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Abstract

The paper deals with the motion design of legged robots and dextrous hands. We show the possibilities
and limitation of conventional stratified control approach through the relative simple example of
hexapod robot and offer some proposals for a more robust motion planning solution. The precision
of the algorithms was improved by step length modification and the applicability was increased by
time scaling. The developed software is based on symbolic computation. On the other hand, our
fundamental goal is to provide a powerful basic concept for object manipulation with finger relocation
in the context of stratified control as an extension of earlier works. The concept focuses on the finger
gaiting manipulation (based on finger relocation) to gain some attributes of the nonsmooth object.
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1. Introduction

In the common sense, the intention of a manipulation task is to find a motion of
the agents that move the object from a given initial grasp to the desired config-
uration. Several possible approaches of the essential mechanics of manipulating
objects are investigated in [8]. On the side of control aspect, the most of manipu-
lation systems overlay discontinuous equations of motion which forces particular
nonlinear control methods. A new approach on this area is the stratified control
[1]. Our immediate objective is to exhibit the stratified control approaches on the
example of hexapod robotics system, point out its advantages and disadvantages
and extend the earlier concepts for practical manipulation problems which obtain
the most important attributes while the object is manipulated.

Section2. deals with a general introduction to motion planning [5] due to
LAFFERRIEREand SUSSMANN based on the foundation of smooth control theory
(see [2], [3] and [4]). The systems having discontinuous equations of motion
require more sophisticated algorithms. In this case, the configuration space contains
several smooth submanifolds (strata). Section3. is devoted to the theory of
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stratified motion planning problem (see [1], [7]). Section4. describes the software
implementation and improvements to motion planning algorithm and the application
for hexapod robot. Section5.proposes a concept for finger relocation regarding
nonsmooth object to overcome the difficulties of stratified motion planning. We
assume "point contact with friction" contact model and try to gain attributes of
object meanwhile the (grasped) object moves along a trajectory.

2. Smooth Motion Planning

Based on the fundamentals of smooth nonlinear control ([2], [3], [4]) we present a
method originated to Lafferiere and Sussmann ([5], [6]) for smooth motion planning
problem (MPP). If we want to solve the MPP then our goal is to find a control in
the configuration space that steers the starting pointp to the end pointq.

Definition 1 A Nilpotent Lie algebra with orderk is defined by Lie algebraL where
all the Lie brackets[v1, [v2, [v3, . . . , [vk, vk+1] . . .]]] equal zero.

Definition 2 The system� is said to benilpotent if its controllability Lie algebra
L( f ) is a nilpotent Lie algebra.

We assume that

1. The control system has no drift, i.e.� : ẋ = u1 f1(x) + . . . + um fm(x).
2. f = { f1, . . . , fm} arereal analytic vector fields onRn .
3. � is completely controllable.

Remark 1 It is worth remarking that the precise model of a finger should be added
as a dynamics leading to system with drift.

The strategy. The proposal in [5] is to extend the system� to

�e : ẋ = v1 f1(x) + . . . + vm fm(x) + vm+1 fm+1(x) + . . . + vr fr(x)

where vector fieldsfm+1, . . . , fr are defined by higher order Lie brackets of the
fi selected so that span{ fm+1(x), . . . , fr(x)} = R

n . The strategy consists of two
main steps: at first, find a controlv that steers the extended system�e from p to q.
Since the vector fields of�e span the whole configuration space, the simplest case
for smooth system is the straight-line segment. In the second step, we compute a
control u for original system� that substitutes the fictitious controlv. This step
consists of additional steps. At the first time, one has to obtain the Philip Hall
basis and the order of system nilpotency. Then, we can solve a formal differential
equation in P. Hall coordinates on a special nilpotent Lie group. Finally, we achieve
the controlu from the P. Hall coordinates which is a set of Lie brackets where the
"order of right hand side of Lie brackets" is equal to or greater than the order of left
hand side.
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Corollary 1 A basisB′ of Lie algebraL(X1, . . . , Xm) can be immediately obtained
from a Philip Hall basis ofL(X1, . . . , Xm). Furthermore, the set{M ∈ B′ :
degree(M) ≤ k} represents a basis ofLm

k whereLm
k is a free nilpotent Lie algebra

in (X1, . . . , Xm) with orderk.

Definition 3 Ĝ(X1, . . . , Xm) = {eZ : Z ∈ L̂k(X1, . . . , Xm)} is said to be aLie
group with m infinitesimal generators.

