
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 2, NO. 2, PP. 127–149(2000)

PROBABILISTIC FAULT DIAGNOSIS IN LARGE,
HETEROGENEOUS COMPUTING SYSTEMS

Tamás BARTHA∗ and Endre SELÉNYI∗∗
∗ Computer and Automation Research Institute,

Hungarian Academy of Sciences
H-1111 Budapest, Kende u. 13-17, Hungary

Phone/Fax: (+361) 466-7483, E-mail: bartha@sztaki.hu∗∗ Department of Measurement and Information System,
Budapest University of Technology and Economics

H–1521 Budapest, M̋uegyetem rkp. 9, R/113, Hungary
Phone: (+361) 463-2057, Fax: (+361) 463-4112, E-mail: selenyi@mit.bme.hu

Received: Dec. 20, 1999

Abstract

Probabilistic diagnosis aims at making the system-level fault diagnostic problem both easier to solve
and the resulting algorithms more generally applicable. The price to pay for these advantages is
that the diagnostic result is no longer guaranteed to be correct and complete in every fault situation.
This paper presents a novel approach, calledlocal information diagnosis (LID), and applies this
methodology to create a family of probabilistic diagnostic algorithms. The developed algorithms can
be divided into three main classes:limited inference, limited information, andscalar algorithms. All
of the LID algorithms are composed of three main phases: aninference extraction phase, aninference
propagation phase, and afault classification phase. The paper introduces four algorithms based on
the LID concept. These algorithms differ mainly in the inference propagation and fault classification
phases, representing a trade-off between performance and diagnostic accuracy. The quality of the
heuristic rules employed in the fault classification phase significantly affects the accuracy of diagnosis.
Three heuristic methods of fault classification are defined, and the diagnostic performance provided
by these heuristics are compared using measurement results.

Keywords: multiprocessor systems, system-level fault diagnosis, probabilistic diagnostic algorithms,
generalized test invalidation, fault classification heuristics.

1. Introduction

The decreasing trend of the price to performance ratio of microprocessor compo-
nents advances the development ofmassively parallel (MP) computers, that deliver
significantly more computing power than single processor systems. Moreover, low
cost supercomputing solutions emerge on the basis ofworkstation clusters, net-
worked commercial off-the-shelf microcomputers controlled by a UNIX-compliant
operating system such as Linux. These systems are built up of a large amount of
functionally identicalprocessing elements (PEs). PEs execute a part of the user
application in parallel, and cooperate using a communication medium to unify the
partial result in a complete solution. Still, the scientific problems solved by these
computing environments are so complex, that the typical application run times fall

128 T. BARTHA and E. SELÉNYI

in the range of several days. Although modern electronic circuits have a very low
permanent fault rate, the probability of an error occurrence during application ex-
ecution in an MP system is significant due to the large number of components and
the long continuous time of operation. Therefore, keeping the delivered system
service uninterrupted by tolerating the effects of occurring errors is very important
for parallel systems. This aim can be achieved by a fault tolerant architecture.

Automated fault diagnosis is an integral part of multiprocessor fault tolerance.
Its task is to locate the faulty units in the system. Identified faulty units are stopped
and physically or logically excluded from the set of available resources, and the
computer is reconfigured to use only the fault-free system devices. This strategy
is well applicable in massively parallel computers due to their significant inherent
redundancy.

Parallel computers are too complex to be modelled on the lowest, physical
level. In system-level fault diagnosis only the processing elements and their inter-
actions are taken into consideration. The diagnostic procedure consists of the two
main steps: (1) PEs execute tests on each other to detect possible errors, (2) the
diagnostic algorithm determines the fault state of each PE by analyzing the collec-
tion of test results (called thesyndrome). The tests are performed according to a
predefined test arrangement (tester – tested unit relationships) and have a binary
(pass/fail) outcome. The problem of syndrome analysis lies in the fact, that faulty
processors may behave in an arbitrary manner. Thus, the results of tests performed
by faulty units can be affected by the error and become unreliable. This effect is
known as thetest invalidation.

Existing methods for system-level fault diagnosis can be categorized into
deterministic andprobabilistic methods. Deterministic diagnosis algorithms guar-
antee the correct and complete identification of the fault set, provided that certain
a priori requirements on the structure of the test arrangement and on the behaviour
of the faulty units are satisfied. These requirements are usually strict and often im-
practical. The resulting deterministic algorithms are too complex and not efficient
enough to handle large systems. Probabilistic diagnostic algorithms only attempt
to provide correct diagnosis with high probability. This implies that the created
diagnostic image can be eitherincorrect (fault-free processors are misdiagnosed as
faulty, or vice versa) orincomplete (the fault state of certain processors cannot be
classified). The benefits of the probabilistic approach are simpler, faster algorithms
witout restrictive assumptions on the test arrangement or on the fault sets.

2. System-Level Fault Diagnosis

System-level fault diagnosis uses a simplified fault model composed of units, com-
munication links, test connections, and test results. The system is built of a set of
ui ∈ U units: U = {u1, u2, . . . , un}, connected by a set of(ui , u j) ∈ C commu-
nication links, whereui , u j ∈ U but i �= j . The units and links form thesystem
graph S = (U, C). The fault statefi of theui unit can either befault-free (denoted

PROBABILISTIC FAULT DIAGNOSIS 129

by f 0
i) or faulty (f 1

i). Each unit may test one or more other fault-free or faulty
units, but (without loss of generality) we require that only the communication links
can be used for testing purposes. The test assignment is expressed in the form of a
digraphT = (U, E), whereE ⊆ C defines the set ofti j test connections between
unitsui andu j . Two sets can be associated with eachui unit:

– the set of units tested byui , �(ui) = {u j : ti j ∈ E}, and
– the set of testers ofui , �−1(ui) = {u j : t j i ∈ E}.

