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Abstract

This paper describes an intelligent vision method, which is capable of reconstructing the robot envi-
ronment. Algorithms and their implementation are presented for localising known objects in the scene
and determine 3D Euclidean transformation (the relative position and orientation) between recognised
objects. This can be done by reconstructing the projective 3D world of the scene and involve the
metrical constraints with an object recognition method. The resulting displacement information can
be used as the input of the intelligent robot control system and the calibrated virtual reality.
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1. Introduction

More and more robotic applications require an intelligent extension. A possible
solution for such a system is depicted inFig. 1. This system is able to interact
with the environment, including both humans (by VR) and objects (by vision).
This paper describes the stereo vision part of the intelligent control system of the
Puma 560 robot and the dextrous hand developed at the Technical University of
Budapest [1].

Fig. 1. Main blocks of the intelligent robot control system
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The chapters are organised as follows. Chapter 2 gives an overview of the
previous works, Chapter 3 describes our stereo system in detail. Some result is
presented in Chapter 4. We draw the conclusion in Chapter 5.

2. Previous Work

There are many tasks in high level robot control that require information about the
environment, such as path planning, collision avoidance. One source of these data
can be a vision system.

There are two types of vision, an active and a passive one. The active systems
usually use laser systems and triangulation in order to extract 3D metrical informa-
tion about the environment. In case of passive vision system the traditional solution
is the calibrated stereo rig. The drawback of this type of system is that it requires an
accurate calibration method. Hence these types of solutions do not give the desired
flexibility or sometimes cannot be applicable (e.g. in case of autozoom or moving
cameras).

Newer stereo systems use uncalibrated cameras to avoid the drawbacks of
the calibration process. As it was shown by FAUGERAS [2], in this case only the
projective structure of the surrounding world can be reconstructed, but this does
not contain any metrical information. Many researches work with these types
of uncalibrated systems and show different properties of the resulting projective
geometrical world (epipolar geometry, fundamental matrix, trifocal tensor) and
entities in this world (points, lines, curves) [3], [4], [5], [6], [7], [8], [9].

It is also proven that constraints must be introduced in order to build the
Euclidean world [10], [11], [12].

Another type of vision research aims to recognise complex objects in the
scene. These methods usually use single image about the scene and model in-
formation stored in the database. The matching between the scene and database
information is generally solved via probabilistic methods [13], [14], neural net-
works or in other ways. But these 2D object recognition methods are not used to
calculate the geometrical relationships (position, orientation) between 3D objects.

Intelligent control systems usually require both types of information. High
level control tasks such as grasp planning demand not only the positions of some
entities in the space but also the types of them (grasp planning). The main contri-
bution of our stereo method is that it tries to integrate the results of the projective
reconstruction of the scene and the (2D) object recognition such that the object
recognition is used to supply the additional constraints required by the projective.
This yields that the output of the stereo system is the type of the recognised objects
and the position and orientation with respect to each other.
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3. Stereo System

The stereo system consists of the low-level image processing in the views, the
reconstruction of the projective structure, the model based object recognition and
the calculation of the Euclidean transformation between recognised objects.

3.1. Low-Level Image Processing

The first step during the processing is the low-level image processing. The goal of
this step is to achieve the feature detection on camera images.

The edges and corner points are detected using the Canny and Harris detector,
respectively. Then the detected corner points are attached to the edges if it can be
done or dropped otherwise. The subsequent processing steps require the accurate
determination of the corner points, but corner-edge relationships can be poor in case
of junctions because of Gaussian filtering. Hence we develop a new method that is
capable of localizing the correct position of the corner within a window around the
initial guess.

After the refinement and edge segmentation process the edges are classified
by a parameter fitting algorithm into the following classes: junction, point set, line,
2nd order curve.

The system produces the graph of the features. A node of the graph contains a
feature, the branch of the graph holds the relation (2D position, orientation) between
them. Hence in the subsequent steps instead of using predefined high level feature
types we use (and store) only a relationship between the features within a certain
distance.

3.2. Reconstruction of the Projective Structure

There are several methods to solve the projective reconstruction problem from point
correspondences. The projective relationship between the images are expressed by
the epipolar geometry [3], [4], [5] in two view case or by the trifocal tensor [6],
[7], [8], [9] in three view case. Assuming the pinhole camera model, the imaging
equations can be written in linear form [15],

λi j mi j = P jMi , (1)

wheremi j = [u, v,w]T is the projective coordinates of the image point,Pj =
[pij ] is the unknown projection matrix with size 3× 4 for the j th camera,Mi =
[x, y, z, t]T contains the unknown projective coordinates of the 3D point.

