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Abstract

In the first part of the article the electromagnetic field is determined between the ferromagnetic plate
and the flux conductor – inductor system with approximating analytical calculation. Then the power
is calculated, penetrated into the ferromagnetic plate and from this the equivalent excitation length can
be obtained with the condition that a uniform excitation of equivalent length gives the same power.
The ferromagnetic skin effect is handled by the MacLean’s model, which considers the magnetisation
curve as rectangular lines.
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1. Introduction

During induction heating, it is very important to concentrate the heat at a given
place, to reduce the size, to increase the efficiency of the energy transformation
and to shield the outer magnetic field. These requirements can be fulfilled mostly
by inductors with flux conductor, therefore in the practice of the induction heating
this kind of inductor is frequently used, for example to heat plate load made of
steel (may be by continuous feeding). In some processes the heating stops below
the Curie temperature, so the plate remains ferromagnetic, while in other cases the
plate has to be heated up to a higher temperature, where its magnetic property will
be lost and its relative permeability will be reduced to unity. Even in the latter case,
the heating of the plate crosses the period of ferromagnetic state. That is why the
examination of this state is important. Therefore our examination is connected to
the heating of a ferromagnetic plate by inductor with flux conductor; or to be more
precise, it gives an important geometrical datum for the design of the inductor–load
system. This date is the equivalent excitation length, which is computed based on

1This publication has been created based on project OTKA 025045.
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the distribution of the field quantities in the air gap that can be seen inFig. 1, with
a size of�. (The Figure shows the upper half of an arrangement.)

Fig. 1. Intersection model of the arrangement

2. Approximation Hypothesis

1. The arrangement is supposed to be infinity lengthwise of the inductor–con-
ductor (z-direction).

2. The plate and the flux conductor are supposed to be infinity perpendicular to
the length of the inductor–conductor as well (x-direction).

3. The tangential component of the magnetic field strength is supposed to be 0
at the surface of the flux conductor opposite to the plate and constant below
the inductor.

4. The field impedance is supposed to be constant and independent of ‘x ’ on
the boundary plane of the ferromagnetic plate and its value is calculated from
the Mac-Lean model, by a mean valueHm which will be determined later.
(It will be the peak value of the sinusoidal quantity.)

5. Supposing that the air gap is small between the flux conductor–inductor and
the plate, iny-direction the electromagnetic field of the air gap can be calcu-
lated by series expansion with a 2D model. Only the first four terms of the
series will be taken into consideration.

3. Field Equations and Boundary Conditions in the Air Gap

Assuming that the current is sinusoidal in the inductor, or taking its first harmonic,
let us formulate the Maxwell’s equations by the phasors of the electromagnetic
field characteristics. As a result of the assumptions, the electric field has only
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z-directional component, while the magnetic field hasx- andy-directional compo-
nents. If the circular frequency of the sinusoidal current or its first harmonic isω,
then:

∂E
∂x

= jωµ0Hy, (1)

∂E
∂y

= − jωµ0Hx, (2)

∂Hx

∂y
− ∂Hy

∂x
= 0. (3)

The boundary conditions are (according to hypothesis 3):

(Hx)y=� = H0g(x), whereH0 = N I

	s
; g(x) =




0, if |x| ≥ 	s

2
,

1, if |x| <
	s

2
,

(4)

(E)y=0 = Z0(Hx)y=0; Z0 = (2 + j)X0; X0 = 8

3π

ρ

ξm
; (5a)

hereξm is the maximal penetration depth and

ξm =
√

2ρHm

B0ω
. (5b)

4. Solution of the Field Equations

Let us define a dimensionlessf(x) phasor function by the following formula:

(Hx)y=0 = H0f(x), (6)

whereH0 was defined in (4). The substitution of (1) and (2) into Eq. (3) results a
Laplace equation:

∂2E
∂x2

+ ∂2E
∂y2

= 0. (7)

The solution can be represented by Taylor series aroundy = 0 taking the first four
terms into consideration:

E ∼= (E)y=0 +
(

∂E
∂y

)
y=0

y

1! +
(

∂2E
∂y2

)
y=0

y2

2! +
(

∂3E
∂y3

)
y=0

y3

3! . (8)
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Fig. 2. Distribution of magnetic field strength
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Fig. 3. Equivalent excitation length vs. the air gap

According to (5a) and (6) (E)y=0 = (2 + j)X0H0f(x), according to (2) and (6)

(
∂E
∂y

)
y=0

= − jωµ0H0f(x).
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Based on (7)(
∂2E
∂y2

)
y=0

= −
(

∂2E
∂x2

)
y=0

= − d2

dx2
(E)y=0 = −(2 + j)X0H0f ′′(x).

