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Abstract

In this paper an inverter is taken as a member of Variable Structure System (VSS). A new Park vector
based variable structure control (VSC) method is proposed.

A modified definition of the Park vector is introduced to handle the effect of zero phase-
sequence component caused by an asymmetrical load. The design of a sliding mode controller consists
of two main steps. Firstly, the design of the sliding surface, secondly, the design of the control which
holds the system trajectory on the sliding surface. A complex sliding surface is proposed. The inverter
is switched in such a way that the system trajectory gets as close to the sliding surface as possible.
This paper focuses on the switching rule. Experimental results of a 100 KVA inverter are presented.

Keywords: sliding mode, UPS, unbalanced load, Park vector.

1. Introduction

The principle of pulsewidth modulation (PWM) plays a very important role in power
electronics [1]. In the field of inverter technology, which produces sinusoidal volt-
age, a great number of ‘optimized PWM’ techniques have been proposed in the
literature. These types of PWM inverters have very good steady-state characteris-
tics, but the voltage regulator response to a sudden change in the load takes a few
cycles, and nonlinear loads may cause high ‘load harmonics’. This is not accept-
able in Uninterruptable Power Supply (UPS) applications for which instantaneous
feedback is preferred [2],[3]. In most papers symmetrical load is assumed. There
is an increasing need to supply not only one unit, but also the whole installation by
UPS. The energy supply for the group of units of great importance (nuclear power
plants, airports, computer and telecommunication centres, etc.) is usually realized
by three independent single phase UPS inverters, each having an independent con-
trol. This is because of the asymmetrical load of the phases due to the large number
of possible single phase units connected to the network. A less expensive solution
is to apply a single three phase inverter. In this case asymmetrical load causes
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problems because voltage in the three phases cannot be controlled independently.
This paper proposes a three phase controller which can be used under asymmetrical
and nonlinear loading.

In the course of designing the controller, the inverter is taken as a member
of Variable Structure Systems (VSS) [4]. The output filter is considered as the
controlled plant with its control realized by the inverter branches. It can be asymp-
totically stable even if it consists of unstable structures. A VSS system usually
possesses an operational mode that is insensitive to parameter variations and load
disturbances. This state is referred to as the sliding mode. The sliding mode is
well known as a powerful tool to realize robustness in motion control systems and
power electronics networks. The basic idea of the sliding mode control of a single
input, single output (SISO) system can be summarized as follows [4]: It is supposed
that the control is discontinuous and the reference signal is smooth enough. If the
control undergoes discontinuities in some planeσ (x) = 0 in the state space then
sliding mode may occur in this plane. Usually,σ (x) is a linear function of the state
variables. To ensure that the system trajectory remains on the sliding surface the
condition

σ̇ (x)σ (x) < 0 (1)

must hold. The robustness of ideal sliding mode control is obtained by infinite
frequency switching of the control inputs resulting infinite gain. The price paid for
insensitivity is – theoretically speaking – the infinitely high switching frequency.
Due to the switching delays and frequency limit of controlled switches, ideal sliding
mode does not exist. However, there is an acceptable approximation to ideal sliding
mode control.

2. Configuration and Basic Equations

The main circuit and control system of the three phase inverter are illustrated in
Fig. 1. The figure does not show the battery and charge unit. The filter circuit
consists of a special�/Y transformer and a capacitor unit connected in parallel to
the secondary. For the sake of filtering, the leakage inductance on the primary is
increased and the mutual main field inductance is decreased by an air gap in contrast
to an ordinary transformer. The load is connected between the star and the R-S-T
terminals of the transformer.

