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Abstract

A unified framework for the modelling of a class of cranes is presented. The dynamic equations
are obtained using Lagrange multipliers associated to geometric constraints between generalized
coordinates. This approach provides a simple way to show differential flatness for all cranes of the
class and to generate a compact numerical simulation software. Examples illustrate the approach.
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systems.

1. Introduction

Many different types of cranes are used in various industries like construction or
naval transport where both economic and security improvements are needed [5, 6,
10, 11].

In spite of different structures, numerous types of cranes carrying the load
using cables and pulleys have similar mechanical properties. In particular, they
are all underactuated systems showing oscillatory behaviour. These mechanical
similarities suggest that modelling of cranes with different structures may be carried
out using a unified framework. This has particular interest if one can prove general
properties for all elements of the considered set of cranes.
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In this paper, the flatness property [1, 2, 3] is proven to hold to the modelled
class of cranes. This property is useful for both motion planning purposes and
for closed loop control, aspects that are not treated here in details due to space
limitations (the reader may find several applications in the literature, see [8] and its
bibliography).

The modelling framework is also useful to simulate the nonlinear dynamics
of cranes in the considered class without need to obtain a state-space representa-
tion, that would require complicated algebraic operations. Also, testing control
algorithms might be significantly simplified with this approach.

We start with an introductory example. Section 2 gives a general definition of
a crane together with a method to obtain its dynamics using Lagrange multipliers.
Flatness is proven in Section 3 and a simulation method is proposed in Section 4.
Two more examples are given in Section 5.

Example 1 The crane is depicted inFig. 1.
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Fig. 1. Overhead crane with its two winches and its trolley

It comprises a working load with massm whose position is denoted by(x1, x2);
two motors, one located at the origin and a second one located at the end at a
distancel. The first (resp. second) motor has inertiaJ1 (resp. J2) and a pulley
of radiusr1 (resp. r2). Both motors are torque controlled so they deliver a direct
force T1 (resp. T2); a main pulley mounted on a trolley moving on a rail and
actuated through cables by the first motor,L1 denoting the distance between the
main pulley and the motor; the motor at the origin winches the main cable with
length L2 passing through the pulley on the trolley before ending attached to the
load. Let us denote bym2 (resp. m1) the total inertia with respect to the variable
L2 (resp. L1): m2 = J2/r2

2 (resp. m1 = m ′ + J1/r2
1 wherem′ is the mass of

the trolley). The kinetic and gravitational potential energy read:Wk = 1
2m2L̇2

2 +
1
2m1L̇2

1 + 1
2m(ẋ2

1 + ẋ2
2), Wp = mgx2. Here, the vector of generalized coordinates

is q = (q1, q2, q3, q4)= (x1, x2, L1, L2). The rope length between the main pulley
and the load equalsL2 − L0 = L1 + L2 − l and the following constraint is valid:
C = 1

2

(
(x1 − l + L1)

2 + x2
2 − (L1 + L2 − l)2

) = 0. The Lagrangian readsL =
Wk − Wp. Denote byτqi = (τx1, τx2, τL1, τL2)

T the internal force acting on the
system to realize the above constraintC. We prove that (see Theorem1 below):
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τqi = λ ∂C
∂qi

, i = 1 . . . 4, whereλ is the Lagrange multiplier. Then the dynamics
read:

mẍ1 = λ(x1 − l + L1), m1L̈1 = λ(x1 − L2) + T1,

mẍ2 = λx2 − mg, m2L̈2 = −λ(L1 + L2 − l) + T2,
(1)

subject to ConstraintC.
Note that another crane with the same configuration variables but with a

different geometry would lead to the same left hand sides as in (1). Moreover,
the geometry appears only through the Lagrange multiplierλ and derivatives of the
geometric constraint as can be seen on the right hand sides of (1). Thus, this method
provides a unifying modelling framework for cranes with various geometries, an
easy way to prove the flatness property of the crane and a well adapted numerical
simulation approach.

2. General Formulation for 2D and 3D Cranes

2.1. Crane Description

Let p be the dimension of the working space withp ∈ {2, 3}.
Definition 1 (crane) A crane is constituted by the following elements:i) a rigid
articulated actuated mechanical system withd ∈ {0, 1} degrees of freedom,i i)
motors,i i i) cables,iv) pulleys,v) a load, and enjoys the following topographic
properties:
1. Lets + 1 be the number of motors fixed on the articulated structure.
2. There are as many cables as motors.
3. A motor is linked to a pulley or to the load with a cable.
4. s cables end on a unique pulley, called the main pulley. Ifs = 0 there is no main

pulley. Every other pulley is fixed to the structure.
5. There is a unique cable going through the main pulley and ending on the load.
6. Between the load and the main pulley there is no other pulley.
Moreover, the following physical property is assumed. The main pulley moves in
a manifold of dimensionn ∈ (p−1, p). Whenn = p, the main pulley can move
in every direction of the working space. Ifn = p − 1, it can move in ap − 1
dimensional manifold (corresponding to a one dimensional geometric constraint,
for example when the main pulley is constrained to move along a rail) assumed to
be transversal to the gravitational field.

