
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 44, NO. 3–4, PP. 283–301(2000)

HARDWARE IMPLEMENTATION OF PHONG SHADING USING
SPHERICAL INTERPOLATION

Abbas Ali MOHAMED, László SZIRMAY-KALOS and Tamás HORVÁTH

Department of Control Engineering and Information Technology
Faculty of Electrical Engineering and Informatics

Budapest University of Technology and Economics
H–1521 Budapest, Hungary

e-mail: abbas@seeger.iit.bme.hu

Received: 21 Dec. 2000

Abstract

Computer image generation systems often represent curved surfaces as a mesh of planar polygons that
are shaded to restore a smooth appearance. In software rendering Phong shading has been one of the
most successful algorithms, because it can realistically handle specular materials. Since it requires
the rendering equation to be evaluated for each pixel, its hardware support poses problems. This
paper presents a reformulation of the Phong shading algorithm that is based on interpolating on the
surface of spheres. The reformulation results in simpler formulae that can be directly implemented
in hardware. The software simulations and the VHDL description of the shading hardware are also
presented.

Keywords: reflectance functions, BRDF representation, real-time graphics, Phong shading

1. Introduction

Computer graphics aims at rendering complex virtual world models and presenting
the image for the user. To obtain an image of a virtual world, surfaces visible in
pixels should be determined, and the rendering equation or its simplified form is
used to calculate the intensity of these surfaces, defining the colour values of the
pixels. The rendering equation [5] expresses the output radianceIout(�x, �V) of a
surface point�x at direction�V as the function of the local surface properties and the
incoming radianceI in emitted by the light sources or reflected off other surfaces
from direction�L:

I out(�x, �V) =
∫
�′

I in(�x, �L) · fr(�L, �x, �V) · cosθ indω �L, (1)

whereθ in is the angle between the incoming direction�L and the surface normal
at the reflection point�x , i.e. cosθin = �L · �N if the vectors have unit length,fr is
BRDF (bi-directional reflected distributed function), and�′ is the set of possible
incoming directions forming a hemisphere.

284 A. A. MOHAMED et al.

Lightsource 1

Lightsource 2

V

N

L1

L2

xWindow

θ
θ

1

2Eye

Fig. 1. Radiance calculation in local illumination methods

If the indirect illumination coming from other surfaces is ignored and only
directional and positional light sources are present,Iin is a Dirac-delta type function
which simplifies the integral to a discrete sum:

I out(�x, �V) =
∑

l

I in
l (�x, �Ll) · fr (�Ll, �x , �V) · cosθ in

l , (2)

whereI in
l is the incoming radiance generated by light sourcel (Fig. 1). Note that

this model does not account for the multiple reflections of the light, only the direct
illumination of the light sources is taken into account.

The BRDF function fr is responsible for the optical properties of the sur-
face. In practice BRDF functions are mathematical formulae that have some free
parameters that can be set to mimic a given material.

2. Simple Optical Material Models

Some materials are dull and reflect light dispersely and about equally in all directions
(diffuse reflections); others are shiny and reflect light only in certain directions
relative to the viewer and light source (specular reflections).

First of all, consider diffuse – optically very rough – surfaces reflecting a
portion of the incoming light with radiance uniformly distributed in all directions.
Looking at the wall, sand, etc. the perception is the same regardless of the viewing
direction (Fig. 2). If the BRDF is independent of the viewing direction, it must also
be independent of the light direction because of the Helmholtz symmetry [7], thus
the BRDF of thesediffuse surfaces is constant on a single wavelength:

fr,diffuse(�L, �V) = kd . (3)

Specular surfaces reflect most of the incoming light around the ideal reflection
direction, thus the BRDF should be maximum at this direction and should decrease

HARDWARE IMPLEMENTATION 285

L

N
V L

θ θ’

in

Fig. 2. Diffuse reflection

ψ L

NH

V

R

L
inδ

Fig. 3. Specular reflection

sharply (Fig. 3). ThePhong BRDF [8] was the first model proposed for specular
materials, which uses the following function for this purpose:

fr,Phong(�L, �V) = ks · cosn ψ

cosθ ′ = ks · (�R · �V)n
(�N · �L) , (4)

where �R is the mirror direction of�L onto the surface normal, and�R, �L, �N and �V
are supposed to be unit vectors.

