
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 43, NO. 1, PP. 3–17(1999)

APPLICATION LAYER ANYCAST

Miklós BERZSENYI∗ , István VAJK∗ and Hui ZHANG∗∗
∗Department of Automation

Budapest University of Technology and Economics
H–1521 Budapest, Hungary

e-mail: bermik@sun.aut.bme.hu, vajk@aut.bme.hu∗∗School of Computer Science
Carnegie Mellon University

Pittsburgh 15213, USA
e-mail: hzhang@cs.cmu.edu

Received: Oct. 1, 1999

Abstract

In this paper, we present a new approach to application layer anycasting. The key to anycast is making
it possible for clients to efficiently find the ‘best’ server for a given application in an unknown group
of servers. The anycast service makes a wide range of new multimedia applications possible, and
will be part of future integrated services networks. We designed a selective anycast protocol, which
is aimed at picking the right server based on application specific metrics, such as network delay and
server load. This paper considers server-choosing metrics and efficient mechanisms to compute these
metrics. We also present simulation results, which show our approach’s merit, and proves that anycast
can significantly improve the performance as compared to the traditional methods.

Keywords: anycast, service enabling platforms, integrated services packet switched networks.

1. Introduction

In the Internet today, the World Wide Web is becoming an increasingly important
application. Further, some of the most visited web sites consist of uncacheable
data, either because the data is private, the data becomes stale quickly, or the data
is customized for each user. We have also observed that network service has been
degrading for the last few years, until currently, clients are able to retrieve only
hundreds of bytes per second during the Internet’s busiest periods.

The traditional method toovercomescarcenetwork resources has beencaching
[3]. But caching becomes less and less effective as servers with uncacheable data
become more common. Since only servers are able to deliver data to clients, we
must consider server–initiated mechanisms for improving performance. Previously,
server–initiated solutions have consisted mainly in infrastructure improvements
such as using more powerful computers or buying faster network connections.
While these solutions are certainly effective, they are not perfect. A congested link
inside the network is the great equalizer among server hardware: regardless of how
fast the server can push data into the network, the client will only receive it as fast
as the congested link will allow.



4 M. BERZSENYI et al.

In an attempt to avoid the congested link problem, server maintainers have
begun to establish ‘mirrors’ of a server at other locations in the network. If a client
is dissatisfied with the performance of a server, it may switch to any of the mirrors.
However, unless the client is clairvoyant, it will have difficulty picking the server
that can supply it with the best performance. Still, as anyone who has ever beaten the
odds and picked the right mirror will attest, this approach has merit. By scattering
servers around the Internet, there is less of a chance that every path between a client
and the servers will be congested. The missing piece of the puzzle is how to choose
automatically the best server for a given client.

In 1993, PARTRIDGE et al. [9] introduced the concept of anycast, a network
service that would deliver a message to anyone of a group of servers in the Internet.
A selective anycast service is exactly what is needed to choose the best mirror
server. By ‘selective,’ we mean that the choice of server should be based on some
application-specific metrics. This paper will consider server-choosing metrics and
efficient mechanisms to compute those metrics. We believe that the anycast service
is a new building block for future integrated services networks as it provides new
capabilities. The rest of the paper will be structured as follows: Section 2 will
discuss previous work in this area. Section 3 will discuss the design space for
anycast protocols. Section 4 will cover simulation experiments which explore the
tradeoffs among our metrics. Finally, Section 5 will put our work in perspective.

2. Related Work

There have been several works dealing with network probing to choose a server
from a group. GUYTON et al. [6] studied a number of mechanisms ranging from
monitoring routing updates to using a series of statically-located hosts which probe
the network. In Guyton’s terminology, our work focuses on ‘reactive’ mechanisms
while his work focused on ‘proactive’ mechanisms (though not to the exclusion of
reactive mechanisms). In other words, Guyton’s emphasis was on server-initiated
network information collection, while our work emphasizes gathering information
about a client from the client’s query messages to the anycast group.