Definition 4 Gm
k = {eZ : Z ∈ Lk(X1, . . . , Xm)} is said to be thefree nilpotent Lie

group of order k with m infinitesimal generators.

Corollary 2 If B1, B2, . . . , Bm are a P. Hall basis of the Lie algebra
Lk(X1, . . . , Xm) then anyS ∈ Gk(X1, . . . , Xm) ≡ Gm

k can be expressed in the
forms S = ehs Bs ehs−1Bs−1, . . . , eh1B1, S = eh̃1B1, . . . , eh̃s−1Bs−1, eh̃s Bs wherehi is
calledbackward P. Hall coordinates andh̃i is calledforward P. Hall coordinates.

At this point, our goal is to find appropriatea(t) for the desired trajectory
in the form x(t) = x̄ea1(x) f1ea2(x) f2ea3(x) f3 such that the functionx(t) let give a
solution for the formal extended differential equation

� f e : Ṡ(t) = S(t)(v1 f1(x) + . . . + vm fm(x)

+ vm+1 fm+1(x) + . . . + vr fr(x)), S(0) = 1 (1)

and obtain the needed controlu based on P. Hall coordinates.

Remark 2 If the system is nilpotent then the additional inputsv expressed in P. Hall
coordinates can be precisely composed of the original inputu. If the system is not
nilpotent then the solution will be an approximation.

3. Stratified Nonlinear Control Systems

If the system has discontinuous equations of motion then the configuration space
cannot be described by one smooth manifold. The different types of constraints
decompose the configuration space into smooth manifolds (strata) on which dif-
ferent smooth systems are defined. The works [1], [4] deal with the definition of
stratified systems in detail. The theory investigates the problem when the system
moves between strata where one of the strata contains the other one.

Definition 5 A setℵ ∈ R
n defined by union of smooth manifolds (i.e. strata) is

said to bea regularly stratified set.

Definition 6 The system isstratified if its configuration space is defined by stratified
sets.
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It is helpful to introduce some further notations and illustrate a notion on
the example of two cooperating robots or two finger-tips (seeFig. 1). Denote
M ≡ S0 the whole configuration space. Let the stratumSi ⊂ M be a codimension
one submanifold where only thei th finger is in contact with the object. Denote
Sij = Si ∩ S j where both thei th finger andj th finger are in contact with the object.
Recursively, we can defineSI = Si1i2...ik = Si1 ∩ Si2 ∩ · · · Sik whereI = i1i2 . . . ik
is a multi-index . The stratum with lowest dimension which includes the pointx is
said to be thebottom stratum. In the comparison of two strata, thelower stratum
has by definition lower dimension than the higher stratum.

Theorem 1 (Distribution approach for stratified controllability.) If there exists a
nested sequence of strata x0 ∈ Sp ⊂ Sp−1 ⊂ · · · ⊂ S1 ⊂ S0, such that the connected
involutive closure of distributions (of strata) fulfills

∑p
j=0 �̄S j |x0= Tx0 M then the

system is locally stratified controllable from x0, where Tx0 M is the tangent space of
M in x0.

The idea of stratified control is to find a common space where all the vector
fields on different strata can be considered. It will be the bottom stratum. As an
example, consider a manipulation system with two fingers and a plane surface.Fig.
1 shows the configuration space and a manipulation as a sequence of flows where
vector fieldg1,1 moves the system off ofS12 onto S1 ("finger 2" disconnects the
object), vector fieldg2,1 moves the system off ofS12 ontoS2 ("finger 1" disconnects
the object),g1,2 is defined on stratumS1, g2,2 is defined on stratumS2 and keeps the
system within them. Although we speak about object and fingers, the model can
be applied also for legged robots and other mobile agents. In the case of a hexapod
robot, the state (x) consists of the position and orientation of the reference point of
the hexapod robot (x, y, θ), the angles of the leg groups (φ1, φ2) and the heights
of the leg groups (h1, h2). The lower indices ofS denote which leg groups are in
contact with the terrain. The first index ofg identifies the stratum in which the
motion is performed. If the second index ofg is 1 then there is a switch between
two strata, otherwise not. Negative sign denotes inverse motion. For example, leg
group 2 leaves the terrain (g1,1), moves forward in the air (g1,2) and returns to the
terrain (−g1,1). We distinguish two sets of vector fields.