BLINN [1] proposed an alternative to this BRDF, which has the following
form:

fr,Blinn(�N , �H) = ks · cosn δ

cosθ ′ = ks · (�N · �H)n
(�N · �L) , (5)

where �H is the halfway unit vector between�L and �V defined as

�H = �L + �V
| �L + �V | . (6)

Unlike the Phong and the Blinn models, which are only empirical construc-
tions, the COOK–TORRANCE BRDF [3] is derived from physical laws and from

286 A. A. MOHAMED et al.

the statistical analysis of the microfacet structure of the surface and results in the
following formula:

fr,Cook(�N , �H , �L, �V) = P(�H) · F(λ, �H · �L)
4(�N · �L)(�N · �V)

· min

{
2 · (�N · �H) · (�N · �V)

(�V · �H) ,2 · (�N · �H) · (�N · �L)
(�L · �H) ,1

}
, (7)

whereP is the probability density of the microfacet normals, andF is the wave-
length (λ) dependent Fresnel function computed from the refraction index and the
extinction coefficient of the material [10].

Examining these BRDF models, we can come to the conclusion that the
reflected radiance formulae are relatively simple functions of dot products (i.e.
cosine angles) of the pairs of unit vectors, including, for example, the light vector
�L, halfway vector �H , normal vector�N , etc.

For example, using the Blinn BRDF for specular reflection and also allowing
diffuse reflection, the reflected radiance is

I out(�x, �V) =
∑

l

I in
l (�x, �Ll) ·

[
ks(�N · �Hl)

n + kd(�N · �Ll)
]
. (8)

3. Phong Shading

The radiance values are needed for each pixel, which, in turn, require the rendering
equation to be solved for the visible surface. The rendering equation, even in its
simplified form, contains a lot of complex operations, including the computation
of the vectors, their normalization and the evaluation of the output radiance, which
makes the process rather resource demanding.

The speed of rendering could be significantly increased if it were possible to
carry out the expensive computations just for a few points or pixels, and the rest could
be approximated from these representative points by much simpler expressions. One
way of obtaining this is the tessellation of the original surfaces to polygon meshes
and using the vertices of the polygons as representative points. These techniques
are based on linear (or in the extreme case, constant) interpolation requiring a value
of the function to be approximated at the representative points, which leads to
the incremental concept. These methods are particularly efficient if the geometric
properties can also be determined in a similar way, connecting incremental shading
to the incremental visibility calculations of polygon mesh models.

In this paper only triangle mesh models are considered, thus the geometry
should be approximated by a triangle mesh before the algorithms can be used. It is
assumed that the geometry has been transformed to the screen co-ordinate system
suitable for visibility calculations and projection. In the screen co-ordinate system

HARDWARE IMPLEMENTATION 287

the X,Y coordinates of a point are equal to the corresponding coordinates of that
pixel in which this point can be seen, and theZ coordinate increases with the distance
from the viewer, thus it is the basis of visibility calculations (Fig.4). Note, on the
other hand, that the vectors used by the rendering equation are not transformed,
because the viewing transformation is not angle preserving thus it may distort the
angles between them.

V

L
N

World coordinate system

y

x

z

Screen

X

Y

Z

Screen coordinate system

 Eye at
infinity

.

Camera window

Eye at finite
 distance

Viewing transformation

Single pixel
V

L
N

Lightsource

Fig. 4. Transformation to the screen coordinate system

As mentioned, interpolation can be used to speed up the rendering of the
triangle mesh, where the expensive computations take place just at the vertices and
the data of the internal points are interpolated. A simple interpolation scheme would
compute the color and linearly interpolate it inside the triangle (GOURAUD shading
[4]). However, specular reflections may introduce strong non-linearity, thus linear
interpolation can introduce severe artifacts (left ofFig.5).

The artifacts of Gouraud shading can be eliminated by a non-linear interpo-
lation called PHONG shading [8] (right of Fig. 5). In Phong shading, vectors used
by the BRDFs and the rendering equation are interpolated from the real vectors at
the vertices of the approximating polygon; the interpolated vectors are normalized
and the rendering equation is evaluated for each pixel. Originally, the interpolating
function is linear. For example, the normal vector of a pixel(X,Y) is

�N(X,Y) = a1(X,Y) · �N1 + a2(X,Y) · �N2 + a3(X,Y) · �N3, (9)

whereai(X,Y) = aix X + aiyY + ai0 (i = 1,2,3) is a linear weighting function
and �Ni is the normal vector at vertexi . The interpolation criterion requires that
ai (X,Y) = 1 at vertexi and 0 in the other two vertices. From this criterion, the
parameters(aix , aiy , ai0) of each weighting function can be determined.