As we have said, anycast was first proposed by PARTRIDGE et al. [9]. They
envisioned a network layer service which would route a client’s datagrams to the
server that is the fewest number of hops away. LEVINE et al. [7] also developed a
network layer method of finding the closest host in a group. This version of anycast
is not well-suited to the problem we have chosen to solve because of its inflexible
metrics. We believe that server choice should be based on a variety of metrics
including, but not limited to, hop count. Some servers may wish to use server load,
or achievable throughput between the client and server. Also, we believe that the
metrics information, given that it is server-specific, is best left out of the network
layer. BHATTACHARJEE et al. [1] as well as FRANCIS [4] have considered the
infrastructure necessary to support application-layer anycast.

Bhattacharjee’s scheme involves alteringclients’ Domain Name Server (DNS)



APPLICATION LAYER ANYCAST 5

resolvers to choose one server from a group when presented with an anycast address.
The choice of server can be made according to any server-defined metrics which
fits inside their rather general framework. They also explore several metrics for
choosing servers. Our work is meant to coexist with their work. Our mechanisms
for finding anycast servers could be implemented inside the DNS framework.

Finally, a company named Bright Tiger [2] has a product called Cluster CATS
which claims to transfer users to the appropriate web server based on network
congestion and server load, among other things. Of course, Bright Tiger’s approach
is proprietary information, while our work will be released into the public domain.
Bright Tiger’s web pages contain some information about their system. It requires
no changes to clients, so client-initiated network probing is out of the question.
It seems to be based on estimating the network latency between the client and
server which is then used as a combined network distance and bandwidth metrics.
Unfortunately, this implies that a client must connect to a server and transfer some
data before the server can redirect the client to a better server. Since the server has
no information about the client’s links to other servers, it needs to guess which other
server would better suit the client. The result is that a client may be ping-ponged
from server to server if the network is heavily congested.

Other somewhat less related work includes the Internet Engineering Task
Force’s (IETF) Service Location Protocol [5], a way to find a server given only a
text name of the service that it implements. This protocol is focused on returning the
address of any server while our work aims to return the address of the best server
for a client. Also, the service location protocol is not designed to scale beyond
a large intranet. Finally, we consider caching [3]. While caching has the same
goal as our work, it takes the opposite approach. With caching, the first client to
access a document forces the document to be cached so subsequent clients can take
advantage of the nearby cached copy. Our work focuses on giving all clients quick
access. In addition, as has already been mentioned, many services are uncacheable.
In general, though, caching and anycast should complement each other.

3. Anycast Proposal

The key to anycast is making it possible for clients to efficiently find the ‘best’ server
in an unknown group of servers. When designing an anycast protocol, there are
a number of different metrics that might contribute to the determination of which
server is ‘best’. These include: (a) the network delay between the client and each
server, (b) the available bandwidth between the client and each server, (c) whether
or not the request can be served out of the cache at each server, and (d) the load at
each server. For example, the importance of (a) varies depending on the amount of
processing each request will require, the importance of (b) varies depending on the
amount of data we expect to transmit, the importance of (c) varies depending on the
degree to which caching is beneficial and plausible for the application in question,
and the importance of (d) varies depending on the server processing required by the



6 M. BERZSENYI et al.

request. Assuming that the amount of data transmitted is small (so that clients are
indifferent to available bandwidth), and that caching behavior is either irrelevant or
will be good regardless of the distribution of requests, we focus on (a) and (d); that
is, we are primarily concerned with request latency, and we assume that latency
mainly depends on network delay and server load, plus any overhead imposed by
the anycast protocol.

