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Abstract

The problem of estimating conditional quantiles using neural networks is investigated here. A basic
structure is developed using the methodology of kernel estimation, and a theory guaranteeing con-
sistency on a mild set of assumptions is provided. The constructed structure constitutes a basis for
the design of a variety of different neural networks, some of which are considered in detail. The
task of estimating conditional quantiles is related to Bayes point estimation whereby a broad range
of applications within engineering, economics and management can be suggested. Numerical results
illustrating the capabilities of the elaborated neural network are also given.
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1. Introduction

For statistical purposes, distributions of random variables are most often reported
through characteristic parameters describing their fundamental features. Moments,
especially mean value and variance, constitute a well known example of such quan-
tities. Another group of characteristics are the positional parameters, namely quan-
tiles and their functions (FISZ, 1963), which are more directly connected to the
distribution function by relating certain points to its assumed values. Frequently
the median (quantile of order 0.5) is treated as the mean, and the quantile deviation,
i.e. the difference between quantiles of order 0.75 and 0.25, can be interpreted sim-
ilarly to variation. Also special quantiles, such as quadriles, deciles and percentiles
often appear in statistical applications.

If auxiliary variables are available, conditional probability distributions may
be defined. Consequently, their characteristic parameters, e.g. conditional quan-
tiles, are given as functions of those auxiliary variables. When standard distri-
butions are encountered (for example, if all variables are jointly Gaussian) or in
general when the conditional characteristics are linear functions, the problem of
estimation is thoroughly investigated, and a variety of methods can be applicable.
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The situation is severely complicated if distributions are far from standard, and the
conditional characteristics are nonlinear functions with an unknown structure. In
this case nonparametric methods including neural networks may prove to be useful,
and the precise purpose of this paper is to constructively design a neural network
applicable for estimating conditional quantiles in the general nonstandard situation.

Neural networks have in recent years developed into powerful tools for solving
optimisation problems within, for example, classification, estimation and forecast-
ing. For the majority of cases, the applied neural networks, from a statistical point
of view, solve conditional estimation problems. The celebrated Back Propagation
Error algorithm used for training Feed Forward Neural Networks is shown to be a
special case of gradient optimisation in the sense of mean squared error (RUMEL-
HART and MCCLELLAND , 1986). Feed Forward Neural Networks are in paper
(WHITE, 1990) analysed for consistent estimation of conditional expectation func-
tions, which optimise expected squared error. Optimal classification is concerned
with the problem of classifying, on the basis of feature measurements, a set of ob-
jects, while obtaining a minimal probability of misclassification. This problem is
equivalent to conditional estimation, and it is shown in work (RUCK et al, 1990)
that Feed Forward Neural Networks estimate the optimal discriminating function,
which is the conditional class probability, when trained with the Back Propagation
Error Algorithm. In all of the above cases, some sort of optimisation or training
algorithm is applied adjusting initially random network parameters optimally w.r.t.
average loss functions on a finite set of training data. A more constructive way to
follow is indicated in paper (SPECHT, 1988), where a Probabilistic Neural Network
for classification based on kernel estimators is investigated, as well as by articles
(SPECHT, 1991; SCHIØLER and HARTMANN, 1992), in which a similar line is fol-
lowed for proposing neural networks estimating conditional expectation functions.
From a certain point of view, this strategy is the basis for suggesting a large class
of different neural network architectures, including among others Localised Re-
ceptive Fields (MOODY and DARKEN, 1989) and Counter Propagation Networks
(NIELSEN, 1987). In this paper such a constructive strategy is pursued in order to
design a Feed Forward Neural Network capable of estimating conditional quantiles.