The unionof tested and tester units is the set of neighboursN (ui) = �(ui)∪�−1(ui).
The set of units, that are reacheable fromui via directed edge sequences consisting
of at mostk edges are called thek-neighbours:Nk(ui). The cardinalities of these
sets are denoted byν(ui) andνk(ui), respectively. Edges of theT digraph ortesting
graph are labelled by theai j ∈ A test results. Tests are simple GO/NO GO tests,
they may either pass (ai j takes the value 0) or fail (ai j evaluates to 1). TheA
collection of test results is thesyndrome.

The syndrome can be interpreted according to varioustest invalidation mod-
els. Test invalidation is the effect of the behavior of a faulty unit on a test result.
For example, a faulty tester unit may produce a nondeterministic pass/fail test re-
sult, independent of the state of the tested unit. This test invalidation scheme is
called thesymmetric invalidation or PMC model (PREPARATA – METZE – CHIEN,
1967). Other test invalidation schemes are also possible. Theasymmetric invalida-
tion or BGM model (BARSI – GRANDONI – MAESTRINI, 1976) assumes that the
probability of two identical unit failures is negligible, and the testing procedure is
thorough enough to detect the difference of two fault modes. Therefore, a test on
a faulty unit will always fail even if it is performed by a faulty tester processor. In
both invalidation models a test result of a fault-free processor indicates the exact
state of the tested unit, i.e., tests are assumed to becomplete.

2.1. Generalized Test Invalidation

In heterogeneous systems consisting of various functional units, test invalidation
will likely be heterogeneous as well. Thegeneralized test invalidation scheme
provides a unified framework to handle the differences of the invalidation models
of system components (SELÉNYI, 1984). The model is described inTable 1. Due
to the complete test assumption fault-free units always test other units correctly.
Test results generated by faulty tester units can have three outcomes: always pass,
always fail, or arbitrarily pass/fail independent of the fault state of the tested unit.
These results correspond to the constants 0, 1, andX . Nine possible test invali-
dation models are encompassed by the generalized scheme, a particular model is
determined by the respectiveC ∈ {0, 1, X} andD ∈ {0, 1, X} values. For example,
symmetric invalidation is referred to as theTX X , and asymmetric invalidation as the
TX1 test invalidation model.

130 T. BARTHA and E. SELÉNYI

Table 1. Generalized test invalidation

Tester unit Tested unit Test result
fault-free fault-free pass
fault-free faulty fail
faulty fault-free C ∈ {pass, fail, or arbitrary}
faulty faulty D ∈ {pass, fail, or arbitrary}

The relationship between tester and tested units encapsulated by generalized
invalidation can be used to deriveparameterized one-step implication rules. One-
step implications have the form of ‘fault statea of unit ui implies the fault state
b of unit u j ’ (denoted by f a

i → f b
j). An implication rule is affected by three

main parameters: (1) the test invalidation of the tester unit, (2) the (supposed) fault
state of the tester/tested unit, and (3) the actual test outcome. The complete set of
parameterized one-step implication rules derived from the general test invalidation
model is shown inTable 2.

Table 2. One-step implication rules

Type Tester unit Tested unit Test Implication
fault state invalidation fault state result

←↩ fault-free f 0
i → f 0

i
→ fault-free pass f 0

i → f 0
j

← T1D fault-free pass f 0
j → f 0

i

→ fault-free fail f 0
i → f 1

j

← T1D, TX D fault-free fail f 0
j → f 1

i

; T0D fault-free fail f 0
j → f 1

j

← TC0 faulty fail f 1
j → f 0

i

→ faulty T10, TX0 fail f 1
i → f 0

j

→ faulty T01, TX1 pass f 1
i → f 0

j

; TC0 faulty pass f 1
j → f 0

j
; faulty T00 fail f 1

i → f 0
i

; faulty T11 pass f 1
i → f 0

i←↩ faulty f 1
i → f 1

i← TC0, TC X faulty pass f 1
j → f 1

i
→ faulty T00, T0X fail f 1

i → f 1
j

→ faulty T10, T1X pass f 1
i → f 1

j

Type:←↩ tautology,→ forward,← backward,; contradiction

PROBABILISTIC FAULT DIAGNOSIS 131

Four types of one-step implication rules exist: tautology, forward implication,
backward implication, and contradiction. Acontradiction provides a sure impli-
cation: it expresses that either the fault-free or the faulty state of a certain unit is
incompatible with the syndrome:f a

i → f ¬ a
i . Two one-step implications can be

combined into a two-step implication using the transitive property: iff a
i → f b

j

and f b
j → f c

k are two valid one-step implications, then they implyf a
i → f c

k . The
set of all one-step and multiple-step implications obtained by repeated application
of the transitive property is thetransitive closure. It contains all information that
can be extracted from the syndrome. In the following section we describe how the
transitive closure can be utilized in the diagnostic procedure.

Diagnostic implications can be drawn in a digraph form. Theinference graph
I = (U,F,P) is composed of theU set of units, the set off {0,1}

i ∈ F possible
fault states and the set ofpi j ∈ P one-step implications, derived from the actual
syndrome. In the graphical representation units, states and implications correspond
to boxes, nodes and directed edges (seeFig. 1).

f
i
0

1f
i

ui

f
j
0

uj

1f
j

p
ij

Fig. 1. Components of the inference graph

2.2. Local Information Diagnosis

The transitive closure is obtained using the implication rules derived from the gen-
eralized test invalidation model, and so it is the complete source of topology and
fault set independent diagnostic information. A diagnostic algorithm based on the
transitive closure has the following structure:

1. One-step diagnostic implications are extracted using the parameterized im-
plication rules and the actual syndrome (see an example inFig. 2).

2. Multiple-step implications are obtained by transitively combining one-step
implications. Inference propagation may continue until all possible impli-
cation chains are expanded in full length, that is, the transitive closure is
created.

3. All units involved in contradictions found in the transitive closure can be
surely classified as fault-free or faulty.