3.1. Proposal Overview

Since clients are initially unaware of the composition of the server group, they must
be able to obtain the identity of one or more members by sending a request to some
well-known authority. We call this request a FindServer request. The authority
can be a single server contacted via ordinary unicast, but relying on a single server
suffers from all of the well-known problems with centralized systems. A more
scalable and fault-tolerant solution is for this authority to be a set of servers which
can be contacted via multicast. Which of the anycast servers should subscribe to this
multicast group? Clearly, having every anycast server to receive every FindServer
request would introduce unacceptable overhead. There are two ways to limit the
number of anycast servers which receive a FindServer request: we can use Time-
To-Live (TTL) scoping to limit the range of a FindServer request, or the multicast
group can include only a subset of the anycast servers.

Once the multicast servers receive a FindServer request, how do they ensure
that the client is directed to the best server, i.e. the server which is least loaded and
with whom it experiences the lowest network delay? If we are using TTL scoping,
then each receiving server can simply respond with a local prediction of load (using
some agreed upon metrics), and the client will be able to determine relative loads
and delays. If we are multicasting to a subset of the servers, then the members
of the subset must obtain load information from the servers which are not in the
subset. For simplicity and efficiency, this implies some hierarchical organization
of the anycast servers into regular servers and representative servers, along with a
grouping of the servers into clusters where each cluster has exactly one represen-
tative. Then, each regular server will report load information to its representative
so that the representatives can respond to FindServer requests with the identity and
load prediction of the predicted least-loaded server in their cluster. Notice that the
delay that the client calculates will reflect its distance to the representative instead
of its distance to the server identified in the response. To minimize this distortion,
clustering needs to be based on delay between servers.

In the following two sections, we describe the basic TTL scoping scheme
and the basic clustering scheme in greater detail. For each scheme, we present
the protocols by which new servers are added to the server group (the Join proto-
col), the protocol with which clients obtain server identities and choose a server
to receive their data request (the Anycast protocol), and the protocol by which the
server group recovers from network and server failures (the Recovery protocol).



APPLICATION LAYER ANYCAST 7

In subsequent sections, we compare both schemes, identify their weaknesses, and
propose improvements.

3.2. Basic TTL Scoping Scheme

All servers subscribe to a multicast group, the AllServers group, and each server
keeps track of its predicted future load based on its current load and the number of
FindServer requests it has responded to in the last time period.
Join protocol. New servers simply subscribe to the AllServers group.
Anycast protocol. When using TTL scoping to limit the number of servers that
receive a FindServer request, clients need to discover an appropriate TTL value;
that is, clients must perform an expanding ring search (ERS). Servers which receive
FindServer requests respond with their load prediction. When a client receives
a response, if the load prediction is below some threshold, then it sends its data
request to that server. Otherwise, it waits until it either receives a response which
contains a sufficiently low load prediction, or the allowed waiting period has passed.
If the allowed waiting period has passed and a minimum number of responses were
received, then it sends its data request to one of the servers, selected based on
response time and load prediction. Otherwise, it continues the ERS. The client
caches its final TTL value. The server which receives the data request processes it
and sends the appropriate response.
Recovery protocol. No recovery protocol is necessary.

3.3. Basic Clustering Scheme

All servers subscribe to a multicast group, the AllServers group, and representative
servers also subscribe to another multicast group, the Representatives group. Each
server keeps track of the identity of its representative and sends it a load infor-
mation update once per time period. Each representative acknowledges its load
information updates, combining them with information it maintains on the number
of times it recommended each cluster member in the past period to predict each
cluster member’s load in the near future. Representatives also update their cluster
membership information, if necessary.

Join protocol. (Fig. 1). As mentioned in the overview, clusters have to be created
carefully so that the delay calculated by a client, which is the delay between itself
and each representative server, is a fairly accurate portrayal of the delay between
the client and the server suggested in the representative’s response. Therefore, new
servers have to gather delay information before they can decide on which cluster
to join. A new server multicasts to the AllServers group and uses the responses
to build a list of the servers (this list need not be complete). It then measures the
Round Trip Time (RTT) between itself and every other server. If it discovers that the
RTT between itself and at least one representative server is below some threshold,



8 M. BERZSENYI et al.

then it sends an initial load information update to the closest of these in order to
join an existing cluster. Otherwise, if it discovers that the RTT between itself and
at least one regular server is below the threshhold, then it asks the other server to
become a representative. The other server will promote itself by multicasting to
the AllServers group, after which each regular member of its original cluster (and
any other cluster) may choose to join the new cluster, and the new server will join
the new cluster. Otherwise, the new server becomes its own representative (i.e. a
one-member cluster).

