
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 43, NO. 1, PP. 53–64(1999)

ANALYSIS OF ROUNDOFF NOISE

Rezs̋o DUNAY and István KOLLÁR

Dept. High Voltage Engineering and Equipment
Technical University of Budapest

H–1521 Budapest, Hungary

Received: June 9, 1999

Abstract

All arithmetic operations can be decomposed into an infinitely accurate calculation and a subsequent
rounding quantization. The kind of rounding in use determines the properties of the whole arithmetic
system. The article discusses tools for the analysis of the effects of rounding errors during arithmetic
calculations. The engineering approach is introduced and the applicability of interval arithmetic is
also examined for low-precision systems.

Keywords: arithmetic, rounding, quantization, finite bit number, DSP.

1. Introduction

Interval arithmetic is a general tool to evaluate mathematical expressions in order
to reach a result with a guaranteed accuracy [6]. This method produces a verified
interval, surely containing the exact result. These limits correspond to the ‘worst
case’ estimates in engineering terms.

In cost-effective systems, or systems with low power consumption, usually
low bit-number, fixed-point arithmetic is used, even today. The design of software
for these systems requires special considerations from the algorithmic point of view
(e.g. the optimization of low bit number coefficients), and their validation generally
cannot be done with a 100% reliability. In these practical applications the ‘worst
case’ design is simply too expensive (high speed, complexity or cost), in most cases
rather statistical methods based on ‘confidence intervals’ are used. These methods
do not guarantee limits to the results, but provide reasonably high-level confidence
intervals. In this paper we try to find means for the affordable analysis of such
systems.

The paper begins with collecting and comparing some terms, to coin the
notation. The next part summarizes some special requirements of practical systems
and the main ideas of the engineering approach are described. Examples are given to
demonstrate the limitations of the 100% reliabilitydesign and alsoof the engineering
approach. The possibility of a common simulation environment for numerical algo-
rithm simulation and analysis is examined in the next two sections, one of them
is dedicated to the problems of the MATLAB based implementation [11]. Finally,
some conclusions are drawn.

54 R. DUNAY and I. KOLLÁR

2. Notation

The problem of low bit-number systems stems from the fact that information (i.e.
accuracy) is corrupted in every step. This is mainly due to the limited resolution
of the destination storage, as in most cases the result has a well-defined and quite
low number of bits to represent the resulting value. In engineering practice these
quantities, which may have only a finite number of possible values, are called
quantized quantities. The unit which produces a quantized value from its continuous
input is usually referred to as aquantizer. Its operation is to round the input to the
required accuracy, using the ‘rules of rounding’ (like number of bits, direction,
etc.). Most of today’s computers produce the result of all arithmetic operations
by rounding the exact result to the destination accuracy, which means that all such
arithmetic operations can be decomposed into an infinitely accurate calculation and
a subsequent rounding operation. It is straightforward to see that all fixed-point
operations can be described by using a simple equidistant quantizer.

There are some new results that analyze floating-point number systems from
this aspect [2]. In fact all correctly defined floating-point operations can also be
described by a precise operation and a subsequent non-equidistant quantizer (the
IEEE Floating-point Standard requires the result of floating point operations to
be calculated by rounding the exact result of the operation to the nearest value
representable in the accuracy of the actual arithmetic [4]). From the above it can be
seen that quantization and finite precision arithmetic lead to the very same problems,
and they can be handled in a common framework.

3. Practical Considerations

There are many attributes of engineering work, that originate in limited hard-
ware/software resources or in the nature of the problem to be solved. Two of
these aspects will be mentioned here, which – especially together – have a great
influence on the arithmetical side of realizations.

• Feedback plays a central role in many fields of engineering. It is also an
inherent property of all iterative processes: they re-use the result of the pre-
vious iteration to calculate the new one. This is one of the most common
approaches in engineering science, which can help to speed up systems, to
decrease error levels, etc. In practice there are more feedback systems than
purely feedforward ones. This is why feedback systems and their analysis
are so important for engineers. The simulated examples in the next section
all incorporate feedback.

• Usually very large number of iterations are necessary. Many digital signal
processing systems – like process control units – work 24 hours a day, exe-
cuting many thousands of steps in each second, processing the results of the

ANALYSIS OF ROUNDOFF NOISE 55

previous steps together with the new incoming data. The systems are usually
implemented on digital hardware with arithmetic using no more than 16 bits.

The analysis and validation of the above systems needs special considerations.
The examples in the next section demonstrate that at these – otherwise practical
– low bit numbers the direct application of interval arithmetic leads to unusable
results. To be able to produce useful results the meaning of reliability should be
reconsidered.