132 T. BARTHA and E. SELÉNYI

1 1

0

1

(b)(a)

Fig. 2. Inference graph creation: (a) Example testing graph with syndrome,
(b) Corresponding inference graph

4. Other units are diagnosed by a deterministic or probabilistic fault classifica-
tion method.

For units whose fault state cannot be surely classified there are two possible
diagnostic approaches. Deterministic algorithms assume that certain predefined
conditions on the possible fault sets and on the testing assignment hold. The re-
strictive conditions allow the diagnostic algorithm to eliminate diagnostic uncer-
tainty by leaving certain fault sets out of consideration. This way a one-to-one
correspondence is created between the fault sets and the resulting syndromes, and
the generated diagnostic image is guaranteed to be correct and complete when the
requirements are justified. However, there is no information on the behaviour of
the deterministic algorithms outside the valid range of their assumptions; they may
produce arbitrary results. Probabilistic methods give a possibility to achieve a sat-
isfactory diagnostic result even where the deterministic approach is useless. They
employ fault classification heuristics to determine the fault state of system units.
The aim of these heuristics is to estimate the most likely fault state, while they must
remain simple and computationally efficient at the same time.

There are two main performance bottlenecks of the above outlined procedure.
First and foremost, generating the transitive closure of a large inference graph is
a computation-intensive task. The underlying idea oflocal information diagnosis
(LID) is that a probabilistic algorithm can achieve high probability of diagnostic
correctness without expanding the implication chains in full length. The informal
explanation of this claim requires us to examine the possible fault configurations.

Two main types of fault patterns can occur in an MP system: (1) the faults
are scattered throughout the system, separated from each other, and (2) the faults
are located close to each other forming a group. In most practical cases both situ-
ations can be handled using just a portion of the diagnostic information (BLOUGH

PROBABILISTIC FAULT DIAGNOSIS 133

– SULLIVAN – MASSON, 1989). When faults are separated, the failed test results
appear locally in the syndrome. The faulty units are surrounded by fault-free tester
processors, there is diagnostic information enough available to identify the faulty
units. In the second case, however, diagnostic uncertainty caused by faulty units
‘blocks’ the propagation of the inferences. In other words, the faults constituting
the group border isolate the inside of the group from the rest of the system. The
implication chains do not lead into the core of the group. For this reason, any clas-
sification method can only attempt to identify the units on the fault group borders.
These peripheral units are surrounded by fault-free testers similarly to separated
faults, and can be reliably identified even if only a partial diagnostic information is
extracted from the syndrome. The diagnosis of the fault group core will improve
only little when the implication chains are calculated in full length.

The other performance bottleneck originates in the classification of those units
which are not involved in a contradiction and whose fault state cannot be surely
identified. Deterministic algorithms require complex methods for this task, since
they must guarantee a correct and complete diagnosis (if only in a restricted set of
cases). A typical requirement employed by many traditional diagnostic algorithms
is a static upper bound on the number of tolerated faulty units. This diagnostic
t-limit is a very serious restriction in large systems, because a significant amount
of fault sets consisting of more thant faulty units are unambiguously diagnosable
(SOMANI – AGARWAL – AVIS, 1987). Moreover, the amount of unambiguously
diagnosable faults does not remain static (as the diagnostict-limit suggests) but
increases proportionally to the system size.

Along these guidelines the authors developed a family of probabilistic diag-
nostic algorithms based on the local information diagnosis methodology (BARTHA
– SELÉNYI, 1996). These simple and efficient algorithms use thegeneralized test
invalidation principle making them able to handle a class of heterogeneous systems.
They are significantly faster than deterministic algorithms as they analyze only a
portion of diagnostic information contained in the transitive closure. Several of
them exploit the regular structure and low local complexity of MP systems by prop-
agating implications only among the neighbour units. The fault classification step
uses a simple heuristic rule, solely based on the collected one- and multiple-step
implications independent of the number of faulty units. This further reduces the
time complexity of the algorithms, and provides good diagnostic accuracy even for
fault sets significantly larger than thet-limit.

3. Diagnostic Algorithms

In this section we present four local information diagnostic algorithms. They can
be divided into the following three categories:

Limited inference algorithms: These algorithms use a binary matrix representa-
tion of the one- and multiple-step implications derived from the syndrome.
This binary matrix (called theinference matrix and denoted byM) stores

134 T. BARTHA and E. SELÉNYI

every possible implication, i.e., the complete diagnostic information about
the system. The repeated multiplication of the inference matrix transitively
propagates the stored implication chains. The underlying idea of limited
inference methods is to compute implication chains only in a limited, prede-
termined length. This way only a subset of the transitive closure is obtained.
Units are classified on the basis of this incomplete diagnostic information.

Limited information algorithms: Another methodof reducing the diagnostic com-
plexity is to limit the amount of information taken into account during in-
ference propagation. The concept of this approach is to ‘cut out’ the local
environment of the unit under diagnosis, and perform a full transitive closure
in this restricted area. Thus, the computation-intensive transitive closure
computation is performedn times, but only for a small, constant sizeMk(ui)
reduced inference matrix.

Scalar algorithms: Scalar algorithms compute and utilize only the quantity of im-
plications supporting a given fault hypothesis. They do not keep record of the
implication chains connecting the fault states. The time and space complex-
ity of this class of algorithms is quite low, while they provide considerably
good diagnostic accuracy. On the other hand, the scalar representation ob-
viously results in the loss of diagnostic information. The relationship of
non-neighbour units cannot be determined and multiple-step contradictions
remain undetected. A further consequence of this information loss is that
the fault classification heuristics presented in this paper are not applicable
to scalar algorithms. The heuristic classification rule in these methods is in-
cluded in the form of a specific weight function used in the implication sum
calculation.

3.1. Limited Inference Algorithms

Limited inference algorithms process the complete set of diagnostic inferences,
but propagate the implication chains only in a limited, predetermined length and
classify the units on the basis of this ‘partial transitive closure’.