The paper is organised as follows. In Section 2 the mathematical preliminar-
ies of Bayes estimation for the special case, where the associated loss function is
partially linear, will be described. Such a loss function introduces the need for esti-
mating the underlying distribution function as well as its quantiles. A kernel based
estimator for estimating the above quantities will be developed in Section 3, where
an appropriate neural network interpretation is also given. The non parametrical
kernel estimator suffers from the fact that no meaning could be associated to the
specific model parameters, i.e. they do not represent verbally expressible facts as
in similar model structures like f.ex. fuzzy logic or neurofuzzy modelling, where
model structure and parameters have a corresponding linguistic representation. For
such meaning in order to be associated, a model reduction is strongly required.
In the end of Section 3 such a model reduction is suggested along with a scheme
for setting model parameters to make the reduced model approximating the for-
mer sufficiently close. In Section 4 a numerical example verifying the theoretical
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considerations, whereas a conclusion will be provided in the last section.

2. Mathematical Preliminaries

Consider a real random variablew with a distributionPw, and a numberp ∈ (0, 1).
Any real numberqw fulfilling the following inequalities:

Pw((−∞, qw]) ≥ p, (1)
Pw([qw,∞)) ≥ 1 − p (2)

is said to be a quantile of orderp (FISZ, 1963). If the distribution functionFw is
continuous and strictly monotonous, the quantile of orderp is uniquely defined by
the formula

Fw(qw) = p. (3)

Thus the quantile divides the real space into two parts, having probabilitiesp and
1 − p of containing realisations of the random variablew. The quantile of order
0.5 is simply the median; quantiles of orders 0.25, 0.5 and 0.75 are called quadriles;
quantiles of orders 0.1, 0.2,. . ., 0.9 deciles, and orders 0.01, 0.02,. . ., 0.99 designate
percentiles.

Assume that the quantileqw is uniquely defined, and{Fn
w} denotes a sequence

of continuous and strictly monotonous distribution functions converging pointwise
to the functionFw at every point of its continuity. Let the sequence{qn

w} be defined
uniquely by

Fn
w(qn

w) = p. (4)

It is then readily shown that{qn
w} converges towards the quantileqw. Such a strategy

is followed throughout this paper in the design of neural networks for estimating
quantiles.

One important statistical application of quantiles is the problem of Bayes
point estimation, which, for the sake of illustration, is considered below. In that
case a so-called loss functionl : R × R → [0,∞), representing losses caused by
estimation error, will be defined. Its valuel(W, w) is interpreted as the loss incurred
when estimating the parameterw by the valueW . The Bayes loss functionlB can
now be defined as follows:

lB(W ) =
∫
R

l(W, w) dPw(w). (5)

The valuelB(W ) simply constitutes the expected loss when estimating the parameter
w by the valueW . Any real numberWB such that

lB(WB) = inf
W∈R

lB(W ) (6)

is called a Bayes estimator.
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In cases where losses depend strongly on the sign of estimation error, the loss
function l may be defined by

l(W, w) =
{ −a(W − w) if W − w ≤ 0

b(W − w) if W − w ≥ 0 , (7)

wherea andb are real positive numbers. In this case it is readily shown that the
Bayes estimator equals the quantile of order

p = a

a + b
. (8)

In the special case wherea = b = 1 the functionl yields absolute value, and the
Bayes estimator constitutes simply the median (LEHMANN, 1983, Chapter 4).

A practical example illustrating the relevance of Bayes estimation is described
in paper (KULCZYCKI , 1993), where it has been applied to solve a time-optimal
control problem. A parameterw, representing motion resistances in a mechanical
system, is estimated by the valueW , which appears directly in the equations of a
time-optimal feedback controller. IfW > w, overshoots occur, which increase the
time to reach the target proportionally toW − w with a coefficientb. In the case
whereW < w, so-called sliding trajectories appear, also prolonging the reaching
period proportionally tow − W with a coefficienta. The Bayes optimal estimator

of the parameterw therefore exactly constitutes a quantile of order
a

a + b
. That

problem has been solved in paper (KULCZYCKI and SCHIØLER, 1994) using a
preliminary version of the neural network presented in this work.

The uncertainty of estimated parameters is in practice often caused by distur-
bances, some of which might be measured and used for improving the quality of
estimation. The mathematical tool supporting this aim is provided by the concept
of conditional distribution.