In practice a reliability of 99% is in most cases satisfactory. System design
based on confidence intervals leads to more economical solutions, and there are
even cases, when the 100% verified solution is simply not possible.

Confidence calculations are based on modelling the quantization – or roundoff
– errors with independent additive noise. The ‘amplitude’ of this noise is of course
connected to the width of the intervals in an interval arithmetic based solution, but
the supposed independence and the additive nature of the added noise usually leads
to more realistic results. Quantization theory provides analytical ways to handle
the effects of these independent noise sources, e.g. the effect of an Analog-Digital
converter on the input of a system can be correctly analyzed.

Stable systems have an inherent property which causes injected errors to decay
as time, i.e. iterations go on. As quantization errors are modelled to be additive,
in case of a stable system their effect should decrease as time passes [10]. This
‘forgetting’ phenomenon is due to the above special property of all stable systems,
and is not taken into account during the direct application of interval arithmetics.

Practical systems are usually too complicated to perform an analytical study,
that is why simulation is used most of the time to calculate confidence intervals
based on statistical analysis.

Of course the engineering approach has its limitations, too. The main problem
is, that the noise model is not always valid and the independence of the separate
noise sources cannot always be proven (like in the last example of the next section).
There are techniques available (dithering) that aim at assuring the independence of
noise components [8], [9].

4. Examples

As a proof to the previous sections, some simulated examples follow. All the
examples are realizations of pre-designed Infinite Impulse Response (IIR) digital
filters, implemented in a low bit-number arithmetic (12-20 bit). The simulations
were carried out using our own quantization functions, interval calculations are also
based on correctly implemented quantizers. Some of the demonstrated systems are
artificially designed to express a certain symptom, but a digital filter implemented
in an IEEE standard is also shown.

To avoid scaling problems, the simulations used floating-point arithmetic,
having a 12-20 bit long mantissa, and a 4-bit exponent. The number format used –
except for the bit numbers – corresponds to the IEEE standard (hidden leading bit,

56 R. DUNAY and I. KOLLÁR

sign-magnitude coding, biased exponent). The one using a 12-bit long mantissa
occupies 16 bits, so we could also call it a ‘half-precision IEEE floating-point
number’.

In each example the following simulations were run:

• IEEE rounding mode: A simulation was carried out using the above special
arithmetic, applying rounding, corresponding to the IEEE standard (round to
even) [4]. The input signal and the coefficients were rounded to the lower
precision using the IEEE round to even rule. The result is a dotted curve in
all figures.

• Interval arithmetic: The quantization functions were used to calculate inter-
vals. The input signal and the coefficients – like in the previous case – were
rounded to the lower precision using the IEEE round to even rule. Intervals
are shown as dashed lines (both the upper and the lower bounds).

• IEEE double: As a reference, the systems were also simulated using IEEE
double precision arithmetic. The 53-bits of the mantissa in these examples
produce an accurate enough result. In this case the input and the coefficients
were not rounded. A continuous line is used on the graphs.

In all simulations the state variables of the systems were initialised to zero (y(k) =
x(k) = 0, if k < 0).

Example 1

The first example has a really very simple structure. The ‘ideal’ system is charac-
terized by the following difference equation:

y(k) = −x(k − 1) + 0.999y(k − 1), (1)

wherex is the input andy is the output time sequence respectively, andk is the
time index.

A slow sine-wave of the formx(k) = sin(k/500) was used as excitation, and
the arithmetic used a 12-bit mantissa.Fig. 1 shows the simulation results.

The system has a single pole close to the unit circle (+0.999, it is rounded
to +0.9990234375 in the 12-bit arithmetic), so from the stability point of view it
is close to critical. The intervals plotted with a dashed line show, that the interval
gets wide quite fast, as simulation starts, but does not increase without limits. The
system in (1) has an absolute feedback greater than 0.999, but definitely smaller
than 1, which means that the width of the output intervals may be decreased in every
iteration. As the next example will demonstrate this is a very lucky and rare case,
because in most systems there are more than one feedback paths.

It is worth to mention here, that the IEEE rounding mode produces quite good
results even with a 12-bit mantissa.

ANALYSIS OF ROUNDOFF NOISE 57

0 500 1000 1500 2000 2500
−200

−100

0

100

200

300

400

Iteration number

O
ut

pu
t

Fig. 1. Simulation results of system (1)

Example 2

The following example is a little bit more complicated than the previous one. Its
difference equation is the following:

y(k) = −x(k − 2) + 1.3y(k − 1) − 0.42y(k − 2). (2)

The notations are the same as in the previous example, the excitation wasx(k) =
sin(k/500) also, but the arithmetic used a 20-bit long mantissa. The result can be
seen inFig. 2.