Limited Multiplication of Inference Matrix (LMIM) algorithm. The LMIM algo-
rithm is a simplified variant of the Selényi algorithm described in (SELÉNYI, 1984).
One-step implications are collected and stored in the 2n × 2n M inference hyper-
matrix. TheM matrix consists of fourn×n binary minor matrices:M00, M01, M10

andM11. Themxy[i, j] element of theMxy minor matrix(x, y ∈ {0, 1}) equals 1
if there exists anf x

i → f y
j one-step implication between unitsui andu j , otherwise

it is 0. All elements in the main diagonal of theM00 andM11 minor matrices are
1, representing the tautology implications. The structure of the inference matrix is
shown inFig. 3.

Transitive closure can be computed by the logical closure of theM matrix.
This is achieved by the repeated application of theM(k+1) ← M(k) · M(k) (the

PROBABILISTIC FAULT DIAGNOSIS 135

j

i

u

u

1
1

1
1

1
1

1

1
1

1

1
1

contradictions

contradictions

M =
M00

M01

M10 M11

m00[i, j]

Fig. 3. Structure of the inference matrix

contents ofM in the (k + 1)-th step is the square ofM in the k-th step) iteration
until no new implications appear in the subsequent steps. However, in the LMIM
algorithm theM matrix is raised only to a small, constant power (hence the name
of the method), i.e., the iteration is executed only a few, constant times. Thus,
the matrix will contain only a subset of the diagnostic inferences included in the
transitive closure. Non-zero elements in the main diagonal of theM01 and M10

minor matrices signify contradictions. For example, ifm01[i, i] equals to 1, then
the f 0

i → f 1
i implication holds, that is unitui is surely faulty. Similarly, allu j

units corresponding to the non-zerom01[j, j] andm10[j, j] elements can be surely
classified. For other units a heuristic fault classification rule, like those described
in Section 4, must be used to determine their fault state.

Distribution of Inference Lists (DIL) algorithm. The DIL algorithm uses the same
representation as the LMIM method. However, it has a better time complexity,
because it exploits the properties of regular topologies. These topologies have
a constant, relatively low connectivity of nodes, i.e., each processor has only a
few neighbours. In such systems, the matrix multiplication used to compute the
transitive closure performs a lot of redundant operations, especially in the first few
iterations. For example, them00[i, j] element of theM00 minor matrix is computed
as

m00[i, j] ←
n∑

k=1

m00[i, k] · m00[k, j] + m01[i, k] · m10[k, j].

In the first iteration only one-step implications exist and these can be combined into
two-step implications only at neighbour nodes, therefore each multiplication where
uk /∈ N(ui) ∩ N(u j) is surplus. The idea of the DIL algorithm is to avoid these
redundant operations by propagating inference chains only among neighbouring

136 T. BARTHA and E. SELÉNYI

nodes.

For everyui unit four binary vectors:m00[i], m01[i], m10[i], andm11[i]
contain the set of one-step implications according to the local view ofui (these are
the row vectors of the respective minor matrices inM). In every iteration the set of
implications is propagated locally at eachui unit by unifying the appropriate row
vectors ofui with the row vectors of its neighbours (seeFig. 4). At the end of the
process, sure classification is indicated by thei-th components of them01[i] and
m10[i] vectors. Unclassified processors are diagnosed with the help of heuristic
fault classification rules, similarly to the LMIM algorithm.

Algorithm DIL
{ initialization }
for each ui ∈ U do

m00[i] ⇐ {u j : ∃p j i , f 0
j → f 0

i }

m01[i] ⇐ {u j : ∃p j i , f 0
j → f 1

i }

m10[i] ⇐ {u j : ∃p j i , f 1
j → f 0

i }

m11[i] ⇐ {u j : ∃p j i , f 1
j → f 1

i }

end for
{ updatem00, m01, m10, m11 vectors }
for each iterationdo

for each ui ∈ U do
for each pi j ∈ P[i] do

if pi j : f 0
i → f 0

j then

m00[j] ⇐ m00[j] ∪m00[i]
m10[j] ⇐ m10[j] ∪m10[i]

else if pi j : f 0
i → f 1

j then

m01[j] ⇐ m01[j] ∪m00[i]
m11[j] ⇐ m11[j] ∪m10[i]

else if pi j : f 1
i → f 0

j then

m00[j] ⇐ m00[j] ∪m01[i]
m10[j] ⇐ m10[j] ∪m11[i]

else if pi j : f 1
i → f 1

j then

m01[j] ⇐ m01[j] ∪m01[i]
m11[j] ⇐ m11[j] ∪m11[i]

end for
end for

end for

Fig. 4. Pseudo code of DIL algorithm

PROBABILISTIC FAULT DIAGNOSIS 137

3.2. Limited information

The limited information approach uses a different concept to utilize regularity.
Instead of limiting the length of implication chains, this approach limits thearea
of inference propagation.

Local Transitive Closure (LTC) algorithm. The LTC algorithm calculates a com-
plete transitive closure, but only in a small local environment of the diagnosed units.
The diagnosis of everyui unit begins with the creation of an additional 2νk × 2νk
hypermatrix. This reducedMk(ui) matrix includes only theui processor and its
k-neighbours, and the one-step implications among them. In the second step the
transitive closure of the reduced matrix is computed, and the resulting implications
are copied back to theM matrix. Since eachMk(ui) matrix contains paths of at
mostk length, the finalM matrix includes implications of at mostk-step length.
Space and time complexity is reduced due to the smaller size of the reduced matrix.
The resultingM matrix is used for sure and heuristic fault classification identically
to the LMIM and DIL algorithms.

3.3. Scalar Algorithms

The decision factor in the case of scalar algorithms is the number of implications
supporting a given fault hypothesis. These algorithms achieve a significant time and
space complexity reduction by not representing the implication chains themselves.
This is advantageous from the efficiency viewpoint, but obviously results in further
loss of diagnostic information. As a consequence, the relationship of non-neighbour
units cannot be determined and higher order contradictions remain undetected. To
compensate for this effect additional information – like a weight function – must
be included in these methods.

