PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 43, NO. 2, PP. &19{1999)

APPROXIMATE CALCULATION OF EQUIVALENT EXCITATION
LENGTH IN INDUCTION HEATING WITH FLUX CONDUCTOR
CONTAINING FERROMAGNETIC PLATE?

Gyorgy TEVAN and LaszIl6 KOLLER

Department of High Voltage Engineering and Equipment
Technical University of Budapest
H-1521 Budapest, Hungary
e-mail: tevan@ntb.bme.hu
tel: (36-1-) 463-27-80

Received: Dec. 5, 1999

Abstract

In the first part of the article the electromagnetic field is determined between the ferromagnetic plate
and the flux conductor — inductor system with approximating analytical calculation. Then the power
is calculated, penetrated into the ferromagnetic plate and from this the equivalent excitation length can
be obtained with the condition that a uniform excitation of equivalent length gives the same power.
The ferromagnetic skin effect is handled by the MacLean’s model, which considers the magnetisation
curve as rectangular lines.
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1. Introduction

During induction heating, it is very important to concentrate the heat at a given
place, to reduce the size, to increase the efficiency of the energy transformation
and to shield the outer magnetic field. These requirements can be fulfilled mostly
by inductors with flux conductor, therefore in the practice of the induction heating
this kind of inductor is frequently used, for example to heat plate load made of
steel (may be by continuous feeding). In some processes the heating stops below
the Curie temperature, so the plate remains ferromagnetic, while in other cases the
plate has to be heated up to a higher temperature, where its magnetic property will
be lost and its relative permeability will be reduced to unity. Even in the latter case,
the heating of the plate crosses the period of ferromagnetic state. That is why the
examination of this state is important. Therefore our examination is connected to
the heating of a ferromagnetic plate by inductor with flux conductor; or to be more
precise, it gives an important geometrical datum for the design of the inductor—load
system. This date is the equivalent excitation length, which is computed based on

IThis publication has been created based on project OTKA 025045.
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the distribution of the field quantities in the air gap that can be seEigirl, with
a size ofA. (The Figure shows the upper half of an arrangement.)
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Fig. 1. Intersection model of the arrangement

2. Approximation Hypothesis

. The arrangement is supposed to be infinity lengthwise of the inductor—con-

ductor {-direction).

. The plate and the flux conductor are supposed to be infinity perpendicular to

the length of the inductor—conductor as weldirection).

. The tangential component of the magnetic field strength is supposed to be 0

at the surface of the flux conductor opposite to the plate and constant below
the inductor.

. The field impedance is supposed to be constant and independentoof

the boundary plane of the ferromagnetic plate and its value is calculated from
the Mac-Lean model, by a mean valtig, which will be determined later.
(It will be the peak value of the sinusoidal quantity.)

. Supposing that the air gap is small between the flux conductor—inductor and

the plate, iny-direction the electromagnetic field of the air gap can be calcu-
lated by series expansion with a 2D model. Only the first four terms of the
series will be taken into consideration.

3. Field Equations and Boundary Conditionsin the Air Gap

Assuming that the current is sinusoidal in the inductor, or taking its first harmonic,
let us formulate the Maxwell's equations by the phasors of the electromagnetic
field characteristics. As a result of the assumptions, the electric field has only
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z-directional component, while the magnetic field kasindy-directional compo-
nents. If the circular frequency of the sinusoidal current or its first harmonig is
then:

oE .

B_X = Ja)MOHy, (1)

oE .