This system has two poles (+0.6, +0.7), so from the stability point of view it is
quite pleasant. As can be seen in the graph, the width of the interval exponentially
grows, and it is already unusable after 40 iteration steps. In the real system the sign
of the feedback coefficients is different, which makes the system stable and loosely
speaking the output error is decreased in every step (as 1.3 − 0.42 = 0.88 < 1).
In the interval arithmetic realization the output error is represented by the width
of the interval. The problem comes from the fact, that in this ‘worst case’ method
the subtract (−) operation – similarly to the add operation – adds the width of the
intervals of the operands. Loosely speaking the width of the output intervals – the
output error – is increased at least by a factor of 1.3+0.42 = 1.72 in every iteration
step. It may be possible that – at least for simple linear systems – a difference
equation, similar to the one describing the system can be designed that estimates
the width of output intervals. The coefficients of this difference equation depend
on the coefficients of the original system and the parameters of the used arithmetics
(in case of fixed-point arithmetic it is straightforward, in the case of floating-point
arithmetic see [2]) and the stability check of this equation would contain information
on the usability of interval arithmetic.

58 R. DUNAY and I. KOLLÁR

30 35 40 45
−1

−0.5

0

0.5

1

Iteration number

O
ut

pu
t

Fig. 2. Simulation results of system (2), with 20-bit long mantissa

Fig. 3 shows the result of the simulation of system (2) ona 12-bit longmantissa
arithmetic. As it can be seen, the error of the 12-bit IEEE rounded arithmetic is still
not significant after 2500 steps.

Fig. 4 shows the simulation result of system (2) using IEEE double precision
interval arithmetic. Though the solid line calculated by the simple IEEE arithmetic
was checked to have very small error using analytical methods, the interval calcu-
lation leads to exponentially growing intervals (dashed line). This experiment was
calculated by the functions defined in [7].

Example 3

Fig. 5 shows a simulation example of an industry standard 1010 Hz Band rejection
filter, declared in [1], which has 3 complex pole pairs and 3 complex zero pairs.Fig.
5 shows the impulse response simulation of this system. Though the simulation
used 20 mantissa bits, the intervals get unacceptable within 10 iteration steps.

Example 4

Our last example inFig. 6 shows the effect of correlated rounding errors. The
figure is actually a magnified part ofFig. 3 , the dots correspond to the simulation
steps of the 12-bit round-to-even arithmetic. The dots situated on horizontal lines
mean constant output of the system. In these cases rounding is likely to happen
in the same direction, which means that the quantization errors of the subsequent

ANALYSIS OF ROUNDOFF NOISE 59

0 500 1000 1500 2000 2500
−5

0

5

Iteration number

O
ut

pu
t

Fig. 3. Simulation results of system (2), with 12-bit mantissa

90 92 94 96 98 100 102 104 106
−500

0

500

O
ut

pu
t

Iteration number

Fig. 4. Simulation results of system (2), with 53-bit mantissa

60 R. DUNAY and I. KOLLÁR

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

Iteration number

O
ut

pu
t

Fig. 5. Simulation of the 1010 Hz Band rejection filter; impulse response

steps are not independent. These cases may belong to fixed-points of the non-linear
system, corresponding to the actual excitation.

5. Suggested Simulation Environment

Our goal is to create an environment optimal for testing and analyzing roundoff
effects. As explained before, simulation is extremely important in engineering
practice. The simulation environment should provide reliable means complying
with the following requirements:

• Reproducibility: all arithmetic operations should produce a well-defined,
reproducible result. It is necessary to be able to certify the experiments [5].

• Flexibility: The user should be able to control all aspects of all the operations.
The tool should provide functionality to handle all kinds of different systems,
including, e.g. the number of bits, rounding modes, etc. The most important
quantizer properties implemented in our toolbox are listed inTable 1

• Easy accessibility: The user should be able to easily access the functional-
ity, express the ideas as close to the mathematical/engineering notation as
possible.

