
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 43, NO. 3, PP. 207–214(1999)

STABLE OBJECT GRASPING WITH DEXTROUS HAND IN
THREE-DIMENSION

Ervin TÓTH

Department of Control Engineering and Information Technology
Budapest University of Technology and Economics

H–1117 Budapest, Pázmány Péter sétány. 1/D, Hungary
e-mail: ervin@sch.bme.hu

Received: Nov. 30, 1999

Abstract

This paper considers a grasp planning scheme for dextrous hands. The grasp is assumed to be a precise
one, which means that only the fingertips of the hand are in contact. The most important algorithm of
the grasp planner is the placement of contact points in the presence of friction. Based on a heuristic
search, a number of grasp configurations are generated. A proposed method for evaluation of the
configurations and determination whether a grasp is a force closure, is introduced. These algorithms
are used in the experimental control system of an industrial robot, which the dextrous hand is attached
to. A two-level robot programming language, which was written for the robot-hand system, is briefly
introduced.

Keywords: grasp planning, grasp evaluation, robot programming.

1. Introduction

Form and force closure have been discussed in the literature for many years. How-
ever, the distinction between the two has often been unclear. The difference lies
in the way how the contact between the object and the constraining bodies is mod-
elled. Form closure means that if enough constraints are placed in a motion of
an object, then the object is immobilized. Force closure means that any external
wrench (i.e. force and torque) can be balanced by the proper combination of fin-
ger forces. RIMON and BURDICK have shown that in certain circumstances force
and form closure are equivalent to each other [5]. In this paper we focus on the
computation of the force closure.

At our institute a language called SRPS (Simple Robot Programming System)
has been developed for the TUB-PC three-fingered dextrous hand attached to a
NOKIA-Puma 560 industrial robot. The most important feature of the language is
that it has two levels: a high, task-oriented level and a low, motion-oriented one. On
the higher level indirect commands exist, such as ‘Grasp a given object’ or ‘Move
the dextrous hand above a given object without colliding with the environment’.
The language is upwardly compatible, that is, on the high level all the instructions of
the low level can be used. The high-level part, naturally, contains commands which

208 E. TÓTH

require sophisticated algorithms. This paper demonstrates the grasp planning and
evaluating algorithms in detail.

2. The Object Model

A virtual reality display is used to visualize the actions of the robot for the human
operators and this usually has to be done in real-time. It is also a requirement to
determine that the robot can do the desired action, so that it does not clash with
itself and/or the surrounding items of the environment. Hence an efficient multi-
level collision-detection algorithm was implemented.

There are two fundamentally different ways to view the robot during the
visualization: it can be an overlaid image with the real camera images or can be a
view from an arbitrary viewpoint. In order to put the virtual world together with
the real environment, the calibration of the system is required. It means that the
parameters of a camera, e.g. position, orientation, focal length, etc. are identified
based on pictures taken by a real camera, and used in the visualization stage [1]. The
system runs on a Windows NT workstation and was developed using the OpenGL
graphic library for realtime display and Visual C for all the other computations.

Our system uses boundary representation (B–Rep) scheme to describe objects.
For grasp computations the fingertips are treated as a sphere. The normal vector of
the surface element touched by the fingertip, however, not necessarily equals the
normal of the triangle. For curved objects vertex normals are defined, which are
the weighted sum of the triangle normals in a vertex shared by the neighbouring
triangles. The weighting factors are the areas of the triangles (the vertex normals
are not of unit length). The computed normal of a surface element of a triangle is the
linear combination of the three surrounding vertex normals. The arbitrary surface
normal in a certain point is generated by linearly interpolating and normalizing the
vertex normals along the surface.

The contact force computation for simulation is based on the penetration of
the fingertip model to the object model. Let the penetration vector, which is parallel
with the surface element normal and points from the surface to the deepest point

of the finger, bep. The contact force isF = −
(

Kc + Bc · dp
dt

)
· √|p| · s whereKc

specifies the nonlinear stiffness of the material andBc is the damping [2].