New Server:
QueryOtherServers(Allservers, Multicast)

Upon Receiving answer from any server:
if (MeasureRTT(me, Server)< Treshold) then

Remember (Server)

At the end of the RTT measurement
if (ChooseClosestRepresentative is_not_empty) then

JoinCluster(RepresentativeServer)
End

if (ChooseClosestServer is_not_empty) then
AskToBecomeRepresentative(Server)
JoinCluster(RepresentativeServer)
End

AskToBecomeRepresentative(Me)
End

Fig. 1. Join protocol

Anycast protocol. (Fig. 2). A client multicasts a FindServer request to the Represen-
tatives group. Representative servers respond with the identity and load prediction
of their predicted least-loaded cluster member. When the client receives a response,
if the load prediction is below some threshold, then it sends its data request to that
server. Otherwise, it waits until it either receives a response which contains a suffi-
ciently low load prediction, or the allowed waiting period has passed. If the allowed
waiting period has passed, then it sends its data request to one of the servers, se-
lected based on response time and load prediction. The client caches at least the
identity of the representative server whose recommendation it used. The server
which receives the data request processes it and sends the appropriate response.
Recovery protocol. (Fig. 3.) If a regular member does not receive an acknowledg-
ment for one of its load information updates within a time period, it sends another.
If this second update also times out, then it multicasts to the AllServers group that
its representative is unresponsive. The regular servers who belonged to this cluster
exchange messages to determine their RTTs to each other, and then each advertises
the average of its RTTs. The server with the smallest average promotes itself by



APPLICATION LAYER ANYCAST 9

Client:
FindServer(ReprentativeServers, Multicast)

RepresentativeServer:
SendLoadInformation(LeastLoadedServer, Client)

Client upon receiving answer:
if (ServerLoad<treshold) then

SendDataRequest(Server)
Cache(RepresentativeServer)
End

Else StoreLoadinformation(Server)

Client upon timeout:
ChooseBestServer(RTT, LoadInformation)
SendDataRequest(Server)
Cache(RepresentativeServer)
End

Fig. 2. Anycast protocol

multicasting to the AllServers group, and the other servers either update their choice
of representative or (if their RTT to the new representative is above the threshold)
run the join protocol. If a representative does not receive a load information update
from one of its cluster members within a time period, it explicitly requests this in-
formation from that member. If there is no response to this request, then it assumes
that the member no longer exists and updates its cluster membership information.

3.4. TTL Scoping versus Clustering

A comparison There are four drawbacks to the TTL scoping scheme. First, per-
forming an ERS adds latency. Second, hop count may not correspond to network
delay, so that the set of servers that receive the FindServer request may not include
the set of closest servers. Third, the network topology and distribution of servers
may be unfriendly to ERS; that is, the percentage of servers reached may always
be either too small or too large. And, finally and most importantly, the servers will
not be load balanced if the distribution of clients does not match the distribution of
servers. This imbalance could get quite extreme. For example, if clients generally
need to cross a backbone link to reach a server, but the servers are at vastly different
numbers of hops from the backbone, then servers which are far from the backbone
will never receive any requests. These drawbacks prevent the TTL scoping scheme
from being a good, general solution.

