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Abstract

This paper reports a novel method for the choice and reduction of the training data set for dynamic
modelling of robotic manipulators (RMs) by fuzzy logic systems (FLSs) that are evolved by a genetic
algorithm (GA). A multi-population, multi-objective GA is used for structure evolution and optimi-
sation of the FLSs and constants for the precise approximation of the dynamic model (DM) and the
simplicity of the FLSs and the complete DM. The initial large set of training data is considerably
reduced, while not loosing any of its representative quality.

Keywords:genetic algorithms, fuzzy logic systems, robot dynamic model

1. Introduction

The dynamic modelling of the robot manipulator (RM), mapping the position, ve-
locity and acceleration of the joints into the driving torques exerted to the structure
is based on the Lagrange formulation, which ensures the appropriate structure of the
dynamic model that is commonly used in control algorithms. RMs are known to be
highly non-linear multi-input multi-output systems. To preserve the known struc-
ture of the Lagrange formulation Grey-Box modelling is used [3]. It means that the
forces exerted to RM joints are the sum of four components modelling consequently
the torque resulting from the inertia (H ), the Coriolis effects and centrifugal forces
(C), the gravity forces (g) and the viscous friction (f ). The separate knowledge
of these components is crucial for precise, model based robot control algorithms.
This was the main reason to address the problem as identification (ID) of the DM
as a set of constants and fuzzy logic systems (FLSs) interconnected to result in the
described physical structure having unknown building blocks (a grey-box), rather
than one huge FLS common to black-box modelling. Advantage is taken of other
commonly known facts of robotics likeH andg are non-linear functions of joint
positions only. The driving torque is linear in the joint accelerations. The centrifu-
gal and Coriolis effects are quadratic in the joint velocities and non-linear in the
joint positions andf is linear in joint velocity [1]. The DM identification method
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uses the measured resultant torque and joint variables along suitably chosen paths
for every joint.

Every single building block of the first, preliminary part of the identifica-
tion was approximated with a constant by the singular value decomposition (SVD)
based linear least squares (LSQ) method. At the second step representative por-
tions of the training data are extracted, on bases of input space coverage in the
joint position space. The number of samples is reduced to a minimal value that is
still representative which is monitored through the singular values of the sample
matrix transformed for the SVD based linear LSQ method of parameter identifi-
cation. These quantitatively reduced, but qualitatively representative portions are
concatenated to give the new training data set [5]. At the third step the possi-
bility of improving the model is investigated in form of FLS building blocks for
the non-linear functions of the joint positions. Multi-input single-output complete
first order Takagi–Sugeno–Kong (TSK) type FLSs are considered having Gaussian
membership functions (MFs), since they are known to be universal function ap-
proximators [2]. In order to avoid the exponential explosion of the rules defining
the FLSs (Rules) the introduction of extra parameters is used for every single MF
and Rule. The proposal is to handle extra parameters as a switch on or a switch off
command for MFs and as a weighting coefficient for the Rules. Using this method
all the important input and output space domains can be covered, while having the
minimal number of active MFs and Rules assuring the required precision [3].

The usual formulation of linguistic rules or the use of neuro-fuzzy like FLS
parameter estimations are cut off by the fact that they cannot manage the physical
structure consisting ofH, C, g and f since the separate outputs of these functions
are unknown. Only the resulting torque is available for measurement. A suitable
search technique to find a possible solution for this problem is GA. Minimisation
of the cost function consisting of the combination of multiple criteria is performed.
The objective function is formulated to minimise the identification error on all
joints as well as the underlying FLS structures – the number of inputs, membership
functions and rules. The cost function ensures that if the identification error is high
its minimisation has the priority over structure minimisation [3].