The positive directions are shown inFig. 1. This paper is focused on con-
trol, so a simplified transformer model is applied for theoretical consideration.
Resistances of transformer coils and semiconductor devices are ignored. For the
calculations, the transformer ratio of the transformer is chosen in such a way that
leakage inductances on the secondary are equal to zero [13]. The primary leakage
inductance matrix (Ll ∈ R3x3) and the filter capacitor matrix (C ∈ R3x3) are diag-
onal. The mutual inductance matrix (Lm ∈ R3x3) is symmetrical. The single phase
equivalent leakage and mutual main field inductance areLlp andLmp, respectively.
The control system senses three electrical variables (namely the filter circuit output
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Fig. 1. Simplified diagram of the inverter

voltage, uc ∈ R3, the primary phase current, i p ∈ R3 and the load current il ∈ R3),
in each phase instantaneously. The sinusoidal reference signal, ur ∈ R3, is stored
in ROM memory. The matrix differential equation for the filter circuit is as follows:

Gv = �−2 d2uc

dt
+ uc, (2)

where v ∈ R3 is the line-to-line voltage in the primary side,

�−2 = Lm (Lm + Ll)
−1 LlC, (3)

G = Lm (Lm + Ll)
−1 . (4)

The semiconductors of the inverter are controlled by a circuit which uses the refer-
ence signal and the three feed-back variables in each phase taking into account the
switching frequency and current limitation requirements. The switches SW , SV and
SU are set to 1 if the upper transistor is switched on and 0 if the lower transistor is
switched on in the corresponding inverter branch.
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3. Sliding Mode Control of a Multi-Input Multi-Output System

The following non-linear state-equations are considered.

ẋ = f (x) + Bu, x ∈ Rn, u ∈ Rm, f ∈ Rn, (5)

where x is the state-variable vector; f (x) is a vector-vector function; B is a positive
or negative definite n ∗ m matrix; u is the control vector. The goal of the control
is to drive the system into the origin in state space. The switching surfaces of the
sliding mode, where control vector components have discontinuities, can be written
in the following form

σ = 
x, σ ∈ Rm, (6)

where 
 is an m ∗ n matrix. The condition for existence of sliding mode is

σi σ̇i < 0, (7)

where σi is the i-th element of vector σ . The first derivative of vector σ with respect
to the time is

σ̇ = 
( f (x) + Bu). (8)

If the matrix 
B is not diagonal but its rank m, a T matrix can be introduced to
decouple the system into m control loops

σt = T σ. (9)

In other words T 
B should be diagonal in (10)

σ̇t = T 
 f (x) + T 
Bu. (10)

(It is remarked that matrix T can be time varying [6], in which case there is an
additional term in (10)). The condition (7) must be true for each row of vector σt .
That means that the sign of each row on the right hand side of (10) must be opposite
to that of σt . If T exists then it can be chosen in a way so that the matrix T 
B is
the identity matrix. Let us use a relay type control law

ui = sign(σi) (11)

The condition (7) holds if the absolute value of each element of vector u is bigger
than those of vector T 
 f (x).

Applying the above method to a three phase inverter, the error of the output
voltage

ue = ur − uc (12)

is controlled. Using the above notation:

x = (ueR ueS ueT u̇eR u̇eS u̇eT )T , (13)

u = (Su Sv Sw )T UDC, (14)
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f (x) =

 Z I

�2 Z


 x +


 Zc

(�2 − ω2 Ic)ur


 , (15)


 = (I λI ) , (16)

B = −
(

Z
C−1L−1

l G

)( 1 −1 0
0 1 −1

−1 0 1

)
, (17)

where ω is the output angular frequency Z ∈ R3x3 and Zc ∈ R3 are the zero matrix,
I ∈ R3x3 is the identity matrix and

Ic = (1 1 1)T .

Since det B = 0 the method of diagonalization cannot be applied directly. From
the point of view of the circuit, it is because of the floating potential of the star point
of the load.

Hence, although the inverter has three legs, it is impossible to introduce three
independent switching surfaces to control the three phase errors independently.
Several papers have solved this problem by introducing two independent surfaces
with a third one, on which the system trajectory is automatically held.