3_y = _Ja)/‘LOHXs (2)
H H
M My _ o, 3)
ay ax

The boundary conditions are (according to hypothesis 3):

" 0. it =2,
(Hy)y=a = Hog(x), whereHy = —; g(x) = (4)
ES . ES
1, if |X] <=,
2
. 8 p
(B)y—0 = Zo(Hy=0; Zo= (24 ])Xo; Xo= 3 e (5a)
7T Em

here&,, is the maximal penetration depth and
2pH
b= | 2, (5b)
B()a)

4. Solution of the Field Equations

Let us define a dimensionle§&x) phasor function by the following formula:
(Hx)y—0 = Hof (%), (6)

whereHgy was defined in4). The substitution ofY) and @) into Eqg. (3) results a
Laplace equation:
3’°E  9%E
— +—=0. 7
X2 + ay2 0

The solution can be represented by Taylor series arguad taking the first four
terms into consideration:

oE y d°E y? d°E y3
E X (E)y — Z4+(— 4+ (— . 8
(Bly=ot (ay)y=o T (ayz)y=o 2 "oy y=0 3! ®
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Fig. 2. Distribution of magnetic field strength
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Fig. 3. Equivalent excitation length vs. the air gap

According to 63) and 6) (E)y—o = (24 j) XoHof (x), according to¥) and ()

oE
=) = —jouoHdf ().
<8y>y=0 J opoHof (X)
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Based on7Y)
9°E 92E @2
) = \3a) = ga®y=0=—-2+ DXoHof" ().
(ayz)yzo <8X2>y=0 dxz( )Y—O ( +J) oo (X)

Also based on7)

PE\ @ (eEN £(%):
ays yzo_ dX2 ay y:O_Ja)l‘LO 0 )

substituting the previous equations in8),(the relation will be the following:

E
o = @+ DI = 5200y — 2+ J)f”<x>— - Jﬂy—fwx)
Introducing the quantity
X
p=—"" )
wHo

and differentiating the previous equation according tbe following formula can
be written:

1 9E . i ., Y2
=~ ——f(x) @+ DE"eoy + 2172

L (10)
XoHo 3y p 2

According to boundary conditiort) andEg. (2)
oE .
— =— Hog(X). 11
(ay>yzA joroHog(x) a1
Comparing {0) and (L1), using formulation §) it can be written:
2

. A
fO0 +17() [(1— 2])pA - 7] = g(x),

or introducing formulation
A
A =a, 1-—= 12
VP 2p X (12)

and inscribing the meaning gi(x) according to4)

1, if X<
(x — 2))a%f"(x) +f(x) = (13)
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Because of the symmetri(x) is an even function therefore differential equation
(13) has to be solved only for > 0. Furthermore, because of the continuity ©f)
andf”(x) and becausé(x) is an even functiori’(x) = 0. Taking this result into

consideration, the solution of differential equatid3)(in the interval 0< x < Es:

f(x) =1+K; (qu + e*q§> ,

whereq fulfils the characteristic equatiaty — 2j)q? + 1 = 0 and from that

VA4 x?— VA X2+ :
q= #_J /#:a_“& (14)
(4+x°) 2(4+ x)

. , . . . L
(Otherwise the formula written fdi(x) is also correct in the mtervalzs <x<0)

The solution of differential equatiori§) in theEs < X < o0, taking into account
that limy_, o f(X) = O: )
f(x) = Koe 9.
ConstantsK; andK, can be determined by the continuity fafx) andf’(x) at
£s

X = —. The final expression fof(x), which determines according t6)(the
distribution of (Hy)y—o, is:

1/ .3 x5 . ¢
1-= (eq s e a7>, if x| < —,

2 2
1 ls _qls _qalxl . ES
— d72 a7 473 -
2( e )e , if |X| > >

The complex power intruding into lawide part of the plate — using relatiobd)
and supposing to be independent of —

+00

+00
P+1Q=b [ (E)altojodx=bZo [ (Hoy-oHj ook

Finally, taking @) and @) into consideration
NI 2 +00
P+ jQ=Dbz, (7) / f(x)f*(x) dx.
S —00
Theeffectivelength ‘ ¢’ is defined in such a way, that the assumption of the magnetic
I
field strength by a magnitude %L results the same complex power along the length
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‘¢’ like the more accurate computation. Thus — using fliaj is even —

NI\?2
bZo(7>£—P+1Q bZO< ) /f(x)f (X) dx.