Count Inference Paths (CIP) algorithms. The CIP algorithm estimates the likelihood
of a fault hypothesis as the number of implications supporting it. For this purpose the
algorithm maintains two counters	0[i] and	1[i] at eachui unit, corresponding to
the weighted number of edges in implication chains ending in the fault-free statef 0

i
and the faulty statef 1

i of ui in the inference graph. The	0[i] and	1[i] numbers are
calculated by an iterative algorithm. The initial value of the counters is set using
the one-step implications collected from the syndrome. One-step contradictions
are detected during the initialization process, and they are used to surely classify
the affected units. For processors without sure classification the number of the
implications supporting both fault states of the unit are counted. The algorithm is
outlined inFig. 5.

In the(k+1)-th iteration step the counters are increased appropriately by the
number of paths added to the neighbour units’ counters in thek-th step. Thiscounter
update mechanism is described inFig. 6. The value of the added paths is multiplied

138 T. BARTHA and E. SELÉNYI

Algorithm CIP
{ initialization }
for each ui ∈ U do

for each pi j ∈ P, u j ∈ N(ui) do
if pi j is contradictionthen

surely classifyui
else P[i] ⇐ P[i] ∪ pi j

end for
end for
{ count inference paths }
for each iterationdo

for each ui ∈ U do
for each pi j ∈ P[i] do

if ui is surely classifiedthen
surely classifyu j

else Update	0[i], 	1[i]
end for

end for
end for

Fig. 5. Pseudo code of CIP algorithm

by theW (pi j) weight of thepi j implication connecting the unit and its neighbour.
TheW weight function is set to compensate for the effect of incorrect implications
corresponding to faulty units. In the subsequent iteration steps all implication chains
of length 2, 3, . . . , k are added to the calculation. The set of surely classified units is
also extended using the implications drawn from the already surely classified fault
states. After the given number of iterations the remaining unclassified units are
diagnosed as faulty if	1[i] > 	0[i], otherwise they are assumed to be fault-free.

There are two variants of the CIP algorithm. The above outlined method is
referred to as CIP-2, because it uses two counters to calculate the weighted number
of edges in thef x

j → f 0
i and f y

j → f 1
i (wherex, y ∈ {0, 1} and j = 1, 2, . . . , n)

type of implication chains. The refined CIP-4 variant maintains four counters called
	00[i], 	01[i], 	10[i], and	11[i]. Now it is possible to separately calculate the
f 0

j → f 0
i , f 0

j → f 1
i , f 1

j → f 0
i , and f 1

j → f 1
i type of implication chains.

This reduces the number of loops in the considered inference paths, which results
in a more exact estimation of the implication number. The CIP-4 algorithm is
completely identical to the CIP-2, only the Update routine must be modified to
handle the four counters. The fault classification step is also different: the remaining
(not surely classified) units are diagnosed as faulty if	01[i] > 	00[i], other units
are fault-free. Note, that in the case of both scalar algorithms the fault classification
heuristics introduced in Section 4 are not applicable, ‘fine-tuning’ of these methods
can be achieved by modifying the elements of theW weight function.

PROBABILISTIC FAULT DIAGNOSIS 139

Algorithm Update 	0[i], 	1[i]
{ initialization }
for each ui ∈ U do

	0[i] ⇐ 0, s0[i] ⇐ 0, t0[i] ⇐ −1
	1[i] ⇐ 0, s1[i] ⇐ 0, t1[i] ⇐ −1

end for
{ update	0[i], 	1[i] counters }
for each iterationdo

for each ui ∈ U do
for each pi j ∈ P[i] do

if pi j : f 0
i → f 0

j then

	0[j] ⇐ 	0[j] + W (pi j)(s
0[i] − t0[i])

else if pi j : f 0
i → f 1

j then

	1[j] ⇐ 	1[j] + W (pi j)(s
0[i] − t0[i])

else if pi j : f 1
i → f 0

j then

	0[j] ⇐ 	0[j] + W (pi j)(s
1[i] − t1[i])

else if pi j : f 1
i → f 1

j then

	1[j] ⇐ 	1[j] + W (pi j)(s
1[i] − t1[i])

end for
end for
for each ui ∈ U do

t0[i] ⇐ s0[i], s0[i] ⇐ 	0[i]
t1[i] ⇐ s1[i], s1[i] ⇐ 	1[i]

end for
end for

Fig. 6. Counter update mechanism of CIP algorithm

4. Fault Classification Heuristics

The limited inference type of LID algorithms: LMIM, DIL, and LTC methods
described in (BARTHA – SELÉNYI, 1996) are all algorithmically different, but di-
agnostically equivalent methods of generating the partial implication set, which
is used for fault classification. However, the evaluation of the partial implication
set is also a complex problem. In probabilistic methods, such as the LID algo-
rithms subject to this paper, use heuristic fault classification rules to transform the
implications into a system-wide diagnostic image. Our previous paper (BARTHA
– SELÉNYI, 1996) used only one of the many possible heuristic rules. As the
quality of the employed fault classification heuristic significantly affects diagnostic
accuracy, without comparison it is hard to value the performance of probabilistic
algorithms.

This paper defines three new fault classification heuristics developed on the

140 T. BARTHA and E. SELÉNYI

i iu u

M =

M00 M01

M10 M11

	0[i] 	1[i]

Fig. 7. Calculation of the	0[i] and	1[i] values

basis of successful existing methods. The developed heuristic methods are called
Majority (this was the heuristic used in our previous papers),Election, andClique.
They are all based on the assumption that the number of faulty units does not
exceed the number of fault-free units in the system. However, each heuristic uses
this assumption differently. The section presents the description of the heuristic
fault classification methods, then the diagnostic performances of these methods are
compared using measurement results.