2. Dynamic Model of a Robot Manipulator

The application of Lagrange dynamic equations for a RM in the joint space formu-
lates the resultant torqueτi acting on thei th joint from all thep joints of the RM as
a function of joint positions, velocities and accelerations:

∑
j

(Dij (q) · q̈j ) +
∑

j

∑
k

(q̇j · Dijk (q) · q̇k) + Di (q) + fi · q̇i = τi ,

i = 1, 2, . . . , p, (1)
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whereqi , q̇i , q̈i stand for the joint variables and their derivatives. Let:

Hik = Dik(q), Cik =
p∑

j =1

q̇j · Dijk (q), gi = Di (q), fi = const, (2)

whereDik , Dijk , Di are in general highly non-linear scalar functions of the joint
positions. They may contain the sin(·) and cos(·) functions of the joint positions
and/or of their products and sums. Thus there are(p × p) + (p × p × p) + p
possible, highly non-linear functions, andp constants when modelling a RM ofp
joints. Considerable reductions in the number of unknown functions are possible

Dik = Dki , Dijk = −Dkj i , ∀i , k ≥ j and Dij i = 0, ∀i ≥ j , (3)

but still, the remaining number is significant for a general case of four or more joints
[1], [8].

It should be noted that the measurement of a single component from (2) is not
possible, the only information of the output of the system is the resultant torqueτi
in (1). The identification of non-linear functions under these terms is a considerable
problem. Fuzzy logic systems can be used for this purpose.

3. Fuzzy Logic Systems and Genetic Algorithms

TSK type FLSs, havingn inputs and 1 output can be described as:
f (x) = ∑M

l=1 ωl (x) · yl (x)
/∑M

l=1 ωl (x), whereM is the number of Rules,x is the
vector ofn input variables,yl is a scalar function ofn input variables,y is most
commonly a linear function of inputs, thus having(n+1) parameters. The premise
part of the Rule is:ωl (x) = ∏n

i=1 µFl(i ) (xi ), whereµFl(i ) (xi ) is the membership
function (MF) of thei th input variable in thelth Rule. Commonly used MF type
is: µFl(i ) (xi ) = exp(−(xi − x̃l(i ))

2
/
σ 2

l(i )), which is the Gaussian one that has two
parameters:̃xl(i ) is the centre andσl(i ) is the spread (width) of the MF. The linguistic
form of thel th Rule in a first order TSK FLS is: IF (x1 is Fl(1)) AND (x2 is Fl(2))
AND (xn is Fl(n)) THEN yl = ∑n

j =1 cl( j ) · xj + cl(0). For each Rule a weightwl

can be assigned in the interval[0, 1], in order to represent its importance relative
to other rules. The input spaces may be considered separately and covered by
a certain number, let’s saykl of MFs, wherei = 1, 2, . . . , n. Thus there can
be exactlyM = ∏n

j =1 kj Rules for covering the complete output space. More
complex systems with more than a few inputs (n > 2), and/or with non-trivial
input-output relations are difficult to manage. The tuning of the MF (x̃i , σi ) and
Rule (cj ) parameters is in both cases very difficult, since there are many of them
and some are in non-linear context. A significant difficulty arises when the precise
weights of every Rule are to be set.

Evolution-based algorithms have proved their usefulness on many multi-
modal optimisation problems and these partially non-linear parameter estimations
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can be managed by GAs [3]. A GA is constructed on bases of imitating natural bio-
logical processes and natural Darwinian evolution [6]. Two parameters code one of
everykj MF on each ofn inputs. Every single Rule of the possibleM needs(n+1)
parameters. There is an extra parameter for each Rule, which is the weight. Since
most of the Rules should have the maximal weight of 1 or should be turned off (by
the weight 0), weights should be coded in wider interval than[0, 1]. The proposed
interval is[−1, 2]. All weights from range[−1, 0] should be transformed to 0, and
those from[1, 2] should be set to 1. This technique will ensure that the probability
of having weights 0, 1 and intermediate values is 1/3. Another extra parameter
is needed to implement the turning on and off for every single MF. The interval
of [−1, 1] will be used interpreting positive values as switch on. These intervals
have been used as proposed in [3] since this choice proved to be very successful for
a significant reduction of the complexity of the required FLSs without the loss of
their required quality.