It is usually simpler to replace the two-variate interpolation scheme by two
one-variate schemes, one running on the edges of the triangle and the other running
inside horizontal spans called scan-lines (Fig.6).

288 A. A. MOHAMED et al.

Fig. 5. Comparison of linear interpolation i.e. Gouraud shading (left) and non-linear inter-
polation by Phong shading (right).

N1

2

3

N

N

Nstart
(Y)

N(X)

X Xstart end

Nend(Y)

Fig. 6. Decomposition of the two-variate interpolation inside the triangle to one-variate
interpolations

HARDWARE IMPLEMENTATION 289

Thus it is enough to consider a one-variate interpolation either on the edge
of the triangle or inside the scan-line. Let us introduce a generic interpolation
parametert , which can be obtained from the pixel coordinates. If the interpolation
in a scan-line is considered, then

t = X − Xstart

Xend − Xstart
,

wheret is a running variable along the pixels in each scan-line,t = 0 at the start of
the scan-line andt = 1 at the end of it.

Phong shading implies that at every pixel the vectors being involved in the
BRDF are interpolated, normalized and their dot product is computed, then sub-
stituted into the simplified rendering equation. To be general, let us consider the
interpolation of two vectors�u and�v that can be any from the light vector�L, viewing
vector �V , normal vector�N , etc.

The generic formulae of the computation of the cosine of the angle between
�u(t) and�v(t) are then:

�u(t) = (1 − t)�ustart + t �uend ,

�u0 = �u(t)
|�u(t)| ,

�v(t) = (1 − t)�vstart + t �vend ,

�v0 = �v(t)
|�v(t)| ,

cosθ = �u0 · �v0. (10)

Note that in these operations the interpolation is always followed by a normalization,
since dot products provide the cosine angle only if the vectors are unit vectors. The
normalization, on the other hand, involves 3 multiplications, 2 additions, a square
root and 3 divisions, which is rather expensive to compute.

Thus in this paper we propose a new interpolation scheme that can eliminate
the expensive normalization operations and provide the cosine angle by a simple
formula, which can even be implemented in hardware. The new interpolation works
on the surface of unit spheres, that is why we call it spherical interpolation.

3.1. Spherical Interpolation of a Single Vector

Suppose that we intend to interpolate between two unit vectors�u1 and�u2 in a way
that the interpolant�u(t) is moving uniformly between the two vectors and its length
is always one. An appropriate interpolation method must generate the great arc
between�u1 and �u2, and as it can easily be shown, this great arc has the following
form:

�u(t) = sin(1 − t)γ

sinγ
· �u1 + sintγ

sinγ
· �u2, (11)

290 A. A. MOHAMED et al.

where cosγ = �u1 · �u2 (Fig. 7).

γ

sphere
u

u

1

2

Fig. 7. Interpolation of vectors on a unit sphere

In order to demonstrate that this really results in a uniform interpolation, the
following equations must be proven for�u(t):

|�u(t)| = 1, �u1 · �u(t) = costγ, �u2 · �u(t) = cos(1 − t)γ . (12)

That is, the interpolated vector is really on the surface of the sphere, and the angle
of rotation is a linear function of parametert .

Let us first prove the second assertion (the third can be proven similarly):

�u1 · �u(t) = sin(1 − t)γ

sinγ
+ sin tγ

sinγ
· cosγ

= sinγ · costγ

sinγ
− sintγ · cosγ

sinγ
+ sin tγ

sinγ
· cosγ = costγ. (13)

Concerning the first assertion, i.e. the norm of the interpolated vector, we can use
the definition of the norm and the previous results, thus we obtain:

|�u(t)|2 = �u(t) · �u(t) =
(

sin(1 − t)γ

sinγ
· �u1 + sintγ

sinγ
· �u2

)
· �u(t)

= sin(1 − t)γ

sinγ
· costγ + sin tγ

sinγ
· cos(1 − t)γ = sin

(
(1 − t)γ + tγ

)
sinγ

= 1. (14)

3.2. Spherical Interpolation of a Pair of Vectors

Having discussed how vectors can be interpolated without modifying their length,
we can start examining how the angle between two interpolated vectors can be

HARDWARE IMPLEMENTATION 291

determined. Let us assume that�u(t) is interpolated from�u1 to �u2 while �v(t) is
interpolated from�v1 to �v2, and we are interested in cosθ(t) = �u(t) · �v(t) (left of
Fig. 8).