Any mechanical structure satisfying this definition will be referred to as a crane.
The parameterss, d, n are specific to the given crane. For the planar (p = 2)
example presented in the introduction we have:s = 1, d = 0, n = 1.

Let us enumerate and order the fixed pulleys along each cable starting from
the motor winching the cable to the main pulley or to the load. This is possible due
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to the previous definition. Denote byri the number of fixed pulleys along thei th
cable(i = 1 . . . s + 1).

2.2. Crane Modelling

We present here a Lagrangian approach to the crane modelling. Hence, we start
with the choice of generalized coordinates, then express the Lagrangian and the
geometric constraints. The model is given in Theorem1 below.

Consider an inertial base frame such that itspth axis is pointed in the direc-
tion opposite tog, the gravity acceleration. We introduce the following coordi-
nates:
1. position of the working load:(x1, . . . , x p),
2. position of the main pulley (if it exists):(x01, . . . , x0p),
3. positions of the motors:(xi1, . . . , xip) for i = 1 . . . s + 1,
4. positions of the fixed pulleys:(wi j1, . . . , wi j p) for i = 1 . . . s+1 andj = 1 . . . ri ,
5. cable lengths:Li for i = 1 . . . s + 1,
6. cable lengthL0 between the main pulley (if it exists) and the motor winching

the working load.
The load mass ism and the main pulley mass ism0. To each motor fixed on
the structure there is a corresponding equivalent massmi , i = 1 . . . s + 1. The
coordinateL0 is not associated to any mass. We assume that the rigid body with at
most one degree of freedom has an equivalent massM and its coordinates coincide
with the ones of the motor winching the load, namely(x(s+1)1, . . . , x(s+1)p).

The reader can easily check that all fixed pulleys along each cable can be
virtually eliminated by placing the corresponding motor at the position of the last
pulley with an equivalent mass obtained by adding to its own equivalent mass the
sum of the equivalent masses of all the pulleys removed. Each cable length is then
reduced by the sum of the constant cable distances between the pulleys removed
along that cable. For notational convenience,Li ’s stand for these new lengths.
Because of space limitations we suppose the following.

Assumptions 1
(A1) The main pulley is present. Consequently,s ≥ 1.
(A2) The angular velocities of the fixed pulleys are small enough to neglect their
quadratic effects w.r.t. the structure. We suppose that all the motors are located
on the structure along a line determined by the origin of the base frame and by
the position of the motor winching the load:xj i = α j x(s+1)i for j = 1 . . . s and
i = 1 . . . p.

(A3) If the main pulley moves along a rail, the rail coincides with the above line.
Let us introduce a parameterc such thatc = 1 if the rail is present andc = 0
otherwise.

(A4) The crane has no redundant actuator or motor:s = p − d − c. (Recall thatd
is the number of degrees of freedom of the articulated structure,s +1 is the number
of motors winching cables, andp is the dimension of the working space).



MODELLING OF A CLASS OF CRANES 219

(A5) If d = 1 the origin of the base frame is on the joint axis of the articulated
mechanical structure. The articulated mechanical structure consists of either a
rotational joint, to which case the joint axis is collinear withg, or a prismatic joint,
to which case the joint axis is orthogonal tog. This assumption eliminates the
variablex(s+1)p. (The vertical position of the motor winching the load remains
constant.)

Table 1. Parameter values compatible with the assumptions

p d c s d+s+1
2 0 0 2 3
2 0 1 1 2
3 1 0 2 4
3 1 1 1 3

The number of actuators (i.e. the actuator of the articulated structure and the motors
winching the cables taken together) equalss+d+1. Table1 gives the possible values
of the parametersp, d, c ands compatible with the assumptions.