Also based on (7)(
∂3E
∂y3

)
y=0

= − d2

dx2

(
∂E
∂y

)
y=0

= jωµ0H0f ′′(x);

substituting the previous equations into (8), the relation will be the following:

E
X0H0

∼= (2 + j)f(x) − j
ωµ0

X0
f(x)y − (2 + j)f ′′(x)

y2

2
+ j

ωµ0

X0

y3

6
f ′′(x).

Introducing the quantity

p = X0

ωµ0
(9)

and differentiating the previous equation according toy the following formula can
be written:

1

X0H0

∂E
∂y

∼= − j

p
f(x) − (2 + j)f ′′(x)y + j

p
f ′′ y2

2
. (10)

According to boundary condition (4) andEq. (2)(
∂E
∂y

)
y=�

= − jωµ0H0g(x). (11)

Comparing (10) and (11), using formulation (9) it can be written:

f(x) + f ′′(x)

[
(1 − 2 j)p� − �2

2

]
= g(x),

or introducing formulation

√
p� = a, 1 − �

2p
= χ (12)

and inscribing the meaning ofg(x) according to (4)

(χ − 2 j)a2f ′′(x) + f(x) =




1, if |x| <
	s

2
,

0, if |x| ≥ 	s

2
.

(13)
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Because of the symmetry,f(x) is an even function therefore differential equation
(13) has to be solved only forx ≥ 0. Furthermore, because of the continuity off(x)
andf ′′(x) and becausef(x) is an even functionf ′(x) = 0. Taking this result into

consideration, the solution of differential equation (13) in the interval 0≤ x ≤ 	s

2
:

f(x) = 1 + K1

(
eq x

a + e−q x
a

)
,

whereq fulfils the characteristic equation(χ − 2 j)q2 + 1 = 0 and from that

q =
√√

4 + χ2 − χ

2(4 + χ2)
− j

√√
4 + χ2 + χ

2(4 + χ2)
= α − jβ. (14)

(Otherwise the formula written forf(x) is also correct in the interval−	s

2
≤ x ≤ 0.)

The solution of differential equation (13) in the
	s

2
≤ x ≤ ∞, taking into account

that limx→∞ f(x) = 0:
f(x) = K2e−q x

a .

ConstantsK1 and K2 can be determined by the continuity off(x) and f ′(x) at

x = 	s

2
. The final expression forf(x), which determines according to (6) the

distribution of(Hx)y=0, is:

f(x) =




1 − 1

2

(
eq

x− 	s
2

a + e−q
x− 	s

2
a

)
, if |x| <

	s

2
,

1

2

(
eq 	s

2a − e−q 	s
2a

)
e−q |x |

a , if |x| >
	s

2
.

(15)

The complex power intruding into ab wide part of the plate – using relation (5a)
and supposingZ0 to be independent ofx –

P + j Q = b
∫ +∞

−∞
(E)y=0(Hx)

∗
y=0 dx = bZ0

∫ +∞

−∞
(Hx)y=0(Hx)

∗
y=0 dx .

Finally, taking (4) and (6) into consideration

P + j Q = bZ0

(
N I

	s

)2 ∫ +∞

−∞
f(x)f∗(x) dx .

Theeffective length ‘	’ is defined in such a way, that the assumption of the magnetic

fieldstrengthbya magnitude of
N I

	
results the same complexpower along the length
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‘	’ like the more accurate computation. Thus – using thatf(x) is even –

bZ0

(
N I

	

)2

	 = P + j Q = bZ0

(
N I

	s

)2

· 2
∫ ∞

0
f(x)f∗(x) dx .

From that

	 = 	2
s

2
∫∞

0 f(x)f∗(x) dx
. (16)

According to (5a) and (5b) the value of impedanceZ0 depends on thex-independent
value ofHm, which is not defined yet. It is obvious to calculate this value (which is
average according tox and the peak value of the sinusoidal quantity) using length
‘	’:

Hm = √
2

N I

	
. (17)

In accordance with formula (5a) and (5b), notation (9) and (12), and relation (14)
and (15) f(x) depends onHm, therefore the computation requires iteration. The
integration contained by (16) can be seen in the Appendix. The final result is:∫ ∞

0
f(x)f∗(x) dx = 	s

2
+ a

4α
− aα

α2 + β2

+ae−α 	s
a

[(
α

α2 + β2
− 1

4α

)
cos

(
β

	s

a

)
−
(

β

α2 + β2
− 1

4β

)
sin

(
β

	s

a

)]
.

