by A anda in the
following way:

cosb, — COSts cosy

A.cosa = cosp;, A-sina = (16)
siny
Substituting these int&q. (15), we obtain:
cosh(t) = A- (costy - cosa + sinty - sina) = A-coSty —). a7

Let us realize that the complex sequence of operations including the spherical inter-
polations of two vectors and the computation of their dot product have been traced
back to the calculation of a single cosine value. Based on this simplification, even
the hardware realization of Phong shading becomes possible, as detailed in the next
section for the Blinn illumination model. Similar hardware architectures can be
developed for other BRDFs as well.

4. Interpolation and Blinn BRDF Calculation by Hardware

SubstitutingEq. (17) into the reflected radiance formul&d. (2)), and assuming
Blinn type BRDF and a single light source, we get:

) ke - COS'S = 1R, L) ke - (N - H)"
) -Ks- A" . cos'(ty — a). (18)

(%, V) = I'"(%, L
1", L

| I
A

Factorl '"(X, I:) -ks - A" = C is constant in the scan-line, thus onlytog — «)
should be computed pixel by pixel and the result should be multiplied by this
constantC.

The computation of c8sty — «) consists of three elementary operations:
the calculation of (X) - y — « from the actual pixel coordinat¥, the application
of the cosine function, and finally exponentiation withThese operations are too
complex to allow direct hardware implementation, thus further simplifications are
needed.

Thet(X) - y — a term is a linear function, thus it is a primary candidate for
the application of the incremental concefjt [The cosine and the exponentiation
are a little bit more difficult. In fact, we could use two tables of tabulated function
values for this purpose. This would work well for the cosine function since it is
relatively flat, but the accurate representation of the exponentiation would require
a large table, which should be reinitialised each time wheatanges (note that

HARDWARE IMPLEMENTATION 293

Fig. 9. The bell shapes of cBx n = 5, 10, 20, 50, 500 (left) and of co$ax (right) for
a=145198 276

the practical values afi can range from 2 to a few hundreds). Thus a different
approximation strategy is used.

Looking atthe bell shapes of the €osfunctions for differenh values Fig.9),
we can realize that these functions are approximately similar and can be transformed
to each other by properly scaling the abscissa. For example, we can use the hori-
zontally scaled versions of cos, i.e. codax to approximate cd for arbitrary
n. The reason of using the square of the cosine function isrtligigreater than
2 in practical cases and the square cosine already has the bell shape caused by the
inflection point. Thus our formal approximation is

cos'x ~codax if —-L <x<Z, (19)

and zero otherwise. Paramegeshould be found to maximize the accuracy for all
possiblex values. We can, for example, require the weighted integrals of the two
functions to be equal in order to obtain the paramaté\ote that the approximation

is exact forx = 0 regardless of the parameterthat is the zero points of all cosines
are fixed. This consideration makes it worth emphasizing the accuracy of larger
x values whera is determined. Let us use the siweighting function, thus the
criterion for determininga is

/2 cod' x - sinx dx = /Za cog ax - sinx dx. (20)
0 0

Expressing these integrals in closed form, we get:

1 2a?-(1—cosL) —1

n+1 4a2 — 1

This equation needs to be solved once for a set of values and the results can be
stored in a table. A few representative results are showablel. The quality of
the approximation is quite good as demonstratedFilyl0.

294

A. A. MOHAMED et al.

05 “o6 T4 T02 02 04 06
X X

03 02 o1 01 02 03
x

o1 ~0.05 005 01
x

n = 100,a = 6.0791 n = 500,a = 135535

Fig. 10. Approximation of co8 x by co€ ax

HARDWARE IMPLEMENTATION 295

Table 1. Correspondence betwermnda
n 2 5 10 20 50 100 500
a || 1.0000| 1.4502| 1.9845| 2.7582| 4.3143| 6.0791| 13.5535

T1a712 1 08 06 04 02 02 04 06 08 1 12 14 12472 08 06 04 02 02 04 06 08 1 12 14
X X%

4 bits 6 bits
Fig. 11. Quantization errors of the c®s function for 4 and 6 address/data bits

Let us return to the computation of the reflected radiance.CTte8 (t (X) -
y — «) has been simplified to the evaluation of

C-cog@t(X) -y —a)) =C-cog&(X),

where N
EX)=a -y —23 _a.q=s-X+b.
Xend - Xstart
Since&(X) is a linear function, it can conveniently be generated by the in-
cremental concept. Its basic idea is that instead of compygtingm X, it can be
computed from the previous value, i.e. frgaX — 1). Recall that a complete
scan-line is filled, that is when pixe{ is shaded, the results of pix&l — 1 are
already available. In our case:

EX)=8X-D+s,

thus the new value df requires just a single addition.