4. A Park Vector Based Sliding Mode Control

4.1. Sliding Surface Design

To take the reduced degree of freedom into account a complex Park vector is intro-
duced as a 3-phase to 2-phase transformation

x̄ = 2

3
(xR + āxS + ā2xT ), (18)

x0 = 1

3
(xR + xS + xT ), (19)

where xR, xS and xT are the time functions of phase value of any three-phase signals
and

ā = −1

2
+ j

√
3

2
, ā2 = −1

2
− j

√
3

2
(20)

The main advantage of the Park transformation for a system with symmetrical
structure is that the two (real and imaginary ) components are decoupled. The three
phase values ( xR, xS and xT ) can be asymmetrical, the system matrixes can be
time varying. The only necessary assumption is that they should be symmetrical
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[5] at any time instant. Using Park transformation, all the matrixes (including the
non diagonal but symmetrical Lm) can be replaced by a scalar real value in (2) –
(4). Expressing (2) in Park vector representation

d2ūc

dt
= �2

pG pv̄ − �2
pG pūc, (21)

where subscript p denotes the Park equivalent of the corresponding matrixes. �2
p

and G p are scalar real values

�−2
p = Lmp

(
Lmp + Llp

)−1
LlpCp, (22)

G p = Lmp

(
Lmp + Llp

)−1
. (23)

A stationary reference frame is used. A complex sliding surface

σ̄ = ūe + λ ˙̄ue = 0 + 0 j (24)

is introduced, where the control undergoes discontinuities. λ is a time constant type
parameter, it defines the transient behaviour.

4.2. Switching Strategies

The inverter is switched so that the system trajectory gets as close to the sliding
surface as possible. First, the location of the trajectory is measured. Second, the
directions of the change of the trajectory according to the different switching states
are derived. Finally, an appropriate switch condition is chosen to force the system
trajectory to the sliding surface. If the system is not on the sliding surface, then
vector σ indicates the distance of actual system trajectory from the sliding surface.

The direction of change of vector σ̄

˙̄σ = ˙̄ue − λ�−2
p ūe + λ

[(
�2

p − ω2
)

ūr − �2
pd G pd v̄k

]
. (25)

Since error in steady state is only a small percentage of the rotating reference vector,
ūr , a good approximation of ˙̄σ is the difference between the rotating reference and
the corresponding switching state vector as shown in Fig. 2

˙̄σ c1ūr − c2v̄k, (26)

where c1 = λ(�2
pd − ω2), c2 = −λ�2

pdG pd .
There are two main approaches of design of a control law for the sliding mode

on the surface σ̄ = 0 + 0 j . In the first approach, sliding mode exists only in the
intersection of the switching surfaces. In this case, the condition for the existence
of a sliding mode is that the vectors σ̄ and ˙̄σ have opposite components.

Re(σ̄ ˙̄σ ∗) < 0, (27)
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Fig. 2. Switching states and direction of vector change

where ˙̄σ ∗ stands for the complex conjugation of ˙̄σ . In the second approach a stable
sliding mode may exist on any of the two switching surfaces independently. In
this case the condition for the existence of a sliding mode should hold for the two
switching surfaces separately.

4.2.1. Triangular Switching Strategy

To adapt the most popular current vector control method [9] for sliding mode control
of UPS, one period of the rotating vector, ūr , is divided into six control intervals
denoted by T 1, T 2, T 3, T 4, T 5 and T 6. Four switching states (i.e. only three
directions of vector ˙̄σ ) are assigned to each control interval. In Fig. 3 the switching
states of control interval T 2 are shown. Since the switching states are in the vertexes
of a triangle that includes ūr this switching strategy is referred to as ‘ triangular’
switching strategy. The complex σ̄ plane is divided into six areas (a, b, c, d, e
and f ), as shown in Fig. 3. The six areas are joined in pairs in each control interval.
In each pair of areas there is such an orientation of one of the three possible vectors˙̄σ that the condition (27) holds, as shown in Fig. 3. Assuming, that the vector ūr is
pointed at P (control interval T 2) and the distance vector σ̄ is in the area a or b, the
switching state v̄1 must be switched. If the distance vector σ̄ is in c or d then state
v̄3 must be switched. If the distance vector is in e or f then either state v̄0 or v̄7
must be switched. Regarding the above mentioned facts, the triangular switching
strategy is summarized in Table 1.
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Fig. 3. Triangular switching strategy

Applying the triangular switching strategy some convergence problems emer-
ge in the vicinity of the border of two control intervals discussed in [8] and [10]. In
the case of current vector control, the change of vector σ̄ is the difference between
the rotating reference and the corresponding switching state vector. Because of the
approximation (26) the convergence problem becomes more serious in the case of
UPS control. To avoid these problems a rhomboid switching strategy is introduced
[12].