Majority heuristic. The idea of Majority heuristics is simple: since only the
fault-free units produce reliable test results, only the implications from the fault-
free states (stored in theM00 andM01 minor matrices) should be considered. The
f 0

j → f 0
i and f 0

j → f 1
i implications(j = 1, 2, . . . , n) can be interpreted as votes

for the fault-free and faulty state of theui unit, respectively. The fault classification
can be made as a majority decision between the votes for the fault-free/faulty state.
The sum of votes, i.e., the number off 0

j → f 0
i and f 0

j → f 1
i implications can be

calculated by counting the non-zero elements stored in thei-th column of theM00

andM01 matrices (seeFig. 7). Comparing the two sums	0[i] =∑
j m01[j, i] and

	1[i] = ∑
j m00[j, i], the unit is diagnosed as faulty if	0[i] < 	1[i], otherwise

it is fault-free. (In a system with more fault-free than faulty units and a completely
connected testing graph the Majority heuristic would always correctly classify the
fault state of all units.)
Election heuristic. The Election heuristic applies the mechanism of theCount
Failed Tests (CFT) algorithm developed by the authors in (BARTHA – SELÉNYI,
1997) and the Dahbura et al algorithm (DAHBURA – SABNANI – KING, 1987)
to limited inference methods. The idea is to identify the faulty units sequentially
one-by-one. Units are ranked according to the likelihood of being faulty for the

PROBABILISTIC FAULT DIAGNOSIS 141

purpose of selection, and in each identification step the unit with the highest ranking
is diagnosed as faulty. The diagnostic uncertainty is decreased by removing the
useless and confusing implications originating in the actually located faulty unit.
Naturally, ranks must be recomputed each time the set of diagnostic implications
is changed. The procedure is outlined inFig. 8.

Election heuristic
{ initialization }
for each ui ∈ U do

LF[i] ⇐ 	1[i] −	0[i]
NLF[i] ⇐∑

j LF[j], u j ∈ �−1(ui)

end for
{ election }
ϒ ⇐ U,
⇐ ∅
while ∃ j, k, m01[j, k] �= 0 do

find um with:
maximumLF[m], and
minimumNLF[m]

⇐
 ∪ um
ϒ ⇐ ϒ − um
∀ui ∈ U, m01[m, i] ⇐ 0
recalculateLF[i] andNLF[i]

end while { classification }
∀ui ∈
, ui is faulty
∀u j ∈ ϒ, u j is fault-free

Fig. 8. Pseudo code of the Election heuristic

The likelihoodL F[i] of the faulty state of unitui is estimated asL F[i] =
	1[i] − 	0[i]. For ranking units with identical LF values, the likelihoodN L F [i]
of the faulty state of units testingui is also counted:N L F [i] = ∑

j L F[j] for
eachu j ∈ �−1(ui). The units are sorted to find the unitum most likely to be faulty
with the most reliable testers, i.e., having the maximumL F[m] and the minimum
N L F [m] values. Theum unit is then added to the
 set of faulty units. The unit
and its f 0

m → f 1
i implications are removed from theM inference matrix, and the

entire selection procedure starts again. When there are no more implications in the
M01 minor matrix the remaining units are classified as fault-free.

Clique heuristic. The Clique heuristic is based on the diagnostic algorithm
by Maestrini et al. (MAESTRINI – SANTI , 1995). The concept is similar to the
Majority heuristic: if some fault-free units could be located, then their test results
could reliably identify the fault state of other units. However, instead of comparing
the feasibility of the fault-free/faulty states individually, the algorithm tries to group
the units into two separate cliques. Since in the worst case each clique can contain
only one element, clique generation must be done on a per unit basis. Thefriendly

142 T. BARTHA and E. SELÉNYI

clique C0[i] of unit ui contains units with a fault state identical toui (they are
either all fault-free or faulty), while thefoe clique C1[i] groups units with a fault
state opposite toui (if ui is fault-free, then they can only be faulty, and vice versa).
Obviously, the clique sets of neighbour fault-free units are identical.

Clique heuristic
{ initialization }
for each ui ∈ U do

C0[i] ⇐ C0[i] ∪ u j , if m00[i, j] �= 0
C1[i] ⇐ C1[i] ∪ u j , if m01[i, j] �= 0

end for
{ clique closure }
for each ui ∈ U do

for each u j ∈ C0[i] do
C0[i] ⇐ C0[i] ∪ C0[j]
C1[i] ⇐ C1[i] ∪ C1[j]

end for
end for
{ classification }
find um with:

maximum|C0[m]|, and
minimum |C1[m]|

∀ui ∈ C0[m], ui is fault-free
∀u j ∈ C1[m], u j is faulty
other units are unknown

Fig. 9. Pseudo code of the Clique heuristic

Cliques are initialized using the implications in theM00 andM01 minor ma-
trices. Clique membership is then extended using the following two rules: (1) ‘my
friend’s friend is my friend’, and (2) ‘my friends foe is my foe’. The other two
possible rules: (3) ‘my foe’s friend is my foe’, and (4) ‘my foe’s foe is my friend’
are not used, since they could lead to inconsistent cliques due to faulty units. Then,
the algorithm searches for theum unit with a maximum cardinalityC0[m] set and
minimum cardinalityC1[m] set. The units belonging to theC0[m] set are called
the Fault-Free Core, they are classified as fault-free. Units in theC1[m] set are
diagnosed as faulty. Since some parts of the system can be separated by faulty
units, there can be units neither contained in theC0[m] set nor in theC1[m] set.
These units get theunknown classification, i.e., the Clique heuristic may lead to an
incomplete diagnostic image.

PROBABILISTIC FAULT DIAGNOSIS 143

5. Performance

The presented methods were compared using measurements in a dedicated simula-
tion environment. The simulation examined many characteristics of the algorithms,
including the effect of fault percentage, type of fault patterns, number of itera-
tions, and system topology on diagnostic performance. The simulated system had
a 2-dimensional toroidal mesh topology containing 12× 12 processing elements.
Random fault patterns of various fault probabilities were injected in the system,
and after executing the diagnostic algorithm in 2 iterations statistical data of the
diagnostic accuracy were collected in 512 subsequent simulation rounds. Although
several homogeneous and heterogeneous invalidation schemes were involved in
the simulation, here we can present only the results for most common symmetric
(PMC) test invalidation model due to space constraints.