Using such extra parameters, as described above, the reduction of the number
of MFs and Rules can be achieved as well. Rules referring to non-existent MFs are
discarded, along with Rules weighted with 0. If all MFs on one input channel are
turned off it means that this particular input is of no relevance to the function being

approximated. These considerations result inN =∑n
j =1(kj ·3)+

(∏n
j =1 kj

)
·(n+2)

parameters for every single FLS.
Let us remind that we countedO(p3 + p2) non-linear functions ofp inputs,

where p is the number of joints of the robot manipulator (usuallyp ≥ 4). This
means thatn = p and the total number of parameters to code every function in
(2), using all the available simplification relations, is comparable toN(p3 + p2),
plus thep parameters for codingfi . Fundamental schemata theory suggests that
small alphabets are good, because they maximise the number of schema available
for genetic processing, so binary coding is implemented [4]. In order to avoid Ham-
ming cliffs Gray code is used. For minimising the disruptive effect of mutation an
adequately not too low probability has been chosen since the upkeeping of diversity
in later generations is required. As chromosomes are simply the concatenated bit
strings of all the parameters with fixed position for every gene, high probability
(0.8) simple two points crossover will ensure low disruptiveness and high rate of
inheritance during the reproductive phase. Stochastic universal sampling having
minimal spread and zero bias is used for selection with a rather low selection pres-
sure. Continuous exploration of the search space is achieved along with consistent
convergence by the combination of genetic operators in this manner.

The objective of the optimisation is the precision of the dynamic model.
Another aspect is the size of the involved FLSs. The aim is to use the smallest
number of inputs to the individual FLSs and to have a really small Rule base, since
their complete (only theoretically parallel) evaluation is to be frequent. The fact of
dealing with significant difficulties should be pointed out. Grey-box modelling was
introduced [3] to take into consideration all the extra information about the structure
of the system to be identified, unfortunately grey-box modelling does not simplify
the identification in our case. The FLSs evolved by this method are approximating
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the functions in (2), while we have information only of the resultant torqueτi in
(1), that is the superposition of a large number of unknown functions, which can
not be measured separately. This obviously complicates the training of the FLSs to
a high degree.

4. Training Data and Preliminary Identification

The RM should be excited along an appropriately chosen path, with the help of
a well-tuned simple PID controller. During a certain period of work under PID
control the information of the excerted torque on every joint is available as the
output of the PID controller. The input of the controller is the position and speed of
a joint, more precisely the errors to the desired values. The torque on every joint, the
position and velocity of the joints can thus easily be measured. The acceleration
of the joint can be computed by fitting a polynomial to the suitably windowed
position-velocity pairs of data. The path should be persistently exciting and cover
the complete typical workspace [5]. Using sampling times of the millisecond order
often results in couple of ten thousands samples.

The first part of the off-line identification of the dynamic model is the approx-
imation of all the non-linear functions and parameters described in (2) as simple
constants. One suitable hard-computing technique for the linear parameter estima-
tion problem is the linear variant of the Least Squares method (LS) [7]. TheEq.(2)
is linear in the functions and the frictions that we are looking for. Thus the simple
linear LS equation can be used as:

A · x = b, (4)

where in our casex is the vector of all the required functions that are considered to
be constants in this first approximation and the friction parameters:

x = [D11, . . . Dpp, D111, . . . Dppp, D1, . . . Dp, f1, . . . f p]T . (5)

The vectorb = [bT
1 | b

T
2 | . . . | b

T
K ]T is a hyper vector of vectorsbl that contain

the torque for every joint for thelth time sample, so the hyper vectorb contains

all the torque for all joints and allK time samples. MatrixA is a hyper matrix

consisting of the blocksA = [Al
i j ], whereAl belongs to the data in the time instant

tl satisfying: ∑
j

Al
i j · xj = bl ,i = τi (tl ), l = 1, 2, . . . , K . (6)

The solution of the linear parameter estimation is now:

x = A+ · b, (7)
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where the matrixA+ is a pseudo inverse of matrixA. One should always validate
the results of the standard linear LS ID (7) by evaluating the condition number
associated with the problem:

cond(A) = ‖A+ ‖ · ‖A‖ = σ1/σn, (8)

whereσ1 is the maximal singular value of matrixA, σn is the minimal one and

‖A‖ is a matrix norm ofA. A very high condition number of matrixA from (4)
clearly identifies a badly conditioned linear equation, not worth solving like (7)
since it would result in a distorted solution. The Singular Value Decomposition
(SVD) based variant of the LS method can be applied for mathematically more
robust parameter estimation:

x = V · S+ · U T · b, (9)

where matricesV, S, U are the result of the singular value decomposition of matrix

A = U · S · V T . The appearing zero or close to zero singular values point out
the samples used for the ID do not provide enough information for the precise
evaluation of the required parameters [7].