The best solution would be to have a single environment capable of simulating
the very same program using the native arithmetic of the host computer (this is
fast), using interval arithmetic (this provides the verified result) and using a user
defined arithmetic (this is needed by the engineers). Running the program with a
different precision interval arithmetic is a further option. Fortunately, these options

ANALYSIS OF ROUNDOFF NOISE 61

2280 2300 2320 2340 2360 2380 2400 2420 2440
−4.17

−4.16

−4.15

−4.14

−4.13

−4.12

−4.11

−4.1

Iteration number

O
ut

pu
t

Fig. 6. Correlation of rounding errors

differ only in the underlying arithmetic (type of the data and the operations), but
semantically (at the level of the user’s program) they can be the same, and can

Table 1. The most important quantizer properties

Property Description Values
Operation Operation mode quantize, idle, noise model
Type Type of quantizer fixed, floating-point
Precision Number of ‘mantissa’ bits 1..53
FractBits Number of fraction bits 1..53
Coding Coding of the value one’s, two’s compl., sign-magn.
RoundDir Direction of rounding trunc, round, floor, ceil, toinf
TreatHalf Handling of .5 LSB values floor, ceil, fix, toinf, toeven, toodd, rand
Overflow Type of overflow clip, modular, triang, inf, none
Emin, Emax Exponent range -1023..1022
Underflow Type of underflow gradual, flush to zero
ExpCoding Coding of the exponent one’s, two’s compl., sign-magn., biased
ExpBias Bias of the exponent
LeadingBit Leading bit present? Hidden, present
UfCoding Coding of underflow exponent, leading zero
Data Actual value
PrecData Accurate value
LSB: least significant bit

62 R. DUNAY and I. KOLLÁR

effectively be implemented in any object oriented programming language. This
means that once developed, the same user program could be run in a verified way
using high precision interval arithmetics (it can even be higher precision, than the
native precision), but a low precision simulation – corresponding to running on a
certain Digital Signal Processor – is also possible.

In the following some implementational issues are examined.

There are many software libraries that support interval arithmetic calculations
(e.g. [6], [7]). The libraries we know about all support interval arithmetic calcula-
tions working only at the native accuracy of the host computer (e.g. IEEE double).
Our aim is to analyze lower precision systems, for which we need a tool that is able
to execute the calculations working with different precision. It is not difficult to see
that lower precision interval arithmetic cannot be properly implemented on top of
the available interval arithmetic toolboxes. Complex functions – e.g. SVD – can
not be implemented, because lower precision should be used internally by the func-
tions which is usually impossible to achieve. The low level functions, like+ − ∗/
cannot be used, because of a phenomenon called re-quantization. The following
example is here to demonstrate it. In the example the round-to-even rounding rule
is used,quantization operations are emphasized.

1.000 1000 1 (9 bits) 4-bit quantizer 1.001 (rounded to 4 bits)
8 bit quantizer
1.000 1000 (rounded to 8 bits)4-bit re-quantizer 1.000 (rounded to 4 bits)

Other direction

1.000 1000 1 (exact result) 5-bit quantizer 1.000 1 (rounded to 5 bits)
4 bit quantizer
1.001 (rounded to 4 bits) 5-bit re-quantizer 1.001 0 (extended to 4 bits)

It is clear from the example, that the lower resolution quantization should
be executed before the interval arithmetic operation, otherwise the result may be
incorrect.

This is why we need a new function library to calculate interval arithmetic
working at a lower-than-native accuracy. The above is of course not a fault of the
available interval arithmetic toolboxes, but originates in our different goal.

On the other hand, if we had a tool, which is able to simulate arbitrary quan-
tizers, its functionality is enough to calculate interval arithmetic operations, which
means that a general quantization toolbox can effectively be used for all the above
purposes.

ANALYSIS OF ROUNDOFF NOISE 63

6. Implementation in MATLAB [3]

Engineers use MATLAB very frequently, as its numerical abilities are acceptable,
while the description of algorithms is quite easy in its programming language. Its
interactive interface makes it very flexible, but requires an interpreted operation.
The basic data type in MATLAB is the complex matrix, which helps describing
algorithms in a very compact and at the same time easily readable, understandable
way. One of MATLAB’s other strongholds is the very flexible visualization part.
Starting with version 5.0 MATLAB also contains support for Object Oriented Pro-
gramming, which allows the creation of new data types (class) and redefinition of
the underlying operations (operator overloading). From the MATLAB user’s point
of view it is very useful, because it allows efficient programming by supplying
a very algorithm like programming environment (programming time efficiency).
The selection of the needed algorithm is not done by ineffective MATLAB program
code, but by the effectively programmed MATLAB core, gaining speed (runtime
efficiency).

MATLAB seems to be a perfect environment for our purpose. It is possible
to define a new data type for quantized data (quantized data class), instances of
this class can store quantized elements, together with the parameters of the used
quantizer, and the functionality belonging to our new data type can also be defined.