3. The SRPS Language

Our goal was to develop a robot programming language which is capable of describ-
ing complex motions, e.g. the robot should be controlled either in joint coordinates
and as a functionf (x, y, z, t), too. If the system is used without external infor-
mation, that is, for simulation, the contact forces have to be simulated. In our case
it means collision and minimum-distance computations between the model of the
dextrous hand and the surrounding objects. The language is a frame system, which

STABLE OBJECT GRASPING 209

means that certain actions do not need to be directly defined, only the starting and
ending positions and the path and grasp planner will do the rest automatically.

Some parts of the functions implemented in the SRPS can be found in the
ARPS, the programming language of the NOKIA Puma robot. Certain programs
written in SRPS can (with minor modifications) be transmitted to the ARPS inter-
preter. The new functions mainly deal with the control of the robot hand (high-level
grasp synthesis) because the ARPS is not applicable for this task. Since the robot
carries items during its movement, condition-systems had to be developed which
determine them in a given configuration if the hand holds the object or not.

With the graphic model the reference points of the robot track can be gen-
erated. It is especially important when the robot cannot move free because the
environment contains obstacles. The virtual robot can be positioned near the de-
sired end positions, then collision-free configurations must be manually found.
From now on, the path planning algorithm can find the movement between the end
points so the operator does not have to find and teach it. In SRPS level this means
that there are indirect moving commands between endpoints. The output of the path
planning is the complete SRPS program, which contains simple (direct) instructions
only, which can be directly transmitted to the robot controller. The reference points
in both stages are collision-free of course.

To demonstrate the possibilities of the SRPS, a few low-level functions are
listed below.

LOAD – used to load pre-defined coordinates. These are the Denavit–Har-
tenberg joint (wrist) coordinates. In the SRPS program a coordinate-configuration
record is referred to with its number.

FRAME/UNFRAME – defines/deletes a new coordinate system in which the
following commands work. This is used for navigation close to the manipulable
objects, using their own coordinate system.

GO, GOS – moves the robot between two reference points. WithGO the path
planning is done in joint coordinates, withGOS is along a straight line in 3D. The
starting position is the actual position of the robot, the end coordinate is given with
its number. If a collision is found during the movement, the program stops with an
error message.

GRASP – directs the hand into one of the loaded hand positions. If a segment
of a finger collides with an object, the phalanx stops. The other phalanxes and
fingers move further until another collision or the desired position. The command
has several parameters, such as maximum contact forces, and list of the segments
which can touch the object. There are three simplified versions of this command,
such asPINCH, SNAP and GRIP [3]. These commands move the fingers into
predefined positions, so these do not need to be taught. Furthermore, these have
much smaller numbers of parameters.

OPEN – straightens the fingers and translates them to the edge of the palm.
During the movement collision must not occur. (If so, the program shows an error
message.)

210 E. TÓTH

The high-level functions:
GOIN (Go indirect) – this command is not interpreted by the ARPS but is

replaced by the path planning algorithm with series ofGO andGOS commands.
GRASPIN (Grasp indirect) – directs the grasp planner to develop a grasp. The

grasp planning algorithm tries to find a prehensile grasp on the object. It takes into
account the properties of the object, e.g. frictional coefficient, center of gravity,
parts of its surface that can be touched, and orientation constraints. Furthermore, it
considers the obstacles around the object with respect to the initial and final position
of the robot arm before approaching and after grasping the object.

4. Contact Point Generation

The theory of grasp planning is also studied for a long time. Generally, the object
to be grasped has arbitrary shape, given in a form of geometric model, transformed
from a modeller software (CAD) or derived from sensor data. Because of the
big amount of data required to describe even a medium-complex object, a direct
(closed-form) solution for finding the optimal grasp does not exist. To overcome
this, we assume that using heuristics to locate contact points on the object, a number
of grasp candidates can be found, the best of which is selected. Precision grasps
are considered (only the fingertips, which are hemisphere-shaped, touch the object).
Unfortunately, it cannot be told how close our best candidate is to the optimal grasp.
However, a number of measures to qualify grasps has been proposed, e.g. [4] , that
measures which external forces can be balanced by a grasp. From this point of
view, the best ones are the force-closure grasps, which resist all external forces and
torques. This induces a special problem: the TUB-PC hand has three fingers, and a
3D force-closure grasp requires at least four contact points. The solution is to find
a concave corner on the object, which can provide more than one contact point for
a single fingertip.