The conclusion is clear: one should pump up theA matrix with more and

more Al samples until all the (close to) zero singular values disappear, which is

equivalent to having a small condition number on matrixA. In real applications the
highest singular value is limited, since it is in correlation with physical parameters of
a real system. On the other hand while having a small condition number one could

freely disregard all thoseAl samples whose absence does not raise the problems
condition number significantly. The minimal set of representative samples can be
obtained by following the next simple algorithm:

Step1 Evaluate cond(Al ) for every block of theA matrix, see (6).
Step2 Sort the blocks by the condition numbers in a non-descending order. This

step results in vectorJ of indices ji , for which cond(Aji ) ≤ cond(Aji+1) for
all i = 1, . . . , K − 1, whereK is the number of samples.

Step3 Initiate M = { j1} andminA = [Aj1].
Step4 While σn (the minimal singular value ofmin A) is higher thanSn timesσ1

(the maximal singular value ofminA), do add a new indexji from J\M to

the set ofM, where Aji minimises the condition number of hyper matrix

[minA | Aji ].
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After the iterative Step4minA is the minimal required set of samples for the
quality solution of (7). The quality of the solution can be improved by decreasing the
value ofSn [5]. Further improvements of the quality of the representative samples
can be introduced if the stopping criterion of the iterative Step4 is replaced. The
improved stopping criterion is the occurrence of no significant change in both the

maximal and minimal singular value ofminA in the last iteration.

5. Identification Procedure by Genetic Algorithm

The second part of the off-line identification of the DM involves a GA described
previously to evolve a set of FLSs that are capable of formingEq.(1). The objective
value of the GA consists of two parts as in (10). The first part of the objective value
regarding the precision can be adopted in a quadratic form of the error of the
identified and measured torque as in (11). The second part of the objective is the
structural complexity of the FLSs. For the different parts certain priorities can be
introduced. Obviously the error of the identification is of higher importance.

Simple PID controllers are capable of regulating the robotic manipulator from
one point to another point in the joint space along a suitably defined path. For high
precision control model-based controllers can be suggested [1]. One such algorithm
is the so-called Inverse Dynamics Control or Computed Torque method, which
requires the knowledge of all of the functions in (2). This method can be made
robust and thus can cope with small model misalignments and disturbances. The
relative error of the model of less than 1% is usually satisfactory for robust model-
based control algorithms, under this error level the structural complexity should
have the preference in the process of optimisation. It should be underlined that
both error and structural minimisation do occur at every stage of the GA process.
The objectives are first normalised, then scaled in such a manner that the significant
part of the objective value shifts from the error part to the structural part, after
certain precision is reached:

ObjVali =
p∑

j =1

Err j + (NofMFsi / maxNofMFsi

+NofRulesi / maxNofRulesi ), (10)

where the index ‘i ’ refers to theith individual of the population,Errj is the ID error
part as in (11), maxNofMFsi and maxNofRulesi are the maximal possible number
of MFs and Rules, andNofMFsi andNofRulesi are the actual number of MFs and
Rules forming thei th individual. Measure of torque error on all joints is evaluated
as

Err j = 500·
(

K · max
k

(τ j (k))

)−1

· ‖ej ‖2
2, (11)
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where j is the index of the joint,K is the number of the signal samples,τj is the
torque sequence to be identified on thejth joint, andej is the torque identification
error vector sequence on thej th joint. The multiplication by 500 in (11) assures
that the second part of the objective value (10) is suppressed until the first part drops
under the desired magnitude.

It is possible for certain RMs that an appropriate choice of the Denavit–
Hartenberg matrices leads to some constantDijk s. FLSs can easily approximate
constant functions, but the number of required FLS parameters considered as struc-
tural complexity and the necessary computational effort will be much higher than
that of a simple constant, whose complexity is minimal. The used method assures
that all unnecessary FLSs are discarded and are replaced by the appropriate constant
value [3].