Consider the random variablesw andv = (v1, v2, . . . , vn) defined on a com-
mon probability space with a joint distributionPwv on the spaceRn+1. Then the
function Pw|v : β(R) × R

n → [0, 1], whereβ(A) denotes hereinafter the class of
measurable subsets of the spaceA, exists (BILLINGSLEY, 1979, Section 33) so that

1. for everyv ∈ R
n , Pw|v(·, v) is a probability measure on the spaceR,

2. for everyA ∈ β(R) andB ∈ β(Rn )

Pwv(A × B) =
∫

B
Pw|v(A, v) dPv (v). (9)

Eq. (9) definesPw|v(A, ·) almost everywhere uniquely w.r.t.Pv, i.e. the particular
versions of this function differ only on a zero measure set. The measurePw|v(·, v)
is called the conditional probability of the random variablew with respect tov. In
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the case where the joint distributionPwv has a density functionhwv, a conditional
density functionhw|v is given as

hw|v(w, v) = hwv(w, v)∫ ∞

−∞
hwv(x, v) dx

(10)

for every v where the denominator in the above formula is nonzero. Then the
conditional probabilityPw|v can be found explicitly by

Pw|v((−∞, d]), v) =
∫ d

−∞
hw|v(w, v) dw (11)

for everyd ∈ R.
For anyv ∈ R

n the conditional quantileqw|v is defined analogously to the un-
conditional case, i.e. formulas (1)–(2) are replaced by their conditional equivalents

Pw|v((−∞, qw|v(v)], v) ≥ p, (12)
Pw|v([qw|v(v),∞), v) ≥ 1 − p. (13)

Analogously, if for somev ∈ R
n the distribution functionFv is given as

Fv(d) = Pw|v((−∞, d], v) (14)

and{Fn
v } denotes a sequence of continuous and strictly monotonous functions defin-

ing the sequence{qn
v } by the equality

Fn
v (qn

v ) = p, (15)

then it is readily shown that{qn
v } converges towards the conditional quantileqw|v(v),

when the latter value is unique.
Similarly, the conditional Bayes estimatorWB(v) can for everyv ∈ R

n be
given by

l∗
B(W, v) =

∫
R

l(W, v) dPw|v(w), (16)

l∗
B(WB(v), v) = inf

W∈R
l∗

B(W, v). (17)

As can be seen directly from the above definitions, for the loss function given in
Eq. (7), the conditional Bayes estimator constitutes a conditional quantile of the
orderr defined by formula (8).

In the time-optimal control problem mentioned above as an application exam-
ple (KULCZYCKI , 1993), the vectorv contains disturbances possibly influencing
the value of motion resistance, such as temperature or target position. After measur-
ing the observationŝv = (v̂1, v̂2, . . . , v̂n) of these quantities, the Bayes estimator
WB(v̂) yields the minimum expected reaching time when applied to the feedback
controller equations.
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3. Neural Networks for Estimating Conditional Quantiles

Feed Forward Neural Networks are most frequently trained by applying some sort
of optimisation procedure, e.g. Back Propagation, in order to set weights and
offsets optimally with respect to some objective function defined for a finite sample
of training data. In any case this function equals the average value of some loss
function on the available set of data. Thus for any reasonable set of assumptions
the objective function constitutes an estimator of the expected loss function, i.e. the
Bayes loss function. This situation has been investigated in papers (WHITE, 1990;
RUCK et al, 1990) for probability of misclassification and squared error.

In this section, a neural network for estimating conditional quantiles, which
after training is applicable to all possible values of the quantile orderp, will be
elaborated. The reasoning follows the constructive line of works (SPECHT, 1988,
1990; SCHIØLER and HARTMANN, 1992) and is based on the theory of kernel
estimation, which will be introduced shortly below.