4.2.2. Rhomboid Switching Strategy

In the second type of switching rule, the condition for the existence of a sliding mode
should hold for two switching surfaces separately. Usually the two perpendicular
components of the Park vector are controlled. Adapting this the switching surfaces
are chosen as follows [6]

I m(σ̄ ) = 0, Re(σ̄ ) = 0. (28)

These switching surfaces are not suitable for the inverter structure because the Park
vector cannot be measured directly.

A simple switching strategy can be applied if only two of the three phase
components of vector, σ̄ , are sensed and controlled simultaneously. (Remark:
x p

R = xR − x0, x p
S = xS − x0 and x p

T = xT − x0 are referred to as the phase
components of the Park vector)

One period of the rotating vector, ūr , is divided into six control intervals again.
In each control interval the state of one branch is locked and only two branches are
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Table 1. Triangular switching strategy

Control Areas of the Switched
interval error vector state

T 1
f, a
b, c
d, e

v̄5
v̄1

v̄0, v̄7

T 2
a, b
c, d
e, f

v̄1
v̄3

v̄0, v̄7

T 3
b, c
d, e
f, a

v̄3
v̄2

v̄0, v̄7

T 4
c, d
e, f
a, b

v̄2
v̄6

v̄0, v̄7

T 5
d, e
f, a
b, c

v̄6
v̄4

v̄0, v̄7

T 6
e, f
a, b
c, d

v̄4
v̄5

v̄0, v̄7

switched. The control intervals and the six areas in the vector, σ̄ , plane are rotated
to the previous case (a′ is used for the rhomboid strategy). Fig. 4 shows the case
of the control interval T 2′. The two sensed phase components are σ

p
R and σ

p
T , the

locked switch is SU = 1 and the two switched branches are SV and SW as shown
in Fig. 4. For example, if vector σ̄ is in the area b′, c′ or d ′ (σ p

T < 0) and the
switch SW is switched to zero then the vector ˙̄σ has a component which points to
the switching line. After similar consideration the rhomboid switching strategy is
summarized in the Table 2.

4.3. Comparison of Rhomboid and Triangular Switching Strategies

The rhomboid and the triangular switching strategies are compared by simulation.
A switching-time delay (Tdel) and a hysteresis were taken into the account. Nominal
symmetrical load was considered.

The total harmonic distortion (T H D) and the number of switches (N S) during
one period are shown in Table 3.

Applying the triangular switching strategy a satisfactory reduction of distance
could not always be achieved in the vicinity of the border of two control intervals.
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Fig. 5 shows the operation of triangular and rhomboid switching strategies in the
critical areas. In the case of triangular switching strategy, the trajectory of the
vector, σ̄ , is chattering between the areas e and d. The amplitude of the vector, σ̄ ,
may not decrease since (26) gives only an approximation, the real direction of the
vector ˙̄σ belonging to state v̄0,7 or v̄1 may have no component that is opposite to
the vector, σ̄ . In the case of the rhomboid switching strategy the critical border is
between the areas e′ and d ′. The trajectory of the vector, σ̄ , gets close to the origin
after a few switches.