Definition 7 A vector field is said to be amoving off vector field if it influences
the contact between the finger and the object. On the contrary, a vector field is said
to be amoving on vector field if it does not leave the actual stratum.

If the moving on vector fields commute with moving off vector fields then
the flow sequence can be rearranged and reduced to bottom stratum. Furthermore,
if the moving on vector fields in the higher strata are also tangent to the bottom
stratumS12 then the two sequences achieve the same motion in the configuration
space.

Remark 3 If a vector field on higher stratum (for exampleg1,2) is not tangent to
"its" substratum then it is possible to modify this vector field favourably.
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Fig. 1. Flow sequences in stratified configuration space.

Corollary 3 In general, if all vector fields that detach the fingers from the object
are decoupled from all vector fields defined on the substratum and higher strata
(i.e. their Lie brackets are zero) then the moving between higher and lower strata
is possible.

However, we use a stronger assumption stated in the following.

Assumption 1 Assume that the tangent vector{ ∂
∂hi

} can be produced as a linear
combination of control inputs wherehi is the distance between thei th finger and
the object. Additionally, assume that the effective equations of motion in a stratum
are not influenced by the distance of the "contact free" finger.

The assumption guarantees that the Lie brackets between the vector fields
obtaining the finger distance and any other vector fields are zeros (commutation).

Furthermore, since the "other" vector fields (i.e. the vector fields which do
not influence distances between fingers and object) do not separate the fingers from
the object, they keep the system in the substratum (if the starting point lies there)
and the tangency requirements will be automatically satisfied. For stratified motion
planning problem, we have to create the extended system on the bottom stratum
(as a common space). At the first time, one takes set of vector fields in different
strata and takes them into abottom stratified system with the consideration of above
assumption. After this, one can define thebottom stratified extended system with
the Lie brackets among all vector fields of bottom stratified system.
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Example 1 (Multiple Stratified System)

S0 : ẋ = g0,1u0,1 + · · · + g0,n0u0,n0

S1 : ẋ = g1,1u1,1 + · · · + g1,n1u1,n1

...

SI : ẋ = gI,1uI,1 + · · · + gI,nI u I,nI

Example 2 (Bottom Stratified System)

ẋ = g0,1u0,1 + · · · + g0,n0u0,n0

+ g1,1 |S0 u1,1 + · · · + g1,n1 |S0 u1,n1

+ gI,1 |S0 uI,1 + · · · + gI,nI |S0 uI,nI ,

where the notation|S0 refers to the vector fields which take a part in bottom stratified
system, however, they are defined originally not in this stratum.

Example 3 (Bottom Stratified Extended System)

ẋ = g0,1u0,1 + · · · + g0,n0u0,n0

+ g1,1 |S0 u1,1 + · · · + g1,n1 |S0 u1,n1

+ gI,1 |S0 uI,1 + · · · + gI,nI |S0 uI,nI

+ Lie brackets,

where the term "+ Lie brackets" contains all the Lie brackets among the vector
fields of the bottom stratified system. This stratified extended system is the starting
point of the standard trajectory planning.

4. Software Implementation and Improvements to the Motion Planning
Algorithm

The motion design consists of the following steps:

1. Definition of the representative points of the trajectory.

2. Creation of the bottom stratified extended system belonging to the motion
problem.

3. Solution of the smooth motion planning on the bottom stratified extended
system in the actual subsegment which consists of the following subsets: i)
symbolic computation of the P. Hall basis, ii) symbolic computation of the
P. Hall coordinates based on the vector fields of the problem and the P. Hall
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Fig. 2. Stratified motion planning for hexapod robot with constant orientation. The "o"
denotes the described points.

basis, iii) symbolic computation of the solution of the formal differential
equation, iv) numerical evaluation of the symbolic solution of the differential
equation.

4. Numerical evaluation of the control and the flow sequences along the vector
fields based on the solution of formal differential equation. Performing the
time scaling.