Let {wi} in the following be a sequence of identically distributed random
variables with a common densityhw. For anym ∈ N\{0} andr > 0 the density
estimatorhm,r

w can be defined by

hm,r
w (w) = 1

mV (r)

m∑
i=1

φ

(
w − wi

r

)
, (18)

where the volume functionV is expressed as

V (r) =
∫ ∞

−∞
φ

(w

r

)
dw (19)

and the kernel functionφ obeys

lim
r→0

1

V (r)

∫ ∞

−∞
h(w)φ

(
w − d

r

)
dw = h(d) (20)

for any bounded continuous density functionh. The above estimator has been in-
vestigated in paper (PARZEN, 1962) for the case when the sequence{wi} consists of
i.i.d. (independent identically distributed) random variables with a common contin-
uous density functionhw. Forr → 0, andm ·r → ∞ asm → ∞, the functionhm,r

w

is shown to be a pointwise consistent estimator of the densityhw. By interpreting
the kernel functionφ as the nonlinearity of a neuron, and the sequence{wi} as a set
of observations serving as training data, it has been demonstrated in paper (SPECHT,
1991) how this estimator exhibits properties equivalent to neural networks. From
a computational point of view it possesses a massively parallel structure, which
allows for high speed implementation on dedicated hardware; functionally, it is ca-
pable of learning general probabilistic information from measured data. It should
be pointed out, however, that the number of neurons in the network defined from
formula (18) equals the number of data in the training set, and that learning takes
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place more or less by memorising data. In that respect the network provides no
data compression, which might be introduced by interpretingEq. (18) only as a
paradigm defining the structure of the network, and by replacing all constants with
trainable parameters. Such an approach will be pursued in the following.

In papers (SPECHT, 1991; SCHIØLER and HARTMANN, 1992) the estimator
(18) was transformed to compute conditional expectation functions. Here this
transformation is directed towards estimators of conditional distribution functions,
which are applied for the estimation of conditional quantiles.

In the multivariable case the training data is a finite sequence of the form
{(wi , vi)}, wherevi denotes anobservationof some observable explanatory variable.
In that case the multivariable density estimatorhm,r

wv can be given as

hm.r
wv (w, v) = 1

mV (r)

m∑
i=1

φ

(
w − wi

r

)
· φ

(
v − vi

r

)
. (21)

The functionhm,r
wv defines a measurePm,r

wv which hopefully provides an acceptable
estimator of the measurePwv. A conditional distribution estimatorPm,r

w|v can be
obtained by subjectinghm,r

wv to a transformation analogous to the one defined by
Eqs. (10) and (11), i.e.

Pm,r
w|v ((−∞, d], v) =

∫ d

−∞
hm,r

wv (w, v) dw

∫ ∞

−∞
hm,r

wv (w, v) dw

, (22)

which leads to the following closed form expression

Pm,r
w|v ((−∞, d], v) =

m∑
i=1

S

(
d − wi

r

)
· φ

(
v − vi

r

)

m∑
i=1

φ

(
v − vi

r

) , (23)

whereS denotes the antiderivative of the functionφ, i.e.

S(d) =
∫ d

−∞
φ(w) dw. (24)

A scaled Gaussian density may be proposed as a candidate for the functionφ,
namely

φ(d) = exp(−d2). (25)

This function exhibits all properties required here except that its antiderivative is not
computable in a closed form expression. Therefore the functionS can be chosen
not according toEq. (24), but as a function exhibiting equivalent properties and
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computable in a closed form expression. The well known sigmoid function then
constitutes a natural choice, i.e.

S(d) = 1

1 + exp(−d)
. (26)

The above elaboration is based on kernel estimation of a joint density function
hwv, and leads to an estimatorPm,r

w|v of the conditional distributionPw|v ; it serves here
merely as motivation to formula (23), which is more generally valid than indicated
above. In fact, from definitions (25) and (26) it can be shown by fairly standard
means on a very mild set of assumptions only that the functionPm,r

w|v consistently
estimates the distributionPw|v, as stated precisely in the following theorem, which
is proved in the appendix. For simplicity, the theorem is stated and proved forw and
v being one dimensional, but the result is straightforwardly generalised to arbitrary
dimensions.