Substituting the previous result into (16) the following formula can be written:

	

	s
=

= 1

1 + a
	s

{
e−α 	s

a

[
3α2−β2

2α(α2+β2)
cos

(
β 	s

a

)− 3β2−α2

2β(α2+β2)
sin
(
β 	s

a

)]− 3α2−β2

2α(α2+β2)

} . (18)

Fig. 2 shows the distribution of the absolute value of the magnetic field strength
on the surface of the plate at different air gaps, and at parametersp = 5 and
	s = 40 mm. InFig. 3, the equivalent excitation length as a function of the air gap
can be seen.

Conclusion

Based onEqs. (5a), (5b), (9), (12), (14), (17) and (18) an iterative evaluation is given
to determine the equivalent excitation length. Inserting this process into designing
any induction heating arrangement the effect of the air gap can be taken into account.
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Appendix

Substitutingq into (15) by α − jβ according to (14), in case of|x| ≤ 	s

2

f(x)f∗(x) =
{

1 − 1

2

[
e(α− jβ)

x− 	s
2

a + e−(α− jβ)
x+ 	s

2
a

]}

×
{

1 − 1

2

[
e(α+ jβ)

x− 	s
2

a + e−(α+ jβ)
x+ 	s

2
a

]}
;

performing the multiplication and using equivalent conversions:

f(x)f∗(x) = 1 − eα
x− 	s

2
a cos


β

x − 	s

2
a


− e−α

x+ 	s
2

a cos


β

x + 	s

2
a




+1

4
e2α

x− 	s
2

a + 1

4
e−2α

x+ 	s
2

a + 1

2
e−α

	s
a cos

(
2β

x

a

)
,

so

∫ 	s
2

0
f(x)f∗(x) dx =


x − eα

x− 	s
2

a

α2

a2 + β2

a2


α

a
cos


β

x − 	s

2
a


+ β

a
sin


β

x − 	s

2
a




−

− e−α
x+ 	s

2
a

α2

a2 + β2

a2


−α

a
cos


β

x + 	s

2
a


+ β

a
sin


β

x + 	s

2
a




+

+ a

8α
e2α

x− 	s
2

a − a

8α
e−2α

x+ 	s
2

a + a

4β
e−α

	s
a sin

(
2β

x

a

)}x= 	s
2

x=0

.

After substitution and sorting:∫ 	s
2

0
f(x)f∗(x) dx = 	s

2
+ e−α 	s

a

[
αa

α2 + β2
cos

(
β

	s

a

)
− βa

α2 + β2
sin

(
β

	s

a

)]
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− αa

α2 + β2
+ a

8α

(
1 − e−2α 	s

a

)
+ a

4β
e−α 	s

a sin

(
β

	s

a

)
;

if |x| >
	s

2
usingq = α − jβ according to (14),

f(x)f∗(x) = 1

4

[
e(α− jβ) 	s

2a − e−(α− jβ) 	s
2a

]
×

×
[
e(α+ jβ)

	s
2a − e−(α+ jβ)

	s
2a

]
e−(α− jβ)

	s
2a e−(α+ jβ)

	s
2a =

= 1

4

[
eα 	s

a − e jβ 	s
a − e− jβ 	s

a + e−α 	s
a

]
e−2α x

a

it means, that

f(x)f∗(x) = 1

2

[
ch

(
α

	s

a

)
− cos

(
β

	s

a

)]
e− 2α

a x .

Therefore∫ ∞

	s
2

f (x) f
∗
(x) = 1

2

[
ch

(
α

	s

a

)
− cos

(
β

	s

a

)]
a

2α
e− α

a 	s =

= a

8α

(
1 + e−2α 	s

a

)
− a

4α
cos

(
β

	s

a

)
e− α

a 	s .

Finally, because

∫ ∞

0
f(x)f∗(x) dx =

∫ 	s
2

0
f(x)f∗(x) dx +

∫ ∞

	s
2

f(x)f∗(x) dx,

∫ ∞

0
f(x)f∗(x) dx = 	s

2
+ a

4α
− aα

α2 + β2

+ae−α
	s
a

[(
α

α2 + β2
− 1

4α

)
cos

(
β

	s

a

)

−
(

β

α2 + β2
− 1

4β

)
sin

(
β

	s

a

)]
.
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