Our system uses the method developed by MOHR et al. [11], [12] to re-
build the 3D projective structure (but any other method could be used too). This
method eliminates the scaling factor and directly minimises the resulting equation
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by Levenberg-Marquardt method [16] . This is similar to the nonlinear camera
calibration process described in [15], but for this case the 3D projective coordinates
(Mi ) are also unknown.

3.3. Object Recognition

A 2D object recognition system is used to localize the known objects in the scene.
In order to represent the occlusions of the features and to handle the uncertainty
during the recognition process, probabilistic description was chosen. A similar
method can be found in [13], [14]. The method can recognize only those objects
that are predefined in a model database. The building of the database is supposed
to be off-line. An object model in the database contains:

• Limited number of 2D views about the object. A view of the objects contains
features and relations between them resulting by feature extraction method.

• The 3D coordinates of the same features (mostly as point coordinates) in the
local, object based coordinate system. These are used during the calculation
of the Euclidean transformation.

For example inFig. 2 the 2D feature (O) is the image of an 3D corner point
of the cube. In the 2D world it is a junction in which there are 3 intersecting lines.
The 2D information in the model database about feature O consists of the type of
the feature (junction), viewpoint independent attributes (feature has 3 intersecting
lines), the coordinates of the feature in each image ([ui , vi ] image coordinate pairs)
and the uncertainty of the detection (e.g. response of the detector or empirical
deviation).

The 3D information is the Euclidean 3D coordinates of the feature in an object
relative coordinate system ([x, y, z] coordinate triplet). This object relative 3D
coordinate system can be chosen arbitrarily but must be predefined in the database.
A possible selection is denoted by white coordinate vectors, in that system O has
the[0, 0, 0] coordinate triplet.

The recognition process tries to find the most probable configuration repre-
sentation of objects with pairing the features of the scene and the model database.
Note that in this case not only the database but also the scene consists of more than
one view about the object.

The recognition requires the description of the quality of the matching by
defining a cost function. Using the Bayesian estimation theory the quality measure
can be associated with the probabilityP(A|Q, T ), where A denotes the hypo-
thesis that the object of the model database is present in the scene,Q contains
the pairings between views andT denotes viewpoint transformations. These are
multidimensional joint probabilities, hence some simplification condition is used
and the detection and the presence of the features are handled as independent events
(feature independence simplification) [8], [9]. This yields that the probabilities can
be approximated as the product of lower dimensional distributions.
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Fig. 2. Two types of information (coordinate representation) of the features in the model
database

The features are represented by typeti j , attribute vector (representation of
independent properties of the given feature)αi j , mean of the positionµi j , covariance
of the position	i j . Using these, the described probability can be approximated.

As can be seen the described method requires the calculation of the transfor-
mation between views in the scene and/or the model. This is supposed to be affine.
The transformation can be described by 6 parameterst = [at , bt , ct , dt , xt , yt ]T .
The pose of the features can be characterized byµk = [tx , ty, β, γ ]T = [tx , ty, θ, s]T ,
wheretx, ty is the position,θ = atan(γ /β) is the orientation,s =√

β2 + γ 2 is the
scaling. Introducingβ andγ yields that the effect of the transformation can be
written in linear form:

a) µ′
k =




tx ty 0 0 1 0
0 0 tx ty 0 1
β γ 0 0 0 0
0 0 β γ 0 0
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To calculate the transformation and determine the possible pairings, prediction-
verification with a tree-search method is applied. A new feature pair is added to the
sufficient node of the tree, if the features have the same type, the distance between
the feature’s parameters is below a threshold, the transformation error is small and
the insertion in the tree is consistent with the actual content of the tree.

The last step of the recognition is to search for the object that gives the best
representation (have the greatest probability).

If the object is recognized, the local 3D Euclidean coordinates from the model
database can be attached to the features (e.g. corner points). For the recognized
objects, the same features in the database and in the image can be localized, hence
the 3D coordinates of the image points in the scene view can be determined with
respect to the object’s own 3D Euclidean coordinate system.

3.4. Calculation of the Euclidean Transformation

Reaching this point of the processing the coordinates of the recognized objects are
expressed in two coordinate systems. The first one is the projective system that is
common for all the objects. The second one is the local Euclidean frame for each
object. The relative Euclidean transformation between the objects in the scene can
be computed using these two types of the coordinate representation as illustrated in
Fig. 3. This calculation can be achieved in two phases.

The first phase of the displacement computation is the calculation of the
transformations (collineations,(X)W) between the object frames and the common
projective system. Using the two types of the coordinate representation of an object,
the transformation can be written in the following matrix form,

WMP,i − λiME,i = 0, (3)

whereMP,i andME,i represent the projective and Euclidean coordinates respec-
tively, theλi is the scaling factor for thei th point. Collect all of these equations
into one system of equationsAx = b (n is the number of the corresponding points)

A =




MT
P,1 0T −ME,1,1 0

0T MT
P,1 −ME,1,2 0

0T 0T . . . −ME,1,3 0
. . .