THEOREM 1 Let Pwv be a probability distribution on the space R2 with an associ-
ated distribution function Fwv , and define the distribution Pv on the real space by

Pv(A) = Pwv(R × A). (27)

Assume the discrete time random process z = (w, v) : �× Z → R
2 to be such that

empirical distributions converge to the function Fwv at every point of its continuity,
i.e.

lim
m→∞

1

m

m∑
i=1

U (z − zi(ω)) = Fwv(z) w.P.1 (28)

for every continuity point z of the function Fwv , where the mapping U : R2 → {0, 1}
is given as

U (x1, x2) =
{

1 if x1 ≥ 0 and x2 ≥ 0
0 otherwise . (29)

Also let the conditional distribution function Fw|v : R2 → [0, 1] defined by

Fw|v(d, v) = Pw|v((−∞, d]), v) (30)

be continuous at a point (d, v) where v belongs to the support of the mapping Pv .
Then, for the estimator Pr,m

w|v defined in equation (23) the following is true:

lim
r→0

[
lim

m→∞ Pr,m
w|v ((−∞, d], v)

]
= Pw|v((−∞, d], v) w.P.1. � (31)

In Theorem1 only a very general ergodic property has to be fulfilled by the data se-
quence requiring empirical measures to converge to the limit measurePwv, which is
not assumed even locally to possess a density function. The conditional distribution
function Fw|v defined byEq. (30) needs to be continuous in the point of estimation,
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which in most practical cases is fulfilled for almost every value of the explanatory
variablev.

Viewed directly as the definition of a neural network, the estimatorPm,r
w|v , as

discussed in the beginning of this section, yields a number of neurons equal to the
number of datam and consequently a network performing no data compression at
all. Compression is generally introduced by replacing the estimatorPm,r

w|v by its

compressed modificationPn,x,ρ,β,γ

C defined by

Pn,x,ρ,β,γ

C ((−∞, d], v) =

n∑
i=1

βi · S

(
d − xw

i

ρi

)
· φ

(
v − xv

i

ρi

)

n∑
i=1

γi · φ
(

v − xv
i

ρi

) . (32)

In this equationn denotes the number of neurons which is considered to be a
design parameter restricted byn � m in order to ensure a sufficient level of
compression. The parametersxi = (xw

i , xv
i ), ρi , βi , γi are viewed as adjustable

weights and offsets, subject to some training procedure projecting the statistical
information of the data to the network parameters. The compression described
above in general terms is implementable in a variety of ways, two representatives
of which are discussed below.

A rather nonconstructive approach utilises the conditional distribution esti-
mator Pm,r

w|v as the target function in a pure supervised learning scheme, setting

all parameters in the estimatorPn,x,ρ,β,γ

C optimally with respect to some measure
of distance between the two functions. If all parameters are trained from initially
random settings, a long period of training, probably including several restarts, may
be anticipated.

A far more constructive method introduces the compression to the kernel
estimatorFm,r

wv given by

Fm,r
wv (w, v) =

∫ w

−∞

∫ v

−∞
hm,r

wv (x, y) dx dy = 1

m

m∑
i=1

S

(
w − wi

r

)
· S

(
v − vi

r

)

(33)
of the joint distribution functionFwv . This leads to the compressed estimator
Fn,x,ρ,α

C defined as

Fn,x,ρ,α

C (w, v) =
n∑

i=1

αi · S

(
w − xw

i

ρi

)
· S

(
v − xv

i

ρi

)
. (34)

If the parameter vectors(xw
i , xv

i ) are generated randomly according to some joint

distribution functionF∗, the mappingFn,x,ρ,α

C for αi = 1

n
andρi = r provides

a kernel estimator of the mappingF∗. The strategy therefore is to generate the
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parameters(xw
i , xv

i ) for the functionF∗ in order to be close to the functionFwv.
This is accomplished by first drawing these parameters randomly from the training

set (wi , vi ). For this choice, as well asαi = 1

n
and ρi = r , the compressed

estimatorFn,x,ρ,α

C simply constitutes a kernel estimator of the functionFwv, based
on a training set withn measurements, which of course is not satisfactory when
a far larger number of data is available. Therefore subsequently self organising
is imposed on the parameters, adjusting them from their initial random settings
to points in the parameter space far less sensitive to the randomness of the initial
draw. That is, if the self organising algorithm is efficient, the parameters(xw

i , xv
i )

are placed so that the different sets of the corresponding Voronoi partition contain
approximately equally many points from the training data set. This in turn implies

that the random uncertainty of the estimatorFn,x,ρ,α

C , for αi = 1

n
andρi = r as

well as for largen andm, is close to that of the functionFm,r
wv . Thus the magnitude

of the training setm, and not the number of neuronsn, determines the uncertainty
of the estimatorFn,x,ρ,α