Our contact point generator has two fundamentally different algorithms, one
for the form-closure grasp generation, the other for arbitrary grasps. The planner
decides whether a form-closure grasp is possible, and if not, runs the second algo-
rithm. First, concave corners are searched. A corner (vertex) is concave, if all the
edges meeting in the vertex are on the same side of a plane, and the plane, in the
vicinity of the vertex, lies inside the object. The resulting grasps can be divided into
three categories: a) which contain only concave corners as grasp points, b) which
contain no concave corners, c) mixed. The latter ones can be either form or force
closures. Only those concave vertices are considered which are accessible for the
fingertip of the dextrous hand. Next, the vertex normals of the concave corners are
searched for tripletsv1, v2, v3, where(v1 · v2), (v2 · v3), (v3 · v1) are all close to
−0.5, which means that these vectors span a quasi-regular triangle. (The triplets
are assigned a valuew:

∑
i=1,2,3
j=2,3,1

(−0.5− (vi · v j))
2 and are sorted in ascending order.)

If the smallestw is larger than a givenwmax value, the algorithm fails. We found

STABLE OBJECT GRASPING 211

out that a reasonable value forwmax is 1. The remaining ones (w < wmax) become
grasp candidates.

P′

Q

R

C
Pϕ

ψ α

β

χd

Fig. 1. Parameters that alter the grasp star

The second algorithm tries to place a Y-shaped ‘grasp star’ so that the pene-
tration points on the object surfaces are the contact points. First, a surface is picked.
Through its center pointP a ray is shot inside the object which is parallel to the
surface normal. Between the (farthest) penetration pointP′ on the opposite side,
and the starting position, aC point is picked so thatPC = 2P′C. FromC two rays
are shot, their intersection point with the object isQ andR (the angles betweenCP,
CQ andCR are 120 degrees, seeFig. 1). At this point, we constructed a three-tip
star whose tips are the contact points. The algorithm checks whether theCP, CQ
andCR lines are inside the corresponding friction cones. If so, a grasp candidate
is ready; if not, we try to compensate with altering the star. There are a number of
possibilities: theC point can be altered, the angles of the star can be modified, and
the star can be rotated around theCP, CQ andCR lines. These operations take into
account the surface normal in the contact points so that the accumulated deviation
from the surface normals becomes smaller. Random modification is also applied,
thus the algorithm resembles the simulated annealing optimization method. During
the algorithm, the following criteria are checked: a) two contact points cannot be
too close to each other, b) the contact points must be reachable for the hand, c) a
contact point cannot be too close to an edge.

We generate several grasp candidates. If possible, the starting position is not
only a surface point, but also a vertex normal of a concave corner, resulting a mixed
type grasp. Finally, the palm position of the dextrous hand is calculated for the
grasp candidates. The palm position is selected so that the accumulated distance

212 E. TÓTH

of the palm and the surrounding objects is maximal. The calculation of the finger
positions is an inverse geometry task: a finger has 3 degrees of freedom.

5. Grasp Evaluation

The necessary and sufficient conditions of stable grasp are checked. The static
equilibrium of fingertip forces and Coulomb friction are considered. The necessary
and sufficient conditions are: a) total moment of fingertip forces is zero, b) total
force of fingertip forces is zero, c) each fingertip force is in the friction cone. The
first condition is satisfied by selecting the fingertip forces so that they intersect in
C. The necessary and sufficient condition for the second is:

eT
i (e j + ek) ≤ 0; eT

j (ei + ek) ≤ 0; eT
k (ei + e j) ≤ 0,

whereei is the unit vector of theith fingertip force. The third condition is a restriction
about Coulomb friction. The method we use, proposed in [6], calculates a measure
by determining the set of external wrenches (grasp wrench space, GWS) that can be
resisted by distributing one unit force over all grasp points. For linear computations,
the set of forces within the friction cones at contact pointi are approximated by
a linear combination of a finite set ofn unit force vectorsfi, j at the friction cone
boundaries:

fi =
n∑

j=1

αi, j · fi, j , αi, j > 0,
n∑

i=1

k∑
j=1

αi, j ≤ 1.