One obvious possibility is to use the previous results separately for�u(t) and
�v(t) and to compute the dot product for eacht . However, we can realize that a
similar interpolation can be obtained keeping one vector – say�v1 – fixed and the
other is rotated by the composition of its own transformation and the inverse of the
transformation of the other vector (right ofFig.8). It means that while�v′(t) = �v1
is fixed,�u′(t) is interpolated between�u1 and�u′

2 which is obtained by rotating�u2 by
the inverse of the rotation from�v1 to �v2.

θ(t)v
1

u2

u’
2

u’(t)
u1

θ(t)
v

v(t)

v

1

2

u2

u(t)

u1

=v’(t)

Fig. 8. Interpolation of two vectors

The new end point�u′
2 can, for instance, be expressed by quaternion multipli-

cations [10]. The unit quaternion that rotates�v1 to �v2 is

q =
[
cos

v

2
, sin

v

2
· �v1 × �v2

|�v1 × �v2|
]

=
[
cos

v

2
, sin

v

2
· �v1 × �v2

sinv

]
,

wherev is the angle between�v1 and�v2. Applying the inverse of this quaternion to
�u2 we get:

[0, �u′
2] = q−1 · [0, �u2] · q

=
[
0, �u2 − (�v1 × �v2)× �u2 + (�v1 × �v2)× ((�v1 × �v2)× �u2)

1 + cosv

]
.

Vector �u′(t) is obtained by spherical interpolation from�u1 to �u′
2, thus the angle

between this vector and the fixed�v1 is:

cosθ(t) = �u′(t) · �v1

= sin(1 − t)γ

sinγ
· (�u1 · �v1)+ sin tγ

sinγ
· (�u′

2 · �v1)

= sin(1 − t)γ

sinγ
· cosθ1 + sintγ

sinγ
· cosθ2

= costγ · cosθ1 + sin tγ · cosθ1 cosγ − cosθ2
sinγ

, (15)

292 A. A. MOHAMED et al.

where cosγ = �u1 · �u′
2. Note that this interpolation does not give exactly the same

values as interpolating the two vectors separately. Since the interpolation is only
used for approximating the vectors, this is as acceptable as the separate spherical
interpolation.

Let us express cosθ1 and (cosθ1 cosγ − cosθ2)/sinγ by A and α in the
following way:

A · cosα = cosθ1, A · sinα = cosθ2 − cosθ1 cosγ

sinγ
. (16)

Substituting these intoEq. (15), we obtain:

cosθ(t) = A · (costγ · cosα + sin tγ · sinα) = A · cos(tγ − α). (17)

Let us realize that the complex sequence of operations including the spherical inter-
polations of two vectors and the computation of their dot product have been traced
back to the calculation of a single cosine value. Based on this simplification, even
the hardware realization of Phong shading becomes possible, as detailed in the next
section for the Blinn illumination model. Similar hardware architectures can be
developed for other BRDFs as well.

4. Interpolation and Blinn BRDF Calculation by Hardware

SubstitutingEq. (17) into the reflected radiance formula (Eq. (2)), and assuming
Blinn type BRDF and a single light source, we get:

I out(�x, �V) = I in(�x, �L) · ks · cosn δ = I in(�x, �L) · ks · (�N · �H)n
= I in(�x, �L) · ks · An · cosn(tγ − α). (18)

FactorI in(�x, �L) · ks · An = C is constant in the scan-line, thus only cosn(tγ − α)
should be computed pixel by pixel and the result should be multiplied by this
constantC.

The computation of cosn(tγ − α) consists of three elementary operations:
the calculation oft (X) · γ − α from the actual pixel coordinateX , the application
of the cosine function, and finally exponentiation withn. These operations are too
complex to allow direct hardware implementation, thus further simplifications are
needed.