C .
The smoothing parametersρi might be set to a common valuer fulfilling

perhaps some limit relation with respect to the numbersm andn in order to ensure
consistency when asymptotic properties of the training data sequence are known.
Otherwise heuristics are applicable, such as definingρi as the average Euclidean
distance between(xw

i , xv
i ) and itsk nearest neighbours among{(xw

j , xv
j ), j =

1, 2, . . . , n, j �= i}.
The parametersαi are all initialised to the value

1

n
following the above reason-

ing. Subsequently these parameters are imposed on a supervised training scheme
in which the empirical joint distributionFm defined by

Fm(w, v) = 1

m
#{(wi , vi ) : wi ≤ w andvi ≤ v, i ∈ {1, 2, . . . , m}, (35)

where # denotes the number of elements, serves as a target function. The training
can be implemented by minimising the objective functionE x,ρ,α given as

E x,ρ,α = 1

m

m∑
i=1

l
(
Fn,x,ρ,α

C (wi , vi ), Fm(wi , vi )
) · p(wi , vi ), (36)

wherel is an appropriate loss function andp denotes an optional penalty function
emphasising accuracy in certain domains. During the supervised training the re-
maining network parametersxw

i , xv
i andρi could be either fixed or subject to training

along with the constantsαi . Empirical studies indicate that only an insignificant
improvement can be gained by following the second alternative, whereas computa-
tional effort is significantly increased.

When traininghas been completed, thedistribution function estimatorFn,x,ρ,α

C

is transformed into the corresponding conditional distributionPn,x,ρ,β,γ

C ((−∞,
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d] | v). This can be achieved by the following parameter transformations:

βi = γi = αi · ρi . (37)

Finally the conditional quantiles approximationq̂ is found from

Pn,x,ρ,β,γ

C ((−∞, q̂(v)] | v) = p, (38)

which can easily be solved numerically.

4. Numerical Example

In this section a numerical example illustrating the performance of the proposed
method will be presented. Data are generated artificially as follows:

1. the sequence{wi , i = 1, 2, . . . , 1000} is defined by

wi = sin(vi) + (0.1 · v2
i + 1) · ei , (39)

2. the sequence{vi , i = 1, 2, . . . , 1000} is generated as the realisation of inde-
pendent random variables, all uniformly distributed in the interval[−5, 5],

3. the sequence{ei , i = 1, 2, . . . , 1000} is generated as the realisation of inde-
pendent random variables, all uniformly distributed in the interval[−0.5, 0.5].

According to the above definitions, the conditional quantile of orderp can be found
as

qw|v(v) = sin(v) · (0.1 · v2 + 1) · (p − 0.5). (40)

The generated sequence of training data{(wi , vi )}, as well as the theoretical con-
ditional quantiles of order 0.2, 0.5 and 0.8, are depicted inFig. 1.

A neural network of 50 neurons was trained to estimate the conditional quan-
tiles. The network parameters are found in the following manner:

1. The parameters{(xw
i , xv

i ), i = 1, 2, . . . 50} are initially chosen randomly
from {(wi , vi )}, and subsequently adjusted by a self organising scheme, as
described in the previous section. The initial and final positions of the pa-
rameters{(xw

i , xv
i )} are shown inFig. 2.

2. Each smoothing parameterρi is found as the average distance of the param-
eters{(xw

i , xv
i )} to the four nearest neighbours.

3. The parameters{αi , i = 1, 2, . . . , 50} are found by supervised training using
the empirical joint distribution computed for training data, i.e.{Fm(wi , vi ),
i = 1, 2, . . . , 1000}, as target values.