In contrast, using clustering takes approximately the minimum additional



10 M. BERZSENYI et al.

Regular Server:
SendLoadInformation(RepresentativeServer, cyclic)
If (Timeout(Acknowledgement)) then

SendLoadInformation(RepresentativeServer, 1)
If (Timeout(Acknowledgement)) then
RepresentativeUnavailable(Representative,
AllServers, Multicast)

Each Regular Server, which belonged to the same cluster
for (every server in the cluster)

MeasureRTT(me, Server)
AnnounceAverageRTT(cluster)
The server with the smallest average
AskToBecomeRepresentative(Me)
End

Other servers
Run Join Protocol

Representative server
If (Timeout(LoadInformation(Server) then

AskLoadInformation(Server)
If (Timeout(LoadInformation(Server) then

RemoveFromClusterList(Server)

Fig. 3. Recovery protocol

latency for application-level anycast (i.e. one additional RTT for the FindServer
request and response), is not dependent on hop count accurately reflecting network
delay, is flexible with respect to network topology and server distribution, and allows
some degree of load balancing across all of the servers. On the other hand, the server
structure inherent in clustering imposes some additional complexity and overhead,
requiring protocols to create and join clusters, to exchange load information between
the regular members and the representative member in each cluster, and to maintain
clustering in the face of network and server failures. In addition, there is no way
to efficiently provide the accurate delay information obtained in the TTL scoping
scheme, so clients must make their server choice based on less accurate information.
Decreasing cluster sizes would increase the accuracy of the delay calculation, but it
wouldalso increase the percentageof serverswhich receiveeachFindServer request.
This tradeoff between FindServer overhead and a client’s ability to identify the best
server is the greatest weakness of the basic clustering scheme.



APPLICATION LAYER ANYCAST 11

3.5. The Modified Schemes

The main weakness of the TTL scoping scheme is its inability to automatically
balance load among the servers if the distribution of servers and clients is not close
to ideal. The problem is that, if a client increases its TTL in order to reach more
servers (so that load can be more evenly distributed among the servers), then the
FindServer request overhead will also increase. We can allow clients to reach more
servers without adding to FindServer overhead by combining TTL scoping with
clustering. This modified scheme, which we call clustered TTL scoping, is exactly
like the basic clustering scheme described in section 3.3 except that clients use ERS
to locate representative servers (Fig. 4), and clients only need to cache a good TTL
value.

Client:
DoERS(TTL0, TTL256)
Cache(GoodTTLValue)

DoERS(TTLstart, TTLend)
FindServer(RepresentativeServers, Multicast, TTL)

Client upon receiving answer:
if (ServerLoad<treshold) then

SendDataRequest(Server)
End

Client upon timeout:
DoERS(TTLstart∗2, TTLend)

RepresentativeServer:
SendLoadInformation(LeastLoadedServer, Client)

Fig. 4. Modified join protocol using ERS

Although clustered TTL scoping no longer provides accurate delay informa-
tion, and requires the additional complexity and overhead of clustering, it improves
upon basic TTL scoping in two ways. First, as mentioned above, it has better load
balancing properties because TTLs can be set much higher (reaching, through their
representatives, a much larger number of servers) without increasing FindServer
overhead. Second, it does not rely on having an ERS-friendly network topology
and server distribution because reaching a large percentage of the representative
servers simply causes this scheme to behave like the basic clustering scheme. If the
topology and server distribution is ERS-friendly, then clustered TTL scoping also
partially alleviates the problem with the basic clustering scheme; that is, clustered
TTL scoping decreases the FindServer overhead for a given cluster size.

Another way to address the problem with the basic clustering scheme is to



12 M. BERZSENYI et al.

permit representative servers to quickly decide whether or not to ignore a Find-
Server request, where the cost of making this decision and the cost of discarding
a request should be much less than the cost of servicing the request. Assuming
that the representative servers are able to correctly identify and discard a signifi-
cant percentage of FindServer requests, then this modified scheme, which we call
clustering with discard, will decrease the FindServer overhead for a given cluster
size. Note that permitting discards requires a mechanism for disallowing discards
in order to ensure that all clients will eventually be able to obtain the identity of a
server. This can be simply accomplished by adding a flag in the FindServer request,
which should only set the flag if they are extremely concerned with latency or were
unable to obtain service without the flag.