The Lagrangian reads:

L= 1

2

(
m

p∑
i=1

ẋ2
i +m0

p∑
i=1

ẋ2
0i +M

p∑
i=1

ẋ2
(s+1)i +mi

s+1∑
i=1

L̇2
i

)
−g(mxp+m0x0p). (2)

Constraints on the cable lengths are present either due to cables terminating at the
main pulley:

C j (x01, . . . , x0p, x(s+1)1, . . . , x(s+1)p−1, L j ) = 0, j = 1 . . . s, (3)

or due to the cable terminating at the working load, one for the total length between
the main pulley and the corresponding motor, and one for the length between the
load and the main pulley:

Cs+1(x01, . . . , x0p, x(s+1)1, . . . , x(s+1)p−1, L0) = 0, (4)
Cs+2(x01, . . . , x0p, x1, . . . , x p, L0, Ls+1) = 0. (5)

An additional constraint is imposed by the motion compatible with the degree of
freedom of the structure. In view of the above assumptions, the following constraint
exists only if p = 3:

Cs+3(x(s+1)1, . . . , x(s+1)p−1) = 0 . (6)

The motion of the main pulley along the rail (if it is present) is of the form:

Cs+p+k(x0k , x0p, x(s+1)k) = 0, k = 1 . . . p − 1. (7)
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Denote byl the total number of constraints. If (7) is present,l = s + 2p − 1 and
l = s + p otherwise.

Here, the functionsC1, . . . , Cl are quadratic functions of all their arguments.
Moreover,C1, . . . , Cs+2 contain no product involvingLj , for j = 0 . . . s +1. Their
exact form is not needed in the sequel (see Remark2 below).

In place of obtaining an explicit differential model, we prefer an implicit
formulation with additional variables, known asLagrange multipliers.

Theorem 1 Assume that the constraints are independent in an open subset of the
generalized coordinate space. The dynamical model associated to a crane corre-
sponding to Definition 1 reads:

mẍi = λs+2
∂Cs+2

∂xi
− δipmg, i = 1 . . . p, (8)

m0ẍ0i =
l∑

j=1

λ j
∂C j

∂x0i
− δipm0g, i = 1 . . . p, (9)

0 =
l∑

j=1

λ j
∂C j

∂L0
, (10)

mi L̈i =
l∑

j=1

λ j
∂C j

∂Li
+ Ti , i = 1 . . . s + 1, (11)

Mẍ(s+1)i =
l∑

j=1

λ j
∂C j

∂x(s+1)i
+ Fi (Ts+2), i = 1 . . . p − 1 (12)

subject to Constraints (3)–(7), where δip = 1 if i = p and δip = 0 otherwise.
T1, . . . , Ts+1 are the torques produced by the motors on the structure and Ts+2 the
one produced by the structure actuator.

Proof 1 We computed
dt

∂L
∂ q̇ − ∂L

∂q = Fq + τq whereq = (x1, . . . , x p, x01, . . . , x0p,

L0, L1, . . . , Ls+1, x(s+1)1, . . . , x(s+1)p−1)
T , Fq are the external generalized forces

andτq are the constraint forces. We have

Fq = (0, . . . , 0︸ ︷︷ ︸,T1, . . . , Ts+1, F1(Ts+2), . . . , Fp−1(Ts+2))
T .

2p + 1

Taking total differential of the constraints leads to
∑dim q

j=1
∂Ci
∂q j

dq j = 0, i = 1 . . . l,
expressing that virtual displacements are in kerdC, wheredC is the matrix whose
entries are∂Ci

∂q j
. Since the constraint forces compatible with the virtual displacements

are workless we have
∑dimq

i=1 τi dqi = 0. Thereforeτi is a linear combination of the
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lines ofdC:

τi =
l∑

j=1

λ j
∂C j

∂qi
, i = 1 . . . dim q (13)

and the theorem is proved.

Remark 1 As announced in the introductory example, the left hand sided
dt

∂L
∂ q̇ of

the model (8)–(12) is independent of the specific topography of the crane, whereas
the right hand side consists of the exterior forcesFq plus gravity terms∂L

∂q and the
terms given by (13) which sum up the topographic specificity.

Remark 2 The exact form of the constraintsCj , j = 1 . . . l are:

C j = 1

2

p∑
i=1

(x0i − α j x(s+1)i)
2 − 1

2
L2

j = 0, j = 1 . . . s, (14)

Cs+1 = 1

2

p−1∑
i=1

(x0i − x(s+1)i)
2 − L2

0

2
= 0, (15)

Cs+2 = 1

2

p∑
i=1

(xi −x0i )
2− (Ls+1−L0)

2

2
= 0, (16)

Cs+3 =
{

1
2

∑p−1
i=1 x2

(s+1)i − r2 = 0 for rotational joint,
t1x(s+1)2 − x(s+1)1t2 = 0 for prismatic joint,

(17)

Cs+p+k = x0k x(s+1)p − x(s+1)k x0p = 0 k = 1 . . . p − 1, (18)

wheret = (t1, . . . , tp)
T is the vector of joint axis of the articulated structure and

r is the constant distance between the joint axis and the motor winching the load
in the case of rotational joint. Note that these formulas are not needed to state and
prove our main results.