From that

_ &

T2 F00f*(x) dx
According to 6a) and £b) the value of impedancg, depends on the-independent

value ofHy,, which is not defined yet. It is obvious to calculate this value (which is
average according to and the peak value of the sinusoidal quantity) using length

lzl:
NI
Hn = V2. (17)

(16)

In accordance with formulabg) and 6b), notation @) and (L2), and relation 14)
and (L5) f(x) depends orH,,, therefore the computation requires iteration. The
integration contained bylg) can be seen in the Appendix. The final result is:

3 a ao
2 (12+,82

_als o 1 ls B 1) . £s
a[(mw)ﬁ%(ﬂa)—(auﬂz—@)sm(ﬂa)]

Substituting the previous result intd6) the following formula can be written:

/ fOOf*(X)dx =

e —
Ly

1
= a a(é 3()[2_/32 E_ _ 3/32_052 . Z_ _ 3(12—/32
1+4% s {e [2a(a2+ﬁ2) COS('B as) 2B(a?+p2) sin ('3 as)] 2a(a2+/32)}

Fig. 2 shows the distribution of the absolute value of the magnetic field strength
on the surface of the plate at different air gaps, and at paramptess5 and

s = 40 mm. InFig. 3, the equivalent excitation length as a function of the air gap
can be seen.

(18)

Conclusion

Based orkgs. (59), (5h), (9), (12), (14), (17) and (L8) an iterative evaluation is given
to determine the equivalent excitation length. Inserting this process into designing
any induction heating arrangement the effect of the air gap can be taken into account.
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Appendix

Substitutingq into (15) by « — jB according to {4), in case ofx| < b

1 ; X*% . x+%§
f(X)f*(X): {1—§[e(“_“3) a +e_(‘1—1/3) 3 :|}

1 . x,%s . er%S
% {l _ E |:e(0!+113) a4 e(a+lﬁ)ai|} :

performing the multiplication and using equivalent conversions:

s
ls —_ —

x—55 X x+ & X4+ —=
f(x)f*(x):l—e“Tzcos B a2 — e & oS B a2

2 ls

1,3 1 xt2 1 s X
+ea 4 e a4 Ze%a cos<2 —),
4 4 2 ’Ba
SO
x_ts ES ES
& i X — S _ts
2 e .
/ f)fF*(x)dx = x—zia2 gcos B 2 +ésm ﬁ—z -
0 o B a a a a
a2t a2
X ls Z E
i X+ES g [ x+ 25‘
5 5 | —Zcos| B + —sin| 8 +
a” B
a2t a2
ls ls X:%
LIV SN P L Y.
+8ae2“ T g g asm(z,Ba) _

After substitution and sorting:

ts

T rof 0 dx = 2 4 ek | 22 BY_ P2 gn(ple
/O fOOf (x)dx_2+e [a2+/32cos<’3 ) sm(ﬁ >]

a
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aa a ts a s £
— —(1- e*2°‘3> —e*asin(p=];
a2+ﬁ2+8oz< +45 (ﬁa

L
if |x| > ES usingq = « — jB according to {4),

fOOf*(x) = % [e(“*jﬂ)% - e*(“*jﬁ)%] X
% [e(aﬂﬂ)é% _ e—(a+iﬂ)§%] e @—IPE g-@+ips —
1 s ips  —ipls | —als] 20X
:Z[e‘xa_ela_ela+e a:|e a

it means, that

% _ l ES ES 7%)(
f(X)f (X) = 5 |:Ch ((Xg) — COS(IBE)} e .
Therefore

ﬁ STt =2 [ch (a%) _ cos(ﬁ%)] 2t

a ls a E o
=— (1 e‘2“€> — —cos( B2 )eabs,
(1ee) - g eos(n5)

2

Finally, because

{s

/oof(x)f*(x)dx _ /2f(x)f*(x)dx+/Oof(x)f*(x)dx,
0 0 &

> * _ & a e
/0 fOOf*(X)dx = > + Za a1 R

gl (09 1 Ls
+ae " a |:(o[—2 n IBZ — E) COS(IBE)

B 1\ [
(e w)03)]
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