MATLAB itself is a homogeneous system in the sense that only a single
floating-point data type (usually the IEEE double precision) is applied. An interval
arithmetic toolbox in MATLAB naturally uses this built-in data type. Practical sys-
tems, however, frequently use mixed accuracy data (e.g. data types in programming
languages, higher precision accumulator in DSP and common microprocessors), so
our simulation environment should be able to handle different accuracy data types
also. Accuracy of the data itself is a property contained in the quantized variable
itself. As MATLAB is an interpreted language (and we use an object oriented ap-
proach) the type of the result of a mixed precision operation is not defined by the
operation, but by the accuracy of the operands. In our system the accuracy of the
result is determined by the first quantized type input parameter from left to right.

Another important question concerns data conversion. The problem is that
re-quantization should be avoided during data accuracy conversions. In case of
conversion to a higher precision there are two possible approaches:

1. The value should not change.
2. The value should be the exact result of the previous operation, quantized only

by the new quantizer.

In case of conversion to a lower precision there are also two possibilities:

1. Simply quantize the value by the new quantizer (re-quantization).
2. The value should be the exact result of the previous operation, quantized only

by the new quantizer (avoid re-quantization).

The 2nd variant of conversions in both directions needs storing of the exact
value of the previous operation. Ingeneral, storing the exact value is not possible due

64 R. DUNAY and I. KOLLÁR

to limited resources, but for an exact re-quantization the exact value is fortunately not
really needed. Only the necessary number of bits and some extra information about
the remainder is necessary (direction of the roundoff error and its value compared
to .5 ULP).

7. Conclusions

If we want to use the very same environment for the simulation of systems using
interval arithmetic, user definednumber formats and the combination of the previous
two, then a new software environment is needed. MATLAB is a very promising
candidate for this purpose.

Simulation results generated using our quantization toolbox show, that direct
application of low precision interval arithmetic leads to unusable results in most
cases. This is due to the special architecture of many practical engineering sys-
tems. A 100% reliability interval arithmetic based design would be interesting for
engineers, but serious refinements are needed.

References

[1] IEEE Standard Equipment Requirements and Measurement Techniques. ANSI/IEEE Standard
734-1985, New York, NJ, Apr. 1985.

[2] K OLLÁR, I.:‘Statistical Theory of Quantization,’ Doctoral Thesis, Hungarian Academy of Sci-
ences, Budapest, 1996, p. 416.

[3] MATLAB User’s Manual, Version 5.2, The MathWorks, Inc., Natick, MA, 1998.
[4] IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Standard 754-1985, New

York, NJ, Aug. 1985.
[5] K AHAN , W.: ‘The Baleful Effect of Computer Benchmarks upon Applied Mathematics, Physics

and Chemistry”, 1995.
http://http.cs.berkeley.edu/˜wkahan/ieee754status/baleful.ps

[6] HAMMER, I. – HOCKS, M. – KULISCH, U. – RATZ, D. “C++ Toolbox for Verified Comput-
ing”, Springer-Verlag, 1995.

[7] RUMP, S. M.: “From INLAB to MATLAB”, SCAN-98 IMACS/GAMM International Sym-
posium on Scientific Computing, Computer Arithmetic and Validated Numerics, Budapest,
Hungary, 22-25. Sep., 1998, Text submitted to the special issue of Reliable Computing.

[8] DUNAY, R. – KOLLÁR, I. – WIDROW, B.: ‘Dithering for Floating Point Number Repre-
sentation’,Dithering in Measurement: Theory and Applications, 1st International On-Line
Workshop, Prague, Czech Republic, Feb-Mar, 1998.

[9] Dithering in Measurement: Theory and Applications, 1st International On-Line
Workshop, Edited by Holub, J., Smid, R., Prague, Czech Republic, Mar. 1998,
http://measure.feld.cvut.cz/dithering98/

[10] BERTRAM, J. E.: “The Effect of Quantization in Sampled-Feedback Systems”,Trans. AIEE,
77, pt. 2, pp. 177–82, 1958.

[11] DUNAY, R. – KOLLÁR, I.: “MATLAB-Based Analysis of Roundoff Noise” in Csendes, T.
(ed.): Developments in Reliable Computing, Kluwer, Dordrecht, pp. 373-382, 1999.

	Introduction
	Notation
	Practical Considerations
	Examples
	Suggested Simulation Environment
	Implementation in MATLAB MatlabUserM
	Conclusions