3. Flatness

For completeness, let us give first the definition of differentially flat systems.

Definition 2 (flatness) The system

ẋ = f (x, u) (19)

with x ∈ R
n andu ∈ R

m is differentially flat if one can find a set of variables, called
flat output,

y = h(x, u, u̇, ü, . . . , u(r)), y ∈ R
m (20)
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with r finite integer, such that

x = α(y, ẏ, ÿ, . . . , y(q)),

u = β(y, ẏ, ÿ, . . . , y(q+1)),
(21)

with q a finite integer, and such that the system equations

dα

dt
(y, ẏ, ÿ, . . . , y(q+1)) = f (α(y, ẏ, ÿ, . . . , y(q)), β(y, ẏ, ÿ, . . . , y(q+1)))

are identically satisfied.

Assume that we exclude trajectories in free fall, namely such thatẍp = −g, and
such that∂Cs+2

∂x p
�= 0.

Theorem 2 Cranes defined by Definition 1 and satisfying (A1)–(A5) are differen-
tially flat. The flat output can be chosen as (x1, . . . , x p), the coordinates of the
load, and s+d+1− p coordinates of the main pulley.

Proof 2 In view of the assumptions we need to distinguish the four cases ofTable1.
We provide the proof forp = 3, the simplest cases withp = 2 are left to the reader.
(Recall thatp = 2 impliesd = 0.)

Assume first thats =2= p −1 and consider(x1, . . . , x p, x0p) as a candidate
flat output. Combining thepth equation of (8) and (5) and the fact that theCi ’s
contain no cross-terms involvingL0, Ls+2 by assumption, one obtainsλs+2 as a
function of xp, ẍ p andx0p since ∂Cs+2

∂x p
�= 0. Next, as long asλs+2 �= 0 which is

guaranteed by the assumption thatẍp = −g, the firstp −1 equations of (8) express
the remaining coordinatesx01, . . . , x0(p−1) as functions ofxj , ẍ j , j = 1 . . . p, and
x0p . Next, we use the 2p + 1 equations (4)–(6), (9) and (10) to express the 2p + 1
variablesL0, Ls+1, x(s+1)1, . . . , x(s+1)p−1, λ1, . . . , λp as functions ofx01, . . . , x0p,
x1, . . . , x p, λs+2 and derivatives up to order 2, which in turn can be expressed as
functions ofx1, . . . , x p, x0p and derivatives up to order 4. Now, by (3), one can
expressL1, . . . , Ls as functions of the previous ones. By (11), T1, . . . , Tp are
also obtained as functions of the previous ones and derivatives up to order 6, and
finally, Ts+2 and λs+3 are obtained in a similar way by (12), which proves that
(x1, . . . , x p, x0p) is a flat output.

Consider now the case withs =c=1 (i.e. the rail constraints (7) are present).
First, we use the 2p equations (6)–(7) and (8) to express 2p variablesx01, . . . , x0p,
λs+2, x(s+1)1, . . . , x(s+1)p−1 in function of xj , ẍ j , j = 1 . . . p. We proceed using
Eqs. (4), (3), (5) and (10) to express the cable lengthsL0, L1, L2 andλs+1 in function
of x j , ẍ j , j = 1 . . . p. Next, we useEq. (9) to obtainλs, λs+p+1, λs+p+2 as functions
of x1, . . . , x p and their derivatives up to order 4. Finally, we useEqs. (11) and (12)
to expressT1 . . . Ts+2 andλs+3 in function ofx1, . . . , x p and their derivatives up to
order 4 which proves thatx1, . . . , x p is a flat output.
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4. Simulation

Dynamical simulation of a system consists of numerically integrating its state equa-
tions. For the cranes we advocate to integrate the extended state equations without
reducing them by choosing a particular set of independent coordinates. The sys-
tem to be integrated (8)-(12) being affine w.r.t.� = (λ1, . . . , λl)