Representative server upon receiving request
If (hop_count<HopCountTreshold) then

Decrease(HopCountTreshold)
ServiceRequest

else if (PredictsIdleServer) then
Decrease(HopCountTreshold)
ServiceRequest

else
Increase(HopCountTreshold)

Fig. 5. Clustering with discard

In clustering with discard (Fig. 5), there are three factors which could be used
in the discard decision: the hop count from client to representative, past calculations
of the relative load of the cluster, and the predicted load of the predicted least-loaded
cluster member. The first two can be combined by using a hop count threshold
which varies depending on the relative load experienced by a cluster. That is, a
representative can keep track of what percentage of the data requests are being
serviced by its cluster (calculated from information passed in the load information
updates and by keeping track of the number of FindServer requests it received) and
raise (or lower) its hop count threshold if the number of requests its cluster has
serviced is below (or above) some low (or high) watermark of what constitutes its
fair share of requests (based on what percentage of the servers are in its cluster).
Upon receiving a FindServer request, the representative will discard it if the hop
count is above its threshold and it predicts no idle cluster members. In other words,
clustering with discard is like clustered TTL scoping except that the hop count is
measured around the server instead of the client. The disadvantage of clustering
with discard is that all representatives still receive all FindServer requests. The
advantages are that it addresses the cluster size versus FindServer overhead issue
even with ERS-unfriendly networks, it has no ERS overhead, and it has even better
load balancing properties.



APPLICATION LAYER ANYCAST 13

4. Evaluation

To evaluate and compare the performance of clustered TTL scoping and clustering
with discard, we implemented both protocols as well as a base case in a packet-level
simulator. The base case is to have a single well-known server, i.e. clients do not
need to send FindServer requests.

4.1. Simulation Environment

We use a discrete event packet-level simulator which supports unicast and multi-
cast routing, and UDP and TCP communication. Routing minimizes the number
of hops/packet. Links are characterized by minimum delay, d, and loss rate. UDP
communication is simulated by forwarding undropped packets hop by hop with a
delay uniformly distributed between d and 2d. TCP communication is simulated
by calculating end-to-end delay as the sum of ave path delay and bytes transmit-
ted/bandwidth, where ave path delay is calculated by summing the average link
delays of the links on the route, and bandwidth is calculated by plugging ave path
delay and the average loss rate of the links on the route into equation 3 from [8].
Thus, unlike the real world, loss and delay in the simulation are independent of the
number of packets traversing a link (so, for example, the single server base case
does not suffer from network congestion).

All of our experiments use a single, randomly generated network topology
(Fig. 6). The topology has two levels: a top level backbone network and a second
level of regional networks. Each router in the backbone is connected to a regional
router as well as being randomly connected to an average of four other backbone
routers. Each regional network (of which there were 20) is connected to the top level
backbone through a single router, and each regional router was randomly connected
to an average of three other routers. Each backbone link was assigned a value for
d of around 20 ms to 40 ms, while each regional link was assigned a value for d of
around 1 ms to 5 ms. All links were assigned loss probabilities in the 0.1regional
router is connected to one of the 400 hosts, and there are no multi-homed hosts. In
our simulations, all hosts are either anycast clients or anycast servers. The servers
are randomly distributed.

For the anycast simulations, we ran 10 server and 25 server tests. In the
base case simulations, the single server was simulated as a 10 (or 25) processor
machine; that is, each individual request took the same amount of time to process
as in the anycast tests, but the single server could simultaneously process 10 (or 25)
requests. In addition, the single server performs perfect load balancing amongst its
processors. For simplicity, it was assumed that servers would process all non-data
requests (e.g. FindServer requests) immediately and at no cost. This favors the
anycast protocols. To partially account for the FindServer overhead in the anycast
protocols, representative servers doubled their own load calculation when choosing
a server to recommend in a FindServer response. Finally, servers were clustered



14 M. BERZSENYI et al.

Fig. 6. Part of a possible network topology

with an RTT threshold of 100 ms. For the 25 server case, this resulted in an average
of 4 servers/cluster. In the 10 server case, however, most of the clusters only
contained a single member (there were 6 clusters).