Table 3 summarizes the main characteristics of the presented algorithms:

Time complexity: The CIP and DIL algorithms process the information locally,
their complexity depends on theν = maxi ν(ui) number of neighbouring
units. The complexity of the LTC algorithm depends only on theνk =
maxi νk(ui) number ofk-neighbors examined. Note, that theν andνk val-
ues are constant in the function of system size, so the CIP, DIL, and LTC
algorithms have essentially linear time complexity. The only exception is the
LMIM algorithm, its relatively low performance results from the redundant
matrix operations which make it topology-independent.

Space complexity: The values reflect the amount of data manipulated for diagnos-
tic purpose, not including the syndrome. For large systems, and in case of
small numbers of consideredk-neighbours the LTC algorithm has the best
space complexity.

Number of diagnostic implications: This row of the table shows the size of the
transitively propagated implication set afterk iteration steps. In this respect
LMIM is far more effective than the other algorithms, since it increases the
length of considered implication chains exponentially, and yet it has linear
time complexity respective to the number of iterations. The LTC algorithm
is the worst among LID methods in this respect: it can only linearly increase
the amount of diagnostic information at the cost of cubical time complexity.

Table 3. Characteristics of the presented algorithms

Algorithm CIP LMIM DIL LTC
Type scalar limited limited limited

inference inference information
Time complexity O(nν) O(n3) O(nν) O(nν3

k)

Space complexity O(n) O(n2) O(n2) O(ν2
k)

Implication set O(k) O(2k) O(k) O(k)

Propagation local global local local

144 T. BARTHA and E. SELÉNYI

The effect of the fault set size on diagnosis accuracy is shown inFig. 10.
The figure shows the average number of incorrectly diagnosed units for various
fault probabilities, in the percentage of the system size. The LMIM, DIL, and
LTC algorithms are not drawn separately, since they produce identical results (as
expected) using the same fault classification heuristic. Therefore, only the two
CIP variants and the three developed heuristic methods are presented. It can be
seen, that diagnostic accuracy strongly drops as the ratio of faulty units reaches
near 50 percent of the system size. However, the accuracy is very good (less than
0.2 percent of the total 144 processors) in the practically relevant 0–25 fault percent
range.

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70

M
is

di
ag

no
se

d
pr

oc
es

so
rs

 (
pe

rc
en

t)

Fault percentage

CIP-2
CIP-4

Majority
Election

Clique

Fig. 10. Average misdiagnosed processors versus fault percentage

The worst case diagnostic measures of the three fault classification heuristics
are summarized separately inTable 4. The first two columns contain the number of
faults injected in the system and the percentage of faulty units. For the Majority and
Election heuristics the number of simulation rounds with incorrect diagnosis (MR),
and the maximum number of incorrectly classified fault-free (MM0), and faulty
(MM1) units per round are presented. According to the results the Majority heuristic
gives a better overall performance than the Election heuristic, although the latter is
less prone to misdiagnose a fault-free unit as a faulty unit. The Clique heuristic did
not make any diagnostic mistakes, therefore the number of simulation rounds with
incomplete diagnosis (IR) and the maximum number of unknown fault-free units
(UM0), and faulty (UM1) units per round is given instead. Clearly, the number of
unknown units considerably exceeds the total amount of units misdiagnosed by the

PROBABILISTIC FAULT DIAGNOSIS 145

other two methods, this is the price of the accurate diagnostic performance of the
Clique heuristic.

Table 4. Diagnosis accuracy versus number of faults

Majority Election Clique
Faults MR MM0 / MM1 MR MM0 / MM1 IR UM0 / UM1

4 (2.7%) 0 0 / 0 0 0 / 0 0 0 / 0
16 (11%) 0 0 / 0 0 0 / 0 10 1 / 0
36 (25%) 13 1 / 1 106 0 / 2 171 10 / 3
72 (50%) 222 5 / 6 463 0 / 8 510 47 / 11
96 (66%) 454 6 / 8 507 2 / 12 512 43 / 20

To illustrate the tendency of diagnostic accuracy as the system size increases,
we varied the number of units in the simulated two-dimensional toroidal mesh
topology. Five systems were measured, having respectively 6× 6, 8× 8, 12× 12,
16× 16, and 18× 18 units. In each system 50 percent of the processors were
faulty. The results, shown inFig. 11, represent the average number of incorrectly
diagnosed units in the percentage of the system size. The figure well indicates the
expected convergence of the diagnostic accuracy to a constant value.

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300

M
is

di
ag

no
se

d
pr

oc
es

so
rs

 (
pe

rc
en

t)

System size

CIP-2
CIP-4

Majority
Election

Clique

Fig. 11. Average misdiagnosed processors versus system size

For analyzing group faults we used the fault patterns shown inFig. 12. The
measurement results can be seen inTable 5. Diagnostic mistakes occurred only

146 T. BARTHA and E. SELÉNYI

for isolated faulty units. To prove this, in the case of Pattern (a) we also examined
selectively the border region indicated by grey background. None of the units in
the border area have been misdiagnosed. Also note, that the maximum number of
incorrectly diagnosed faulty units is surprisingly small compared to the fault set size.
This is due to the many sure classifications provided by the detected contradictions.