The theoretical conditional quantiles of orders 0.2, 0.5 and 0.8, as well as
their estimators, can be seen inFig. 3. The numerical results are judged acceptable
to confirm the theoretical considerations carried out earlier in this paper.



120 P. KULCZYCKI and H. SCHIØLER

Fig. 1. Applied training data along with theoretical conditional quantiles

5. Conclusion

A neural network for estimating conditional quantiles has been constructed in the
present paper. Although the network is designed on the basis of kernel estimation
of joint probability density functions, a theory has been presented showing the
network to be valid in more general settings, where only the continuity of conditional
distribution functions, as well as a very general ergodic property of the training data,
is assumed.

The problem of estimating conditional quantiles has been related to Bayes
estimation in the case of a special asymmetric loss function, which would be feasible
for application within a variety of areas in engineering, as well as science and
economics. By estimating conditional quantiles, the neural network designed is
applicable to the Bayes estimation problem.

An intermediate network version identical to a kernel estimator of a con-
ditional distribution function may be viewed as a structural paradigm for a class
of networks distinguished by size, parameter interpretation and the training algo-
rithms applied to set network parameters. Data compression has been discussed,
and a constructive method including both unsupervised as well as supervised learn-
ing has been suggested. The compression and training techniques suggested serve
as representatives for a broad class of methods which might be applied for setting
network parameters. This of course opens up paths for further research on the
application of statistical identification methods for estimating optimal parameter
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Fig. 2. Locations of ‘X ’ parameters before and after self organising

settings, as well as for selecting network size and structure.
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Appendix

(Proof of Theorem 1)

Assumption (28) guarantees weak convergence of empirical measures to the prob-
ability measurePwv. This yields, according to equation (23) and Theorem 29.1 of
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Fig. 3. Theoretical conditional quantiles along with estimators computed by the designed
neural network

book (BILLINGSLEY, 1979):

Fr
w|v(d, v) = lim

m→∞ Pr,m
w|v ((−∞, d] | v) =

∫
R2

S

(
d − w

r

)
· φ

(
v − y

r

)
dPwv(w, y)

∫
R2

φ

(
v − y

r

)
dPwv(w, y)

.

(41)
By continuity of the conditional distributionFw|v at the point(d, v), for everyε > 0
a numberδ > 0 exists such that

|Fw|v(d, v) − Fw|v(d̃, y)| ≤ ε for |v − y| < δ and|d − d̃| ≤ δ. (42)

The general properties of the functionS defined in equation (26), and the fact that
the numberv is in the support of the measurePv, implies for fixedδ the existence
of a numberr > 0 yielding

1 − S

(
d

r

)
≤ ε for d ≥ δ and S

(
d

r

)
≤ ε for d < −δ (43)
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as well as

exp

(
−3δ2

4r2

)

Pv

(
B

(
v,

δ

2

)) ≤ ε. (44)

If the numberδ is fixed, the functionFr
w|v(d, v) can be decomposed in the following

way:

Fr
w|v(d, v) =

∫
(−∞,d−δ]×B(v,δ)

φ

(
v − y

r

)
dPwv(w, y)

∫
R2

φ

(
v − y

r

)
dPwv(w, y)

+ T2 + T3 + T4 + T5

=

∫
B(v,δ)

Fw|v(d − δ, y) · φ
(

v − y

r

)
dPv(y)

∫
R

φ

(
v − y

r

)
dPv(y)

+ T2 + T3 + T4 + T5 (45)

=

∫
B(v,δ)

Fw|v(d, y) · φ
(

v − y

r

)
dPv(y)

∫
R

φ

(
v − y

r

)
dPv(y)

+ T1 + T2 + T3 + T4 + T5,

where

T1 =

∫
B(v,δ)

(Fw|v(d − δ, y) − Fw|v(d, v)) · φ

(
v − y

r

)
dPv(y)

∫
R

φ

(
v − y

r

)
dPv(y)

, (46)

T2 =

∫
(−∞,d−δ]×B(v,δ)

(
S

(
d − w

r

)
− 1

)
· φ

(
v − y

r

)
dPwv(w, y)

∫
R

φ

(
v − y

r

)
dPv(y)