0T 0T −ME,1,4 0
MT

P,2 0T 0 ME,2,1 0
MT

P,2 −ME,2,2 0
. . .

. . . −ME,n,4
0 0 1




,

x = [w11 w12 w13 w14 · · · w44 λ1 · · · λn]T , (4)

b = [0 · · · 0 1]T ,
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where the size ofA is (4n + 1) × (n + 16) and the last equation states thatλn = 1
(this is not a restriction, while all equations can be divided byλn 
= 0). The size of
the unknown vectorx is (n + 16) and the size of vectorb is (4n + 1). The linear
estimation of the solution can be determined in least squares (LS) sense as

xn+16 = (AT A)−1
n+16,n+16AT

n+16,4n+1b4n+1. (5)

Similar methods are given in [18].
The second phase is the calculation of the displacement. Let’s suppose we

want to determine the transformation between objectsA andB. Using the graph
in theFig. 3 the Euclidean coordinates of the pointM of objectB in the frame of
objectA can be expressed in two ways. The first one is the direct application of the
collineation(A)W, the second one is to transform the coordinates into the frame of
objectB using(B)W then apply(AB)D. In equation form

(A)W (B)MP,i = (AB)D (B)W (B)MP,i, (6)

where(B)MP,i are the projective coordinates of thei th point of objectB. This
equation can be rewritten into the form(A)Vi = (AB)D (B)Vi . Rescaling all of the
Vi in order to represent Euclidean coordinates the displacement can be calculated
in closed form using quaternions [19].

Fig. 3. Calculation of the Euclidean transformation

In order to put all the results together, a refinement step is also developed.
The relation can be written into a similar form as in theEq. (6). Expanding the
resulting equation yields

λ

4∑
k=1

(A)W j,kMP,i,k −
4∑

k=1

4∑
l=1

(AB)D (B)Wk,lMP,i,l , j = 1 . . . 4, i = 1 . . . n.

(7)
The unknowns are the elements of the(AB)D, (A)W, (B)W andλ. Constraints must
be introduced for(AB)D to hold the desired form. Using the properties of the rotation
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matrix in the displacement, the constraints are the following:

3∑
k=1

(AB)D j,k
(AB)Dl,k = 0, j, l = 1 . . . 3 (orthogonality of the rows) (8)

3∑
k=1

(AB)Dk, j
(AB)Dk,l = 0, j, l = 1 . . . 3 (orthogonality of the columns) (9)

3∑
k=1

(AB)D2
4,k = 0 (first three elements of the last row are zero) (10)

(AB)D4,4 − 1 = 0 (scaling is one). (11)

These systems of equations can be minimised with Levenberg-Marquardt method.
The initial values of the unknowns are the results of the LS estimation and the
calculation based on quaternions.

4. Results

The implemented software is based on the developed algorithms and robust numer-
ical methods. We tested the accuracy of the algorithms with simulated data in order
to evaluate robustness under different noise conditions. The simulated scene was 2
cubes with the size 400 mm and three cameras view the scene from approximately
2.5 m. Both of the cubes consist of 16 points. Noise was added to the camera matri-
ces in order to simulate the distortions and other effects. Gaussian noise with mean
value 0 and deviation 1 is added to the 3D model database to model the inaccuracy
in the recognition process. (This means approximately 2–3 mm errors in the 3D
model coordinates). During the simulation the mean value of the pixel noise was 0,
the deviation is changed between 0 and 1, so the maximum error was approximately
3–4 pixel.

The errors shown inFig. 4 are average values of the results of some simula-
tions. The first part of the figure shows the errors in rotation aroundx , y andz axis
with solid, dotted and dashed lines, respectively. The angles are given in grades.
The second part contains the translation error in thex , y, andz directions again with
solid, dotted and dashed lines, respectively. The third part is the scaling, which is
1 for the Euclidean case. As can be seen, the errors are below 1 degree in angles,
the position error usually remains under 5 mm–1.5 cm. This means that the relative
errors are approximately 1%, where the relative error means the ratio of the error (of
position) and the overall size of the scene (approximately 2 m). The scaling is very
close to 1. The peaks at the pixel noise level 2 are the result of the effect of those
cases, when the Levenberg-Marquardt method has not been converged properly.
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Fig. 4. Average displacement error vs. pixel noise

5. Conclusion

This paper has shown the ‘visual’ part of an intelligent robot control system. Al-
gorithms are presented for localising known objects in the scene and determine 3D
Euclidean transformation (relative position and orientation) between recognised
objects.

The software system consists of the low-level image processing in the views,
the reconstruction of the projective structure, the model based object recognition
and the calculation of the Euclidean transformation between recognised objects.
The implementation is based on the developed algorithms and robust numerical
methods. The presented results demonstrate the robustness and the accuracy of the
algorithms under different noise conditions.