(a) (b)

Fig. 12. Fault patterns to examine diagnosis on fault group borders

Table 5. Diagnosis accuracy in group fault patterns

Majority Election Clique
Pattern MR MM0 / MM1 MR MM0 / MM1 IR UM0 / UM1
(a) 1-step 478 0 / 9 444 0 / 7 406 0 / 6

2-step 376 0 / 6 415 0 / 6 365 0 / 6
4-step 358 0 / 5 395 0 / 6 361 0 / 6

(b) 1-step 408 0 / 8 355 0 / 5 139 0 / 2
2-step 117 0 / 2 325 0 / 4 84 0 / 2
4-step 78 0 / 2 259 0 / 4 84 0 / 2

As Table 5 shows, inference propagation (increasing the length of implication
chains) improves the diagnostic performance.Fig. 13 presents this effect in the case
of randomly injected fault patterns consisting of 36 faulty units. The number of
simulation rounds with incorrect diagnosis is shown in the function of inference
propagation iterations. Recall, that the length of implication chains doubles in each
iteration, i.e., numbers 1, 2, 3, and 4 correspond to one-, two-, four-, and eight-
step implications. The results justify our assumption: in the simulated system for
random fault sets subsequent iterations improve diagnostic accuracy less and less.

PROBABILISTIC FAULT DIAGNOSIS 147

0

100

200

300

400

500

1 2 3 4

R
ou

nd
s

w
ith

 in
co

rr
ec

t d
ia

gn
os

is

Number of iterations

Majority
Election

Clique
CIP-2

CIP-4

Fig. 13. The effect of inference propagation

We also examined the effect of system topology on diagnostic accuracy. Three
regular interconnection topologies were simulated as illustrated inFig. 14: (a)
hexagonal toroidal grid with three connections, (b) 2-dimensional toroidal mesh
with four connections, and (c) triangular toroidal grid with six connections.Fig. 15
plots the number of simulation rounds with incorrect diagnosis in the function of
connectivity. Random fault patterns consisting of 36 and 72 faulty units were in-
jected in the system. As it can be seen, all of the heuristics perform better regardless
of fault set size as the number of connections increases. In a completely connected
system each heuristic would provide a correct and complete classification.

(a) (b) (c)

Fig. 14. Simulated system topologies

148 T. BARTHA and E. SELÉNYI

0

100

200

300

400

500

3 4 5 6

R
ou

nd
s

w
ith

 in
co

rr
ec

t d
ia

gn
os

is

Number of connections

Majority (25% faults)
Election (25% faults)

Clique (25% faults)

Majority (50% faults)
Election (50% faults)

Clique (50% faults)

Fig. 15. The effect of system topology

6. Conclusions

This paper describes the concept of local information diagnosis, a novel approach
to efficient probabilistic system-level fault diagnosis of massively parallel systems.
The LID method uses a generalized test invalidation model to comply with het-
erogeneous structures and converts the syndrome into a topology and invalidation
independent implication set. The paper demonstrated the legitimacy of the lim-
ited inference approach: it is possible to achieve high diagnostic accuracy even
using only a portion of diagnostic information contained in the transitive closure by
evaluating the implication chains in the inference graph only in a limited length.

Three different fault classification heuristics were presented. These heuris-
tics adopt ideas from existing successful algorithms to the LID framework. The
main characteristics of the heuristics were compared by simulation and measure-
ments. The Majority and Election heuristics have similar diagnostic performance
and complexity. They provide a complete diagnostic image, but make a low amount
of diagnostic mistakes in the case of large fault sets. The Clique heuristic produces
correct diagnosis even for many faulty units, but as a disadvantage more units re-
main unknown than misdiagnosed by the other two methods. We are currently
working on further measurements on other characteristics of the LID algorithms to
get more detailed information about their performance and limitations; as well as on
the theoretical analysis of the practical and asymptotic behaviour of the algorithms.

PROBABILISTIC FAULT DIAGNOSIS 149

References

[1] BARSI, F. – GRANDONI, F. – MAESTRINI, P.: A Theory of Diagnosability of Digital Systems,
IEEE Trans. Computers, C-25(6), (1976) pp. 585–593.

[2] BARTHA, T. – SELÉNYI, E.: Efficient Algorithms for System-Level Diagnosis of Multiproces-
sors Using Local Information.Proc. of the DAPSYS ’96 Workshop on Distributed and Parallel
Systems, Miskolc, (1996) pp. 183–190.

[3] BARTHA, T. – SELÉNYI, E. . Probabilistic System-Level Fault Diagnostic Algorithms for Mul-
tiprocessors.Parallel Computing, 22,(1997) pp. 1807–1821.

[4] BLOUGH, D. – SULLIVAN , G. – MASSON, G.. Fault Diagnosis for Sparsely Interconnected
Multiprocessor Systems,19th Int. IEEE Symp. on Fault-Tolerant Computing, IEEE Computer
Society, (1989) pp. 62–69.

[5] DAHBURA, A. – SABNANI , K. – KING, L.: The Comparison Approach to Multiprocessor Fault
Diagnosis.IEEE Trans. Computers, C-36(3), (1987) pp. 373–378.

[6] M AESTRINI, P. – SANTI , P.: Self Diagnosis of Processor Arrays Using a Comparison Model.
Symposium on Reliable Distributed Systems (SRDS ’95), IEEE Computer Society Press, Los
Alamitos, Ca., USA, (1995) pp. 218–228.

[7] PREPARATA, F. – METZE, G. – CHIEN, R.: On the Connection Assignment Problem of Diag-
nosable Systems,IEEE Trans. Electronic Computers, EC-16(6), (1967) pp. 848–854.

[8] SELÉNYI, E.: Generalization of System-Level Diagnosis. D. Sc. thesis, Hungarian Academy of
Sciences, Budapest (1984).

[9] SOMANI , A. K. – AGARWAL, V. K. – AVIS, D.: Generalized Theory for System Level Diag-
nosis,IEEE Trans. Computers, C-36(5), (1987) pp. 538–546.

	Introduction
	System-Level Fault Diagnosis
	Generalized Test Invalidation
	Local Information Diagnosis

	Diagnostic Algorithms
	Limited Inference Algorithms
	Limited information
	Scalar Algorithms

	Fault Classification Heuristics
	Performance
	Conclusions