, (47)

T3 =

∫
(d−δ,d+δ]×B(v,δ)

S

(
d − w

r

)
· φ

(
v − y

r

)
dPwv(w, y)

∫
R

φ

(
v − y

r

)
dPv(y)

, (48)

T4 =

∫
(d+δ,∞]×B(v,δ)

S

(
d − w

r

)
· φ

(
v − y

r

)
dPwv(w, y)

∫
R

φ

(
v − y

r

)
dPv(y)

, (49)



124 P. KULCZYCKI and H. SCHIØLER

T5 =

∫
B(v,δ)C

S

(
d − w

r

)
· φ

(
v − y

r

)
dPwv(w, y)

∫
R

φ

(
v − y

r

)
dPv(y)

, (50)

while the superscript ‘C ’ denotes the complementary set. Inequalities (42) and (43)
directly yield the bounds

|T1| ≤ ε, (51)
|T2| ≤ ε, (52)
|T4| ≤ ε. (53)

By definition of the conditional probabilityFw|v(d, v), the remaining termT3 can
be rewritten as

T3 =

∫
(d−δ,d+δ]×B(v,δ)

S

(
d − w

r

)
· φ

(
v − y

r

)
dPwv(w, y)

∫
R

φ

(
v − y

r

)
dPv(y)

=

∫
B(v,δ)C

(Fw|v(d + δ, v) − Fw|v(d − δ, v)) · S

(
d − w

r

)
· φ

(
v − y

r

)
dPwv(w, y)

∫
R

φ

(
v − y

r

)
dPv(y)

.

(54)

Therefore the application of formula (42) and the triangle inequality yields

|T3| ≤ 2 · ε. (55)

Now obviously

Fw|v(d, v) =

∫
R

Fw|v(d, v) · φ
(

v − y

r

)
dPv(y)

∫
R

φ

(
v − y

r

)
dPv(y)

(56)

and subtracting equations (56) and (45) it leads to

Fw|v(d, v) − Fr
w|v(d, v) =

∫
B(v,δ)C

Fw|v(d, v) · φ

(
v − y

r

)
dPv(y)

∫
R

φ

(
v − y

r

)
dPv(y)

−T1 − T2 − T3 − T4 − T5. (57)
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The functionsFw|v(d, v) and S are both numerically bounded by 1. Along with
inequalities (51)–(53) and (55), this implies

|Fw|v(d, v) − Fr
w|v(d, v)| ≤

∫
B(v,δ)C

Fw|v(d, v) · φ
(

v − y

r

)
dPv(y)

∫
R

φ

(
v − y

r

)
dPv(y)

+ 5 · ε + |T5|

≤ 2 ·

∫
B(v,δ)C

φ

(
v − y

r

)
dPv(y)

∫
R

φ

(
v − y

r

)
dPv(y)

+ 5 · ε. (58)

For V ∈ B(v, δ)C obviously

(
v − y

r

)2

≥ δ2

r2
(59)

and forV ∈ B

(
v,

δ

2

)
similarly

(
v − y

r

)2

≤ δ2

4r2
. (60)

With the functionφ defined as inEq. (25), the following bounds are obtained from
inequalities (59) and (60):

∫
B(v,δ)C

φ

(
v − y

r

)
dPv(y) ≤ exp

(
−δ2

r2

)
, (61)

∫
R

φ

(
v − y

r

)
dPv(y) ≥

∫
B(v, δ

2)
φ

(
v − y

r

)
dPv(y)

≥ exp

(
− δ2

4r2

)
· Pv

(
B

(
v,

δ

2

))
. (62)
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This, together with formulas (44) and (58), yields

|Fw|v(d, v) − Fr
w|v(d, v)| ≤ 2 ·

exp

(
−δ2

r2

)

exp

(
− δ2

4r2

)
· Pv

(
B

(
v,

δ

2

)) + 5 · ε

= 2 ·
exp

(
−3δ2

4r2

)

Pv

(
B

(
v,

δ

2

)) + 5 · ε ≤ 7 · ε, (63)

by which Theorem1 is finally proved.
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