The t (X) · γ − α term is a linear function, thus it is a primary candidate for
the application of the incremental concept [9]. The cosine and the exponentiation
are a little bit more difficult. In fact, we could use two tables of tabulated function
values for this purpose. This would work well for the cosine function since it is
relatively flat, but the accurate representation of the exponentiation would require
a large table, which should be reinitialised each time whenn changes (note that

HARDWARE IMPLEMENTATION 293

0.2

0.4

0.6

0.8

1

–1.4 –1.2 –1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1 1.2 1.4
x

0.2

0.4

0.6

0.8

1

–1.4 –1.2 –1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1 1.2 1.4
x

Fig. 9. The bell shapes of cosn x n = 5,10,20,50,500 (left) and of cos2 ax (right) for
a = 1.45,1.98,2.76

the practical values ofn can range from 2 to a few hundreds). Thus a different
approximation strategy is used.

Looking at the bell shapes of the cosn x functions for differentn values (Fig.9),
we can realize that these functions are approximately similar and can be transformed
to each other by properly scaling the abscissa. For example, we can use the hori-
zontally scaled versions of cos2 x , i.e. cos2 ax to approximate cosn x for arbitrary
n. The reason of using the square of the cosine function is thatn is greater than
2 in practical cases and the square cosine already has the bell shape caused by the
inflection point. Thus our formal approximation is

cosn x ≈ cos2 ax if − π
2a ≤ x ≤ π

2a , (19)

and zero otherwise. Parametera should be found to maximize the accuracy for all
possiblex values. We can, for example, require the weighted integrals of the two
functions to be equal in order to obtain the parametera. Note that the approximation
is exact forx = 0 regardless of the parametera, that is the zero points of all cosines
are fixed. This consideration makes it worth emphasizing the accuracy of larger
x values whena is determined. Let us use the sinx weighting function, thus the
criterion for determininga is∫ π

2

0
cosn x · sinx dx =

∫ π
2a

0
cos2 ax · sinx dx . (20)

Expressing these integrals in closed form, we get:

1

n + 1
= 2a2 · (1 − cos π2a)− 1

4a2 − 1
.

This equation needs to be solved once for a set of values and the results can be
stored in a table. A few representative results are shown inTable1. The quality of
the approximation is quite good as demonstrated byFig.10.

294 A. A. MOHAMED et al.

0.2

0.4

0.6

0.8

1

–1 –0.5 0.5 1
x

0.2

0.4

0.6

0.8

1

–0.6 –0.4 –0.2 0.2 0.4 0.6
x

n = 5, a = 1.4502 n = 10,a = 1.9745

0.2

0.4

0.6

0.8

1

–0.4 –0.2 0.2 0.4
x

0.2

0.4

0.6

0.8

1

–0.3 –0.2 –0.1 0.1 0.2 0.3
x

n = 20,a = 2.7582 n = 50,a = 4.3143

0.2

0.4

0.6

0.8

1

–0.2 –0.1 0.1 0.2
x

0.2

0.4

0.6

0.8

1

–0.1 –0.05 0.05 0.1
x

n = 100,a = 6.0791 n = 500,a = 13.5535

Fig. 10. Approximation of cosn x by cos2 ax

HARDWARE IMPLEMENTATION 295

Table 1. Correspondence betweenn anda
n 2 5 10 20 50 100 500
a 1.0000 1.4502 1.9845 2.7582 4.3143 6.0791 13.5535

0.2

0.4

0.6

0.8

1

–1.4 –1.2 –1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1 1.2 1.4
x

0.2

0.4

0.6

0.8

1

–1.4 –1.2 –1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1 1.2 1.4
x

4 bits 6 bits

Fig. 11. Quantization errors of the cos2 x function for 4 and 6 address/data bits

Let us return to the computation of the reflected radiance. TheC ·cosn(t (X) ·
γ − α) has been simplified to the evaluation of

C · cos2(a(t (X) · γ − α)) = C · cos2 ξ(X),

where

ξ(X) = a · γ · X − Xstart

Xend − Xstart
− a · α = s · X + b.

Sinceξ(X) is a linear function, it can conveniently be generated by the in-
cremental concept. Its basic idea is that instead of computingξ from X , it can be
computed from the previous value, i.e. fromξ(X − 1). Recall that a complete
scan-line is filled, that is when pixelX is shaded, the results of pixelX − 1 are
already available. In our case:

ξ(X) = ξ(X − 1)+ s,

thus the new value ofξ requires just a single addition.
Having theξ value generated, it should be input to the cos2 function that can

be implemented as a read only memory. The number of address and data bits of
this memory, i.e. the number and the length of the words are determined from the
requirement of accurate representation.Fig. 11 shows the original cos2 function
together with its table representations for different address and data bit numbers.
Note that using six bit address and data, which means that our memory stores
26 × 6 = 384 bits, provides sufficient accuracy.