The uncalibrated stereo method can be applied to collect information about
the surrounding world. The resulting displacement information serves as the input
of the intelligent robot control system and the calibrated virtual reality.

Acknowledgement

Support for the research of stereo image processing and calibrated virtual reality for robots is
provided by the Hungarian National Research programs under grant No. FKFP 0417/1997
and OTKA T 029072.



162 F. TÉL and B. LANTOS

References

[1] L ANTOS, B. – KLATSMÁNYI , P. – LUDVIG, L. – TÉL, F.: Intelligent Control System of a
Robot with Dextrous Hand.Proc. IEEE International Conference on Intelligent Engineering
Systems INES’97, Budapest, 1997. pp. 129–134.

[2] FAUGERAS, O. D.: What Can be Seen in Three Dimensions with an Uncalibrated Stereo Rig.
Proc. 2nd European Conf. Computer Vision, 1992.

[3] L UONG, Q. T. – FAUGERAS, O. D.: The Fundamental Matrix: Theory, Algorithms and Sta-
bility Analysis. Int. Journal of Computer Vision, 17, No. 1, (1995), pp. 43–76.

[4] HARTLEY, I. R.: Projective Reconstruction from Line Correspondences.Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 1994, pp. 903–907.

[5] AVIDAN , S. – SHASHUA, A.: Tensor Embedding of the Fundamental Matrix, Institute of
Computer Science,Post-ECCV SMILE Workshop, 1998, Frieburg, Germany. Springer LNCS
series, Vol. 1506. Internet: http://www.cs.huji.ac.il/∼shashua/)

[6] SHASHUA, A. – WERMAN, M.: Fundamental Tensor: On the Geometry of Three
Perspective Views.Inst. of Computer Science, Hebrew University, 1997, Internet:
http://www.cs.huji.ac.il/labs/vision/biblo.html

[7] SHASHUA, A.: The Fundamental Construct of Multiple View Geometry and
its Applications. Inst. of Computer Science, Hebrew University, 1997, Internet:
http://www.cs.huji.ac.il/∼shashua/

[8] HARTLEY, I. R.: Lines and Points in Three Views and the Trifocal Tensor.Int. Journal of
Computer Vision, 22 (2), (1997), pp. 125–140.

[9] TORR, P. H. S. – ZISSERMAN, A.: Robust Parametrization and Computation of the Tri-
focal Tensor.Journal of Image and Vision Computing, 15 (1997), pp. 591–605, Internet:
http://imogen.robots.ox.ac.uk:20000/∼geoff/papers.cgi)

[10] DEVERNAY, F. – FAUGERAS, O. D.: From Projective to Euclidean Reconstruction,INRIA,
France, 1995.

[11] BOUFAMA, B. – MOHR, R. – VEILLON, F.: Euclidean Constraints for Uncalibrated Recon-
struction.Proc. 4th International Conference on Computer Vision, Berlin, Germany, pp. 466–
470, 1993, Internet: http://www.inrialpes.fr/movi/pub/Publications/en/par_annee.html)

[12] MOHR, R. – QUAN, L. – VEILLON, F.: Relative 3D Reconstruction Using Multiple Uncali-
brated Images.Int. Journal of Robotic Research. MIT Press14, No. 6, (1995), pp. 619–632.

[13] WELLS, W. M.: Statistical Object Recognition. Ph.D. Thesis, MIT, 1993.
[14] POPE, A. R.: Learning to Recognize Objects in Images: Acquiring and Using Probabilistic

Models of Appearance, Ph.D. Thesis, University of British Columbia, Canada, 1995.
[15] FAUGERAS, O. D.: Three Dimensional Computer Vision (A Geometric Viewpoint). MIT Press,

1992.
[16] PRESS, W. H. – FLANNERY, B. P. – TEUKOLSKY, S. A. – VETTERLING, W. T.: Numerical

Recipes in C. Cambridge University Press, 1988.
[17] WELCH, G. – BISHOP, G.: An Introduction to the Kalman Filter. University of North Carolina

at Chapel Hill, via Internet, 1997.
[18] CSURKA, G. – DEMIRDJIAN, D. – HORAU, R.: Finding the Collineation between two Pro-

jective Reconstructions.INRIA RR No. 3468, 1998,
Internet: http://www.inrialpes.fr/movi/people/Horaud/Radu-publications.html

[19] LANTOS, B.: 3D Image Processing Methods. (Manuscript, in Hungarian) Technical University
of Budapest, 1994.


	Introduction
	Previous Work
	Stereo System
	Low-Level Image Processing
	Reconstruction of the Projective Structure
	Object Recognition
	Calculation of the Euclidean Transformation

	Results
	Conclusion