T the vector of
Lagrange multipliers, it is of the form

q̈ = F(q, q̇)� + F0(q, q̇), (22)

whereq stands for the vector of generalized coordinates. For this system to be well
determined, expressions ofλi as functions ofq andq̇ need to be obtained. To do so,
we differentiate twice the constraintsCj (q), j = 1, . . . , l which gives, in matrix

form A(q, q̇) + ∂C
∂q q̈ = 0, with A(q, q̇) =

(
q̇T
(

∂2C1
∂q2

)
q̇, . . . , q̇T

(
∂2Cl
∂q2

)
q̇
)T

. We

then replacëq by its expression given by (22) to yield ∂C
∂q F(q, q̇)� = −A(q, q̇) −

∂C
∂q F0(q, q̇). It can be shown that∂C

∂q F(q, q̇) is always an invertible matrix and thus

� = −
(

∂C

∂q
F(q, q̇)

)−1(
A(q, q̇) + ∂C

∂q
F0(q, q̇)

)
. (23)

Eq. (22) with � replaced by (23) is then integrated using a standard algorithm. Nu-
merical simulations show that the constraints are satisfied throughout the integration
process once the initial conditions satisfy them.

5. Examples

Let us illustrate our approach with two more examples where the load can move in a
three dimensional working space (p = 3) in contrast with the introductory example
where the motion of the load is restricted in a vertical plane.

The constraints can easily be obtained usingEqs. (14)–(18) and the notations
of Fig. 2.

Example 2 3D Cantilever Crane. The first crane inFig.2 comprises a trolley (main
pulley) restricted to move along a rail. The rail rotates around its vertical axis. Thus,
we have the following parameters:n = 2, p = 3, d = s = c = 1. The generalized
coordinates areq = {x1, x2, x3, x21, x22, x01, x02, x03, L0, L1, L2}. The constraints
read:

1
2

(
(x01 − x21)

2 + (x01 − x22)
2 − L2

0

) = 0, 1
2

(
x2

21+ x2
22− r2

) = 0,
1
2

(
(x01− α1x21)

2+(x02− α1x22)
2− L2

1

) = 0, 1
2 (x01x23 − x03x21) = 0,
1
2 (x02x23 − x03x22) = 0,

1
2

(
(x1− x01)

2+ (x2− x02)
2+ (x3− x03)

2− (L2 − L0)
2
) = 0.

The model is thus given by Theorem1. One can prove, using Theorem2, that
(x1, x2, x3) is a flat output (see also [4]).
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(x11,x12,x13)

(x01,x02,x03)
L0

L1

r

(T1,m1)

(T2,m2)

T3, ML2-L0

(x1,x2,x3)

(x21,x22,x23)

m
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T2,m2
(x21,x22,x23)

L0
L2

T1,m1

T3,m3

L1

(x01,x02,x03)

(x1,x2,x3) T4,M

L3-L0

(x31,x32,x33)

t

m

r

Fig. 2. 3D Cantilever and 3D US-Navy crane

Example 3 3D US-Navy Crane. The main pulley whose coordinates are x01 , x02, x03
in Fig. 2 can move in every direction: Pulley no. 1 (resp. 2) produces horizontal
(resp. vertical) deviations. Motor no. 4 rotates the whole setup around the vertical
axis. The hoisting cable passes through the main pulley to hoist the load. It is
actuated by motor no. 3. The parameters are n = 3, p = 3, d = 1, c = 0, s = 2
and the vector of generalized coordinates is q = {x1, x2, x3, x31, x32, x01, x02, x03,
L0, L1, L2, L3}. The constraints read:

1
2

(
(x1 − x01)

2 + (x2 − x02)
2 + (x3 − x03)

2 − (L3 − L0)
2
) = 0,

1
2

(
(x01 − α1x31)

2 + (x02 − α1x32)
2 + (x03 − α1x33)

2 − L2
1

) = 0,
1
2

(
(x01 − α2x31)

2 + (x02 − α2x32)
2 + (x03 − α2x33)

2 − L2
2

) = 0,
1
2

(
(x01 − x31)

2 + (x02 − x32)
2 + (x03 − x33)

2 − L2
0

) = 0,
1
2

(
x2

31 + x2
32 − r2

) = 0.

Again, the model is given by Theorem 1. One can prove, using Theorem 2, that
(x1, x2, x3, x03) is a flat output (see also [9, 8]). Simulation results for this type of
crane using proportional-derivative type feedbacks on the angular positions of the
motors are reported in [7].

6. Conclusion

We have shown in this paper that a large class of cranes and weight handling
equipments can be modelled in a unified way, using Lagrange multipliers to describe
the geometric constraints. The main advantage of this approach can be seen in two
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applications, namely detecting the flatness property and computing the flat output
on the one hand and simulating the system without need to express it in explicit
form to achieve simpler computation though with a larger number of variables on
the other hand.
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