296 A. A. MOHAMED et al.

The complete hardware is shown inFig. 12. The hardware has two parts, one
for the diffuse and one for the specular components, and each part has two stages.
In the specular part, the first stage is a linear interpolator, which provides the cos2

table with angleξ , according toξ(x + 1) = ξ(x) + b. Since it has a register at
its output, this stage can operate in parallel with the multiplier unit. Assuming
white light sources and wavelength independent specular factorks , a single linear
interpolator can be used for all colour channels. However, the diffuse part, which
is responsible for colouring, requires 3 channels. The cosine, and square cosine
functions can be implemented by ROMs. At the initial phase, for each scan line,
the constant parameters must be loaded into hardware. Then, for each step, the
hardware will generateR,G, B values.

The VHDL specification is straightforward for the multiplicators and for the
ROM. Here, as an example, the behavioural model of linear interpolator is given:
USE work.phong_pack.all;

ENTITY line_interpolator IS
GENERIC (t_mpx : time := 5 ns; t_add :
time := 10 ns; t_reg : time := 5 ns);
PORT (sxsb,s : IN bit_v_12; ra :
OUT bit_v_12; init, step : IN bit;);

END line_interpolator;

ARCHITECTURE behaviour OF line_interpolator IS

SIGNAL add_out, mpx_out, reg_out: bit_v_12;

BEGIN

add_out <= s + reg_out AFTER t_add;

reg_out <= mpx_out after t_reg

WHEN step’EVENT AND step = ’1’;

ra <= reg_out(11 DOWNTO 6);

mux_proc: PROCESS(sxsb,add_out,init)

BEGIN

IF init = ’1’ THEN mpx_out <= sxsb AFTER t_mpx ;

ELSE mpx_out <= add_out AFTER t_mpx;

END IF;

END PROCESS;

END behaviour;

5. Interpolation on the Triangle

So far we have discussed the interpolation in a scan-line. A complete triangle is
rendered by generating those scan-lines which cover this triangle one after the other.
For each scan-line, the start and end points should be identified and the interpolation
parameters need to be initialised, then the scan-line interpolation can be initiated.

Let us consider a horizontal sided triangle. If the triangle were not horizontal

HARDWARE IMPLEMENTATION 297

C cos ROM
2

REGISTER

MPX

ssx +bstart

cos ROM

REGISTER

MPX

s’’ ’

C’R C’G C’B

STEP

INIT

Σ Σ

Σ

R G B

* * * *

Σ Σ

s x +b
start

linear
interpolator

linear
interpolator

Fig. 12. Phong shading hardware

sided, then it could be divided into two horizontal sided parts. In this section we
will consider only the lower horizontal sided triangle, the upper part can be handled
similarly. Image space triangle and horizontal sided triangle are shown inFig.13.

In order to initialise the scan-line interpolation, the vectors used by the shading
formula are needed for the start and end points of the scan-line. These vectors can
be provided by spherical interpolations running simultaneously at the left and right
edges of the triangle.

6. Simulation Results

The proposed algorithm has been implemented in C++ and tested as a software.
First the difference between the simultaneous vector interpolation and the method
of keeping one vector fixed while rotating the other vector by the composition of the
two rotations was investigated, and we have concluded that the results are visually
indistinguishable. Then the quality of the cosn x = cos2 ax approximation has been
studied.

Note that the halos in the left image ofFig.14 obtained with the cosn function
are slightly bigger but the centres are smaller. This is also obvious when looking at

298 A. A. MOHAMED et al.

Image space
 triangle

x

y

 Single
 scan-line

Single
 pixel

X1,Y1

X2,Y2

X3,Y3

 Horizontal
 sided triangle
 (lower part)

y

xX1,Y1

X2,Y2

 Horizontal
 sided triangle
 (upper part)

Fig. 13. Image space triangle and horizontal sided triangle

Fig. 14. Evaluation of the visual accuracy cosn x = cos2 ax approximation. Rendering the
left and right images, we used the cosn x and cos2 ax functions, respectively. The
shine (n) parameters of the spheres are 5, 10 and 20.

the bell shapes ofFig. 10 since the cos2 ax is zero if x = π/2a while cosn x only
converges to zero, while having the same integral.