5. Decision about the insertion of the moving off vector fields between two flows
if necassary.

6. Simulation within the actual subsegment and distance correction.

7. Jump to3. if the last segment is not reached yet.

In the following, we demonstrate the stratified control on a hexapod robot
and provide some improving proposals to the original method of LAFFERRIERE
and SUSSMANN [5] which can also be used for the more complex manipulation
problems. The results for hexapod robot with two different prescribed orientations
are illustrated inFigs. 2 and3. The figures show the motion of the reference point
of the hexapod robot. It can be seen that the results show good accuracies although
the trajectories between two points of a segment have quite different characteristic.
Obviously, a tangent orientation in a point causes smaller difficulty for a motion
planning algorithm than constant orientation. The major problem of the methods
is the choice of the length of a subsegment. There exists critical distance between
the end points (more details in [5]) which assures the convergence, however, its
estimation arises to a hard question without theoretical answers. We give here a
proposal for the problem. This algorithm starts with an initial distanceD1 between
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Fig. 3. Stratified motion planning for hexapod robot with tangent orientation. The "o"
denotes the described points.

p1 and q1. If the ‖qi − pi‖ > Di−1 (where pi = qi−1) then let Di = Di−1/2
and insert some additional points betweenqi and pi through a line segment. If
‖qi − pi‖ < Di−1/2 then restoreDi = 2Di−1. The results with and without
this algorithm are sketched inFigs. 5 and4. The improvement does not assure
the convergence in each step but it avoids the convegence problem for trajectories
consisting many described points, prevents the error accumulation and keepsDi in
the near critical distanceDr for long time.

The original motion planning method returns with definite time for the tra-
jectory (computed time). In the implementation, we applied a time-scaling which
enables to prescribe arbitrary time point to each configuration point. The idea is to
introduce a factor for each input in the actual subsegment which is obtained with
the quotient of the desired and computed time for the actual subsegment.

5. Improved Conception for Object Manipulation with Finger Relocation

The (smooth and stratified) motion plannings for manipulation have a number of
limitations. The earlier methods based on stratified method such as [1], [7] care for
object of special geometry. We consider in our concept a more general class of the
objects having not exclusively smooth surfaces. The key idea is to decompose the
surface of object into smooth submanifolds in the configuration space. Consider an
object with two (smooth) surfaces (i.e. with edges) as an example.

Denote the subscripts of strataS the fingers which are in contact with the
object and related to this, indicate the superscripts ofS the surfaces which are in
contact with the corresponding fingers. Based on this convention,Fig. 6 illustrates
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Fig. 4. Stratified motion planning without improvement. The "o" denotes the described
points, the "+" denotes the reached points.

the problem of stair climbing with fingers. The figure shows the strata and the
flows but not the real stair. Dotted lines illustrate the heights which should be
overstepped by the lifted fingers. In the beginning, both the fingers contact the
"surface 1" (i.e. the ground) then the "finger 2" moves from the ground to the stair
(i.e. to "surface 2") and after this, the "finger 1" moves also from the ground to
stair. One cannot apply a pure stratified control method for the illustrated example
because the union of bottom strataS11

12 and S22
12 on which the bottom stratified

extended system is defined, is not smooth. Our applied concept uses the proposals
of [9]. We define two foliations on the total configuration space. The foliation of
"palm" variables (P0) is associated to the position and orientation of palm frame
and the foliation of manipulation variables (S0) is associated to the internal shape
variables and to the position and orientation of object in the palm frame. This
kind of position and orientatiton will be called group variables. We restrict our
attention mainly to the foliation of manipulation meanwhile palm frame is in calm.
Indeed, the configuration subspace of manipulation variables is in itself a stratified
configuration space (with strataS0, S1, S2, S12 etc. where constraints are defined
with the finger contacts). The idea is to separate the two configuration subspaces
in point of view of manipulation problem.

The proposed concept will be demonstrated for two fingers (agents) climbing
a stair which can be considered as the simple model of finger relocation on a nons-
mooth object.

Step 1.) Move the object to (advantageous) manipulation position and orienta-
tion through the change of coordinates of palm frame while all fingers are in
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Fig. 5. Stratified motion planning with improvement. The "o" denotes the described points,
the "+" denotes the reached points. The "*" denotes the additional inserted points.

Fig. 6. Flow sequences of stair climbing in configuration space.
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contact. Meanwhile, we measure the finger-tip contact forces and try to obtain
informations and properties of the object. In this case, we perform a conven-
tional motion planning in the configuration subspaces associated to palm variables.
The trajectory can be determined by forward Philip Hall coordinates in the form
S = eh̃1B1, . . . , eh̃s−1Bs−1, eh̃s Bs which can be regarded as a solution of formal dif-
ferential equation� f e : Ṡ(t) = S(t)(v1 f1(x) + . . . + vm fm(x) + vm+1 fm+1(x) +
. . . + vr fr (x)) with the initial conditionS(0) = 1. It is worth remarking that the
complete controllability is usually not guaranteed, i.e. the controllability Lie alge-
bra generated by vector fieldsf = { f1, . . . , fm} of hand does not satisfy theLie
Algebra Rank Condition (LARC) [6] which restricts the reachable set from starting
point. We assume that the force closure stability is hold along the trajectory [7].