The resulting generalized force (wrench) at theith contact can be expressed as

wi =
n∑

j=1

αi, j · wi, j , wi, j

(
fi, j

λ · (ri × fi, j)

)
,

wi, j is called primitive contact wrench. TheGWS can be calculated asGWS =
ConvexHull

(⋃n
i=1

{
wi,1, . . . , wi,m

})
. The time-consuming calculation of the con-

vex hull can be sped up applying incremental calculations [6]. This means that in
the beginning of the convex hull computation each friction cone is represented only
by three primitive contact wrenches. Those cones which take part in spanning the
weakest surface of the convex hull, will be supplemented by additional primitive
contact wrenches, thus making the cone approximation more precise. (The weak-
est surface is the one which lies closest to the origin.) This process continues until
the weakest plane converges. The grasp measure is the radius of the maximal ball
which can be drawn inside the convex hull. To establish whether a grasp is a force
closure, the following condition is checked [7]: if the origin of the wrench space
(R6) lies exactly inside the convex hull of the primitive contact wrenches, then the
grasp is a force closure.

STABLE OBJECT GRASPING 213

wi, j

n

Fig. 2. Primitive contact wrenches

6. Conclusion

This paper proposed a method for finding and evaluating stable grasps on an arbitrary
shaped object. Extended polygonal models supplied by material properties are
applicable for contact force simulation. A two-level robot programming language
has been introduced to describe complex operations. As a part of this language, a
grasp planning algorithm was introduced, which generates many grasp candidates
based on a heuristic search. Finally, an evaluation function for grasp stability was
shown. So far we assumed that the geometric object model is fully known. In
real environments, this requirement often cannot be satisfied. In the near future the
generation of a partial object model from sensor (mainly visual) data is considered.

Acknowledgement

Support for the research for stable object grasping is provided by the Hungarian National
Research Programs under grant No. FKFP 0417/1997 and OTKA T 029072.

References

[1] TÓTH, E. – TÉL, F.: Intelligent Robot Control System with Graphic Model Based Programming
and Stereo Vision. In:Proc. IEEE Int. Conference on Intelligent Engineering Systems, Poprad,
Slovakia, 1999, pp. 57–62.

[2] M AEKAWA , H. – HOLLERBACH, J. M.: Haptic Display for Object Grasping and Manipulating
in Virtual Environment. In:Proc. IEEE Int. Conference on Robotics & Automation, Leuven,
Belgium, 1998, pp. 1586–1592.

[3] L ANTOS, B.: Some Possibilities to Increase the Intelligence in Robot Control Systems.Proc.
IEEE Conference on Intelligent Engineering Systems, Vienna, Austria, 1998, pp. 7–18.

214 E. TÓTH

[4] FERRARI, C. – CANNY, J., PlanningOptimalGrasps. In:Proc. IEEE Int. Conference on Robotics
& Automation, Nice, France, 1992, pp. 2290–2295.

[5] RIMON, E. – BURDICK, J.: On Force and Form Closure For Multiple Finger Grasps.IEEE
Trans. on Robotics and Automation, 1996.

[6] BORST, C. – FISCHER, M. – HIRZINGER, G., A Fast and Robust Grasp Planner for Arbitrary
3D Objects. In:Proc. IEEE Int. Conference on Robotics & Automation, Detroit, Michigan, 1999,
pp. 1890–1896.

[7] M ISHRA, B. – SCHWARTZ, J. T. – SHARIR, M.: On the Existence and Synthesis of Multifinger
Positive Grips. Algorithmica, Special Issue:Robotics, 2 (1987), pp. 541–545.

	Introduction
	The Object Model
	The SRPS Language
	Contact Point Generation
	Grasp Evaluation
	Conclusion