4.3.1. Asymmetrical Load

The Park vector does not contain information about the zero phase-sequence com-
ponent caused by the asymmetrical load. According to the Park vector definition,
the regular transformation


 x p

R
x p

S
x p

T


 =




2
3 − 1

3 − 1
3

− 1
3

2
3 − 1

3

− 1
3 − 1

3
2
3



[

xR
xS
xT

]
(29)
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Table 2. Rhomboid switching strategy

Control Switching
interval law

T 1′
SU = 0.5 + 0.5signσ̄

p
R

SV = 0
SW = 0.5 − 0.5signσ̄

p
S

T 2′
SU = 1

SV = 0.5 − 0.5signσ̄
p
R

SW = 0.5 + 0.5signσ̄
p

T

T 3′
SU = 0.5 − 0.5signσ̄

p
T

SV = 0.5 + 0.5signσ̄
p
S

SW = 0

T 4′
SU = 0.5 + 0.5signσ̄

p
R

SV = 1
ST = 0.5 − 0.5signσ̄

p
S

T 5′
SU = 0

SV = 0.5 − 0.5signσ̄
p
R

SW = 0.5 + 0.5signσ̄
p

T

T 6′
SU = 0.5 − 0.5signσ̄

p
T

SV = 0.5 + 0.5signσ̄
p
S

SW = 1

which transforms the phase values into the Park vector phase component is modified.
To control the zero phase-sequence component, a K constant is introduced in the
following way:


 x p′

R

x p′
S

x p′
T


 =




3−K
3 − K

3 − K
3

− K
3

3−K
3 − K

3

− K
3 − K

3
3−K

3



[

xR
xS
xT

]
. (30)

If 0 < K < 1, it can be considered as negative feedback from the zero phase-
sequence component. If the load is balanced then constant, K , has no effect on the
control since

xR + xS + xT = 0. (31)
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Table 3. Comparison of rhomboid and triangular switching strategies

Tdel = 4µ Tdel = 7µ

Triangular Rhomboid Triangular Rhomboid
T H DR 0.515% 0.203% 0.757% 0.229%
T H DS 0.462% 0.207% 0.706% 0.237%
T H DT 0.588% 0.205% 0.713% 0.210%

N SU 64 34 36 32
N SV 82 34 32 32
N SW 58 34 34 32
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Fig. 5. Switching phenomenon in the vicinity of the border of two control intervals

5. Experimental Result

The parameters of the experimental system are given in Table 4.

Table 4. Nominal parameters
Nominal parameters
Output power Pn 100 [kVA]
Output voltage Uc 220 [V]
Output frequency f 50 [Hz]
Switching frequency fsw 2 [kHz]



SLIDING MODE CONTROL 77

K = 0 Il R = 120A
UcR = 219 V UcS = 221 V UcR = 214 V
T H DR = 4.3% T H DS = 6.3% T H DT = 9.8%

Fig. 6. System response to 80% step change in load of phase R

Two measurements are compared in Fig. 6 and Fig. 7. In both cases, the
rhomboid switching strategy is applied and the load of phase R is changed from
0 to 80% of the nominal load. When K = 0, the two controlled phase voltages
can perfectly follow the reference signals and the uncontrolled phase voltage can be
sinusoidal as well but the uncontrolled phase voltage has phase angle and amplitude
errors. At the beginning of each control interval, a transient phenomenon appears
which increases the total harmonic distortion (THD) (see in Fig. 6). Increasing
the value of K , the total harmonic distortions are decreased in all phases but the
asymmetry in the RMS values is increased. The optimum was found at K = 0.7
when the asymmetry in phase amplitudes was less than 2% and the total harmonic
distortions were about 3% (see in Fig. 7).

6. Conclusion

This paper has demonstrated that variable structure theory is a useful and practical
tool by which inverters can be controlled. The proposed controller structure per-
forms well but it does not need a microcomputer, DSP or transputer. The effect
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K = 0.7 Il R = 120 A
UcR = 219V UcS = 223V UcR = 216V
nT H DR = 2.1% T H DS = 2.8% T H DT = 3.1%

Fig. 7. System response for 80% step change in load of phase R

of asymmetrical load cannot be perfectly eliminated. However, there is a near-
optimal solution where the asymmetry in phase amplitudes and the total harmonic
distortions is acceptable.
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