Step 2.) Perform an agent relocation. The agent relocation is based onstratified
motion planning in the bottom stratum of configuration spaceS0 of manipulation
variables. (In the example, the bottom strataS11

12,S12
12, S21

12 and S22
12 play important

role in this respect.) Indeed, this is a finger gaiting where the stages before and after
a disconnection betweeni th finger and object (while all them − 1 other fingers are
in contact) corresponds the constraintsd
j {g j,1(x)u j,1 + · · · + g j,n j (x)u j,n j } =
0, j = 1 . . . m andd
 j {g j,1(x)u j,1 +· · ·+g j,n j (x)u j,n j } = 0, j = 1 . . . m, j �= i
respectively. 
 j are the level functions of strataSj (for example the height of
the fingers in the stratum). First time, we relocate the fingers only their on own
smooth surfaces i.e. the start and end points of each finger are in the same smooth
surface (but this may be different for different fingers). It means that we take all the
interesting trajectories which go through all the important contact points while each
finger remains on its own smooth surface. In fact, it is a "scanning" in the sense that
the relevant (contact) points of the trajectories should play a distinguished role in
point of view of attributes of the object. If the scanning finished then continue with
next Step else repeat this step taking extra relevant contact points on the surfaces
of the corresponding fingers for identification purposes.

Step 3.) Relocate a finger from the surface to a new smooth surface.
In this phase of motion planning, the initial and final point lay in different bottom
strata. Our goal is to perform a motion planning between the two bottom strata. The
main difficulty is that the union of the two bottom strata is not smooth. They are
connected via acommon stratum with higher dimension. To illustrate the problem,
place the "finger 2" from the ground onto the stair corresponding to the example
of stair climbing. Then our goal is to steer the system throughS1

1 from S11
12 to S12

12.
Since the trajectory between the start point (inS11

12) and end points (inS12
12)lay in the

same stratum (S1
1), this is a smooth motion planning problem where the system is

defined by the vector fields ofS1
1. If the vector fields in the higher stratum do not

satisfy the LARC then the solution of motion planning problem is not guaranteed.
One can use the idea of stratified approach where we consider this higher stratum
S1

1 as a "bottom stratum" of more higher strata which contain it. Since the proposal
allows to apply additional vector fields, we gain a more robust solution. Of course
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it may occur that the extended system on the common stratum is not controllable.
However, we emphasize that in strict sense, one has to find only a path between the
two smooth bottom strata and not exactly between the actual initial and final points.
If the relocation meets difficulties, jump Step 5 else continue with next Step.

Step 4.) If we have not enough information about the object then jump Step 1 else
go to final Step.

Step 5.) Two relevant cases can be distinguished:

• Object as obstacle. The obstacles indicate boundaries on the strata in config-
uration space (bounded by dot line in Figure6). If the computed trajectory
meets with the obstacle then a smaller step size is needed. If the finger cannot
reach the target surface because of the geometry of the object then one must
move another finger or design an additional manipulation (with sequence of
more than one finger relocation) to avoid the obstacle.

• Collision during agent relocation. If the finger cannot avoid another finger
during the process of relocation then the fingers may clash. In order to
overcome this problem, one has to relocate more than one fingers at the same
time. Another proposal may be to relocate the fingers in alternate way. The
first idea is faster but requires multiple redundancy for force closure stability.

Depending on the strategy, the algorithm is carried on with Step 2 or 3.

Step 6.) End of algorithm.

6. Conclusions

Stratified control is a promising method for nonlinear systems having discontinuous
equations of motion. The main disadvantage of earlier methods is the assumption
of smooth objects and their limited applicability. We gave an algorithm for motion
planning for legged robots and the finger relocation problem of dextrous hands.
The precision of the algorithms was improved by step length modification and the
applicability was increased by time scaling. The developed software is based on
symbolic computation. Its effectiveness was illustrated by the motion planning of
hexapod robot. A new concept was developed for nonsmooth object manipula-
tion with finger relocation of dextrous hands whose software implementation is in
progress.
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