Finally, the necessary precision, i.e. the number of bits, was determined.
Since the cos2 function is implemented as a memory, it is the most sensitive to the

HARDWARE IMPLEMENTATION 299

word length.Fig. 15 shows the results assuming 4 and 6 bit precision, respectively,
where a rather coarse surface tessellation was used to emphasize the possible in-
terpolation errors. Note that with 4 bits the quantization errors are visible in the
form of concentric halo circles around the highlight spots. However, these circles
disappear when 6 bit precision is used. This also conforms with the quantization
error functions ofFig. 11.

Fig. 15. Rendering of coarsely tessellated spheres with the proposed method with 4 bit
precision (left) and 6 bit precision (right)

Finally, the hardware was specified in VHDL and simulated in ModelTech
environment. The delay times are according to XILINX XCV300-6 FPGA. The
timing diagram of the operation is shown inFig. 17. In this figure we can follow
the overlapped operation of the two stages while the cycle time of the ‘step’ signal
is 60 nanoseconds.

7. Conclusions

This paper proposed a different interpolation strategy for the cosine angles in Phong
shading. This strategy simplifies the linear interpolation, normalization and dot
product of a pair of 3D vectors to an addition, a cosine evaluation and a multiplica-
tion. Furthermore, when the reflected radiance is computed for specular surfaces,
the exponentiation of this cosine is replaced by the horizontal scaling of the square
cosine function. This replacement can significantly reduce the size of the hardware
lookup tables and a single small table (of a few hundred bits) can be used for more
or less shiny surfaces. The algorithm has also been transformed to a hardware de-
sign that has been simulated in VHDL. Considering the components that are easily

300 A. A. MOHAMED et al.

Fig. 16. The mesh of a chicken (left) and its image rendered by classical Phong shading
(middle) and by the proposed method (right)

Fig. 17. Timing diagram of the hardware

available on the market, the realization of the proposed hardware could generate a
shaded pixel in every 60 nanoseconds. Even if the screen has about 1000× 1000
resolution, the complete image can be redrawn 16 times per second which provides
the illusion of continuous motion.

HARDWARE IMPLEMENTATION 301

References

[1] BLINN , J. F., Models of Light Reflections for Computer Synthetized Pictures, InComputer
Graphics (SIGGRAPH ’77 Proceedings), (1977), pp. 192–198.

[2] CLAUSSEN, U., On Reducing the Phong Shading Method,Computer & Graphics, (1990),
pp. 73–81.

[3] COOK, R. – TORRANCE, K., A Reflectance Model for Computer Graphics,Computer Graph-
ics, 15 (3), (1981).

[4] GOURAUD, H., Computer Display of Curved Surfaces,ACM Transactions on Computers, C-20
(6) (1971), pp. 623–629.

[5] K AJIYA , J. T., The Rendering Equation. InComputer Graphics (SIGGRAPH ’86 Proceedings),
(1986), pp. 143–150.

[6] K UIJK, A. M. – BLAKE , E. H., Faster Phong Shading Via Angular Interpolation,Computer
Graphics Forum, (1989), pp. 315–324.

[7] M INNAERT, M., The Reciprocity Principle in Lunar Photometry,Astrophysical Journal, 93
(1941), pp. 403–410.

[8] PHONG, B. T., Illumination for Computer Generated Images,Communications of the ACM, 18
(1975), pp. 311–317.

[9] SZIRMAY-KALOS, L. – MÁRTON, G., On Hardware Implementation of Scan-Conversion Al-
gorithms. In8th Symp. on Microcomputer Appl., Budapest, Hungary, 1994.

[10] SZIRMAY-KALOS, L. (editor),Theory of Three Dimensional Computer Graphics, Akadémiai
Kiadó, Budapest, 1995. http://www.iit.bme.hu/˜szirmay.

	Introduction
	Simple Optical Material Models
	Phong Shading
	Spherical Interpolation of a Single Vector
	Spherical Interpolation of a Pair of Vectors

	Interpolation and Blinn BRDF Calculation by Hardware
	Interpolation on the Triangle
	Simulation Results
	Conclusions