4.2. Workload

The simulation was driven by a web server log. The log records 1,160,399 requests
to the CMU CS web server from Nov. 23, 1997 to Nov. 30, 1997. For each re-
quest, the log contains a timestamp, a client identification, and the amount of data
requested. Since the log records requests from 146,829 clients, each client in the
simulation actually corresponds to many clients from the log. To avoid distorting
client cache performance (i.e. a client’s cache of an anycast server address), sim-
ulation clients maintain separate caches for each log client they represent. Server
processing time for data requests is assumed to be linear with the amount of data
requested.

4.3. Performance Metrics

We primarily evaluate each technique based on perceived performance and server
overhead. The perceived performance is measured as client response time, which
is subdivided into FindServer response time and data request response time. Server
overhead is measured as the ratio of FindServer requests processed to the number
of data requests sent; that is, both of our anycast proposals may result in multiple
servers processing each FindServer request, so we measure the degree of redun-
dancy.

In order to gain a better understanding of the performance of our protocols,
we also measure the service time of data requests at the servers. This allows us to



APPLICATION LAYER ANYCAST 15

determine how much of the client’s perceived request latency was due to network
latency. Also, by comparing the service times of the anycast protocols to that of
the base case, we can determine how successfully each scheme load-balanced the
servers.

4.4. Results

In Table 1, we see a breakdown of average client waiting time for each of the
protocols in each of the topologies. The columns are marked as follows: ‘ERS’
corresponds to clustered TTL scoping, ‘CWD’ corresponds to clustering with dis-
card, and ‘Base’ corresponds to the single-server base case. The first row, marked
‘Find,’ displays the average time to find a server to satisfy each request. The row
marked ‘Fetch,’ displays the average time to load the data. The row marked ‘Total’
is the sum of the two rows above. All times are in milliseconds. Note that the base
case has no find overhead since each client only goes to one server each time.

Table 1. Average Time (ms) for a client to receive data from the server

10 servers 25 servers
ERS CWD Base ERS CWD Base

Find 38.76 35.31 0 28.25 30.83 0
Fetch 679.69 672.56 659.71 747.93 745.67 741.67
Total 718.45 707.87 659.71 776.18 775.50 741.67

There are several interesting details inTable 1. We see that the time required
to find a suitable server is 5% of the total time of each transfer for both ERS and
CWD. The performance of the anycast protocols improves as the number of servers
increases. This is also unsurprising as the average distance between a client and
the closest server will decrease as the number of servers increases, and the same
request stream should be more easily handled by a larger number of servers if the
request stream is heavy enough to load the servers.

In Table 2, we see measurements of the service time as perceived by the server,
and the degree of redundancy in processing FindServer requests. The columns are
the same as in the previous table. The row marked ‘Fetch,’ displays the average
time (in milliseconds) to process a request at the server. The row marked ‘Find
Redundancy’ is the average number of servers that process each FindServer request.

Comparing the server Fetch values to the client Fetch values, we can see that
the majority of client-perceived latency for the base case was due to network latency.
In contrast, the majority of the client-perceived latency of the anycast protocols is
due to server processing time. Comparing the average times of the ERS and CWD
protocols, we see that, as expected, CWD is more successful at load balancing.
We also see that, while adding more servers does decrease the average service



16 M. BERZSENYI et al.

Table 2. Average Time (ms) for a server to service a data request, and average number of
servers that process each FindServer request