6. Implementation

For the implementation tool the Matlab environment was used because of the sim-
plicity of programming and the presence of its many useful toolboxes. The SCARA
type RM was chosen to be the test platform of this new general method. The initial
path was chosen to be as general and representative as possible. The sampling time
is 0.005 [s] and along the initial path there areK > 55000 sampling points to collect
the training data.

The value ofSn = 4 in the iterative Step4 of the training data reduction
algorithm is chosen. The stopping criteria for the iterative Step4 was extended with

checking the modification of the smallest and the largest singular value ofmin A, for
every iteration. The iteration was stopped when the condition number (8) dropped
belowSn and the singular values did not change for more than the value of 0.0005.
The Moore–Penrose pseudo inverse was used in (7).

The SCARA RM configuration is fairly simple after all the possible reduc-
tions and simplifications described in (3). For the modelling of the DM there are
15 unknown components, and 4 of them are constants without any doubt. The
parameters of the DM, shortly referred to asx in (5), are listed in the first column
of Table1. The characteristics of the used GA and the evolved FLSs are the same
as in [3]. For testing purposes a complex random path was generated.

7. Results

The value ofSn = 4 and the required precision of 0.0005 for the singular values in
the iterative Step4 of the training data reduction algorithm results in a quite good
solution that requires only 54 sampling points. The reduction of more than 55000
samples to 54 is really significant.

The results of the preliminary identification of constant parameters are in the
second column ofTable1.
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Table 1.

Const.
D11 5.0241
D12 0.84815
D14 0.004001
D22 1.1445
D24 0.004039
D33 130.2521
D44 0.409
D112 0.023372
D114 −0.002136
D214 −0.004013
D3 67.1985
f1 14.5031
f2 13.7999
f3 3948.9
f4 13.4002

Table 2.

D11 D12 D112

# MFs forq1 0 0 0
# MFs forq2 2 2 1
# MFs forq3 0 0 0
# MFs forq4 1 1 1

Because of the relative simplicity of the SCARA type RMs only threeDijk s
were recognised as necessary to be FLSs, namely:D11, D12 and D112, while the
others should remain constant. This matches exactly the results of classical, hard-
computing robotics analyses [8].

The rough approximation of the DM was built by the constants from the
second column ofTable1, which are the LS values of the minimal training data set.
To improve the model FLSs are added to the constants resulting in the three final
Dijk s, which are described inTable2 (number of MFs for variables) andTable3
(coefficients of the right side of TSK rules). The error of the torque ID on both
joints is such that the maximal error of the model is less than 0.5%.
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Table 3.

D11 D12 D112

MF1 0.72582 2.2645 0.0036922
−0.108 −1.4503 1.3798

MF2 1.5936 3.0183
1.5899 −0.3475

MF3 0.60622 0.79941 2.3046
−0.23437 2.242 −1.5499

Rule1 4.6717 1.9401 4.2849
−3.7732 1.4625 −3.5749

1.2926 −3.2653 −7.7998
1.0 1.0 0.30392

Rule2 −4.2234 −3.6023
−7.2138 −1.694

1.401 5.7801
1.0 0.61765

8. Conclusions

This paper proposes a method for significant reduction of the samples for the dy-
namic modelling of robotic manipulators (RMs) without loosing on the quality of
the representative training data.

The torque error of the DM built from constant parameters and very simple
fuzzy logic systems that are evolved by a genetic algorithm using only 54 samples
is less than half a percent (< 0.5%). A multi-population, multi-objective GA is
used for structure evolution and optimisation of the FLSs and constants, for model
fitting and structural simplicity improving the results in [3] and [5]. The fact that
the number of samples in the representative set of the training data is reduced from
over 55000 to 54, while the quality of the identification by grey-box modelling
remained superb, shows the validity of this method for reducing the set of training
data.

Considering future research the necessity of the investigation of more effec-
tive FLS coding for GA is obvious, the use of computer linguistic is an interesting
possibility. The application of more up to date multi-objective optimisation tech-
niques (Pareto-dominance based ranking for example) should be incorporated as
well.
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