Having thet value generated, it should be input to the?daaction that can
be implemented as a read only memory. The number of address and data bits of
this memory, i.e. the number and the length of the words are determined from the
requirement of accurate representatidfig. 11 shows the original cdsfunction
together with its table representations for different address and data bit numbers.
Note that using six bit address and data, which means that our memory stores
2% x 6 = 384 bits, provides sufficient accuracy.

296 A. A. MOHAMED et al.

The complete hardware is shownRig. 12. The hardware has two parts, one
for the diffuse and one for the specular components, and each part has two stages.
In the specular part, the first stage is a linear interpolator, which provides the cos
table with anglet, according tas(x + 1) = &£(x) + b. Since it has a register at
its output, this stage can operate in parallel with the multiplier unit. Assuming
white light sources and wavelength independent specular facisingle linear
interpolator can be used for all colour channels. However, the diffuse part, which
is responsible for colouring, requires 3 channels. The cosine, and square cosine
functions can be implemented by ROMs. At the initial phase, for each scan line,
the constant parameters must be loaded into hardware. Then, for each step, the
hardware will generat®, G, B values.

The VHDL specification is straightforward for the multiplicators and for the
ROM. Here, as an example, the behavioural model of linear interpolator is given:
USE wor k. phong_pack. al | ;

ENTITY line_interpolator IS
GENERIC (t_nmpx : time := 5 ns; t_add :

time := 10 ns; t_reg : time :=5ns);
PORT (sxsb,s : INDbit_v_12; ra :
QUT bit_v_12; init, step: [INDit;);

END | i ne_i nterpol ator;

ARCHI TECTURE behavi our OF line_interpolator IS
SI GNAL add_out, npx_out, reg_out: bit_v_12;
BEG N

add_out <= s + reg_out AFTER t_add;

reg_out <= npx_out after t_reg

WHEN st ep’ EVENT AND step = ' 1’;

ra <= reg_out (11 DOMNTO 6);
nmux_proc: PROCESS(sxsb, add_out,init)

BEG N
IFinit =1 THEN npx_out <= sxsb AFTER t_npx ;
ELSE nmpx_out <= add_out AFTER t_npx;
END | F;
END PRCCESS;

END behavi our;

5. Interpolation on the Triangle

So far we have discussed the interpolation in a scan-line. A complete triangle is
rendered by generating those scan-lines which cover this triangle one after the other.
For each scan-line, the start and end points should be identified and the interpolation
parameters need to be initialised, then the scan-line interpolation can be initiated.
Let us consider a horizontal sided triangle. If the triangle were not horizontal

HARDWARE IMPLEMENTATION 297

|
ML —»
Ly
ML —»

|
! > >
linear ! linear
I interpolator | I interpolator |
_____ _e_—] —_— - = = = L e e e |] = = =/ — =
Keart TO[[s SXgo B[S

Fig. 12. Phong shading hardware

sided, then it could be divided into two horizontal sided parts. In this section we
will consider only the lower horizontal sided triangle, the upper part can be handled
similarly. Image space triangle and horizontal sided triangle are shofigy.ii3.

In order to initialise the scan-line interpolation, the vectors used by the shading
formula are needed for the start and end points of the scan-line. These vectors can
be provided by spherical interpolations running simultaneously at the left and right
edges of the triangle.

6. Simulation Results

The proposed algorithm has been implemented in C++ and tested as a software.
First the difference between the simultaneous vector interpolation and the method
of keeping one vector fixed while rotating the other vector by the composition of the
two rotations was investigated, and we have concluded that the results are visually
indistinguishable. Then the quality of the 8&s= cos’ ax approximation has been
studied.

Note that the halos in the left imagelefy. 14 obtained with the cdfunction
are slightly bigger but the centres are smaller. This is also obvious when looking at

298

Single

scan-line

-—

A. A. MOHAMED et al.

Horizontal
sided triangle

(upper part)

Horizontal
sided triangle
(lower part)

X3,Y3

-—

Image space
triangle

XYl

X XYl

Fig. 13. Image space triangle and horizontal sided triangle

Fig. 14. Evaluation of the visual accuracy ¢bs = cos ax approximation. Rendering the
left and right images, we used the 8osand co$ ax functions, respectively. The
shine @) parameters of the spheres are 5, 10 and 20.

the bell shapes dfig. 10 since the cdsax is zero ifx = 7 /2a while cod x only
converges to zero, while having the same integral.

Finally, the necessary precision, i.e. the number of bits, was determined.
Since the cdsfunction is implemented as a memory, it is the most sensitive to the

HARDWARE IMPLEMENTATION 299

word length.Fig. 15 shows the results assuming 4 and 6 bit precision, respectively,
where a rather coarse surface tessellation was used to emphasize the possible in-
terpolation errors. Note that with 4 bits the quantization errors are visible in the
form of concentric halo circles around the highlight spots. However, these circles
disappear when 6 bit precision is used. This also conforms with the quantization
error functions of-ig. 11.