10 servers 25 servers
ERS CWD Base ERS CWD Base

Find 375.62 321.34 248.63 320.27 301.83 242.67
Total 3.97 2.73 n/a 3.93 2.93 n/a

time slightly, 2.5 times as many servers translates into a relatively small decrease
in service time, even after factoring out the minimum time (as measured by the
perfectly load-balanced base case). Finally, by comparing the network latencies
experienced in each protocol, we see that, as expected, the anycast protocols were
able to reduce network latency by directing client requests to nearby servers. We
also see that ERS was slightly more successful at reducing network latency than
CWD. This is due to ERS’s strict adherence to hop count from the client. In CWD,
a nearby cluster may choose to ignore a request because it is heavily loaded. Since
the penalty of bad load balancing is significantly more severe than the penalty of
being serviced by a slightly more distant cluster, this appears to be a good tradeoff.
Finally, notice that the number of servers that process each FindServer request is
fairly low, indicating that the server overhead in these protocols can probably be
maintained at acceptable levels. We notice that the 25 server CWD case already
has almost the same client request latency as the base case.

5. Conclusions

When a server’s data is uncacheable, it makes sense to replicate that server around
the network so that clients will have a better chance of avoiding congestion when
communicating with it. Once the server is replicated, however, the challenge be-
comes choosing the correct mirror for a client to use. We have investigated mech-
anisms for picking a server based on a client’s multicast query message. These
mechanisms exist purely at the application layer and require no additional net-
work probing. We used trace-based simulations to explore two anycast methods:
clustered TTL with scoping, and clustering with discard. The former used a client-
initiated expanding ring search to find the nearest cluster. The latter used the hop
count from the client to the server to determine the appropriate cluster for a client.
In both mechanisms, once a client found a cluster, its requests would be handed off
to the least-loaded member of the cluster.

The simulations show that a reasonable method of application-layer anycast
can be derived from our proposed mechanisms. The time to find a server imposes
another 5% of overhead on data transfer time on a lightly congested network. With



APPLICATION LAYER ANYCAST 17

an amount of network congestion comparable to that in the Internet, we see that
our anycast methods can outperform the base case. We believe that an application
layer anycast service provides new ground for emerging multimedia applications,
and can significantly improve the performance of the current Internet.

References

[1] BHATTACHARJEE, S. – AMMAR , E. M. – ZEGURA, E. – SHAH, V. – FEI, Z.: Application
Layer Anycasting. InProceedings of IEEE Infocom ’97, 1997.

[2] Bright Tiger Home Page. http://www.brighttiger.com/.
[3] A Distributed Testbed for National Information Provisioning.

http://ircache.nlanr.net/Cache/.
[4] FRANCIS, P.: A Call for an Internet-wide Host Proximity Service (HOPS).

http://www.ingrid.org/hops/wp.html.
[5] GUTTMAN , E. – PERKINS, C. – VEIZADES, J.: Service Location Protocol.

draftietf–svrloc–protocol–v2–00.txt.
[6] GUYTON, J. D. – SCHWARTZ, M. F.: Locating Nearby Copies of Replicated Internet Services.

Technical Report CU–CS–762–95, University of Colorado at Boulder, 1995.
[7] L EVINE, B. N. – GARCIA–LUNA–ACEVES, J. J.: Improving Internet Multicast with Routing

Labels. InProceedings of ICNP ’97, 1997.
[8] M ATHIS, M – SEMKE, J. – MAHDAVI , J.: The Macroscopic Behavior of the TCP Congestion

Avoidance Algorithm.Computer Communication Review, 27(3), July 1997.
[9] PARTRIDGE, C. – MENDEZ, T. – MILLIKEN , W.: RFC 1546: Host Anycasting Service, October

1993.


	Introduction
	Related Work
	Anycast Proposal
	Proposal Overview
	Basic TTL Scoping Scheme
	Basic Clustering Scheme
	TTL Scoping versus Clustering
	The Modified Schemes

	Evaluation
	Simulation Environment
	Workload
	Performance Metrics
	Results

	Conclusions