Fig. 15. Rendering of coarsely tessellated spheres with the proposed method with 4 bit
precision (left) and 6 bit precision (right)

Finally, the hardware was specified in VHDL and simulated in ModelTech
environment. The delay times are according to XILINX XCV300-6 FPGA. The
timing diagram of the operation is shownking. 17. In this figure we can follow
the overlapped operation of the two stages while the cycle time of the ‘step’ signal
is 60 nanoseconds.

7. Conclusions

This paper proposed a different interpolation strategy for the cosine angles in Phong
shading. This strategy simplifies the linear interpolation, normalization and dot
product of a pair of 3D vectors to an addition, a cosine evaluation and a multiplica-
tion. Furthermore, when the reflected radiance is computed for specular surfaces,
the exponentiation of this cosine is replaced by the horizontal scaling of the square
cosine function. This replacement can significantly reduce the size of the hardware
lookup tables and a single small table (of a few hundred bits) can be used for more
or less shiny surfaces. The algorithm has also been transformed to a hardware de-
sign that has been simulated in VHDL. Considering the components that are easily

A. A. MOHAMED et al.

300

Fig. 16. The mesh of a chicken (left) and its image rendered by classical Phong shading
(middle) and by the proposed method (right)

ini% r r r
step [f1 1 1 [t 1 L
add_out 007100111600 X 001101100000 X_001140001000 X 001110110000 X 001111011000 X 01
mpx_out 001100010000 001101100000 X_001+10001000 X_001110110000 X 001111011000 X_010000006000
reg outt 001100010000-X_001100111000 X 001101760000 X_001110001000 X 001110170000 X_001111011000~ -
rafooo000 1100 — 001101 — 001110 - 001111 010000 -
cosZrom_1/addrtooooo — Xoot1o0 - 001101 — 001110 - 01111 X 010000 -
cos2rom_1/doutt—_Xa11111__ X 111016~ #1001 111000 — 110111~ -
cos2rom out{ 111111 X(111016- 111001 111000 — 110111- -
spec_mul_out 1000000000000 000071107000 J‘r 000071100100 X}000071700000
diff_mul_r_out 1000000000000 000001110000 101110 X 000001101100+
1000000000000 000101011000 101010170 X 0001010100001X_000101001700

i

Entity;phong test Architecturetest Date: Tue Apr 11 11:07:51 2000 Page 1

Fig. 17. Timing diagram of the hardware

available on the market, the realization of the proposed hardware could generate a
shaded pixel in every 60 nanoseconds. Even if the screen has abouk T0WD

resolution, the complete image can be redrawn 16 times per second which provides
the illusion of continuous motion.

HARDWARE IMPLEMENTATION 301

References

[1] BLINN, J. F., Models of Light Reflections for Computer Synthetized Picture§omputer
Graphics (S GGRAPH ' 77 Proceedings), (1977), pp. 192—-198.

[2] CrLausseN, U., On Reducing the Phong Shading Meth@bmputer & Graphics, (1990),
pp. 73-81.

[3] Cook, R. - ToRRANCE, K., A Reflectance Model for Computer Graphi€amputer Graph-
ics, 15 (3), (1981).

[4] GouRraAub, H., Computer Display of Curved Surfac&&€M Transactions on Computers, C-20
(6) (1971), pp. 623-629.

[5] KaJiya,J. T., The Rendering Equation.Gomputer Graphics (S GGRAPH ' 86 Proceedings),
(1986), pp. 143-150.

[6] Kuiik, A. M. — BLAKE, E. H., Faster Phong Shading Via Angular InterpolatiGomputer
Graphics Forum, (1989), pp. 315-324.

[7]1 MINNAERT, M., The Reciprocity Principle in Lunar Photomet@strophysical Journal, 93
(1941), pp. 403-410.

[8] PHONG, B. T., lllumination for Computer Generated Imag&€smmunications of the ACM, 18
(1975), pp. 311-317.

[9] SzIRMAY-KALOS, L. — MARTON, G., On Hardware Implementation of Scan-Conversion Al-
gorithms. In8th Symp. on Microcomputer Appl., Budapest, Hungary, 1994.

[10] SzIRMAY-KALOS, L. (editor), Theory of Three Dimensional Computer Graphics, Akadémiai

Kiad6, Budapest, 1995. http://www.iit.bme.hu/"szirmay.

	Introduction
	Simple Optical Material Models
	Phong Shading
	Spherical Interpolation of a Single Vector
	Spherical Interpolation of a Pair of Vectors

	Interpolation and Blinn BRDF Calculation by Hardware
	Interpolation on the Triangle
	Simulation Results
	Conclusions

