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Abstract

In this paper such analytical and numerical methods are presented, which are necessary for the analysis
of transient transfer properties of self-integrating and current-integrating type current transmitters
operating based on the principle of magnetic voltage measurement. The methods can be used for
arbitrary exciter signals. The analytic solution of response signal measurable on the output of the
transmitter is also presented, using the analytical method in the case of four given exciter signals
(fault far from the generator, fault near to the generator, half-sinewavecurrent, current signal of an
inverter).
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1. Introduction

The practically used current transmitters are operating based on the well-known
principle of magnetic voltage measurement. This principle was published by CHAT-
TOCK (CHATTOCK, 1887), more than hundred years ago, and later by ROGOWSKI
(ROGOWSKI, 1912). Current transmitters consist of a ring-shaped current measur-
ing coil, which surrounds the conductor and an integrating circuit connected to the
outlets of the coil. For the operation of the so called passive (self-integrating and
current-integrating type) current transmitters no supply voltage is required. Nowa-
days the interest for current transmitters is strongly increasing, due to the wide
spreading of modern electronic protections and measuring equipment. Current
transmitter can be magnificently connected to these devices because it provides
such a voltage signal on its output which is proportional to the primary current.
Using it, the restriction for the impedance applicable in the secondary circuit of
traditional current transformers, the long distance signal transport is not necessary.
There is no danger of death during the disconnection of the secondary circuit. Sep-
arated measuring and relay core are not necessary as it is in the traditional current
transformers. The measuring coil contains no iron, therefore the current transmitter
has linear transfer characteristic (in a wide range of measurable currents), including
the conform transmission of transient currents (containing DC component). The
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problems of measuring network frequency currents were solved by inventing a new
passive, current-integrating current transmitter (KOLLER, STEFÁNYI 1985).
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Fig. 1.

This current transmitter with the other, passive self-integrating type – which
can be supposed as a traditional one – can be applied to transmission stationary cur-
rents from network frequency to some 10 kHz frequencies (KOLLER, 1994). The
computational models and design methods of the transmission of quasi-stationary
currents are available. (KOLLER, 1993) shows the results regarding the examina-
tion, centrated parts of network are represented inFig. 1 (KOLLER and STEFÁNYI,
1985) with the following parameters:

i1 current to measure (input signal)
i2 current of measuring circuit
ui voltage induced in the measuring coil
M mutual inductance of the measuring coil and the conductor to mea-

sure
L self inductance of measuring coil
R effective resistance of measuring coil
Rv resultant resistance of the loss resistance of the condenser and the

input resistance of the measuring instrument (current-integrating
circuit)

Rv input resistance of measuring instrument (self-integrating circuit)
C capacitance
Ra output resistance of the measuring circuit
Uki = UC output voltage signal (current-integrating circuit)
Uki = URa output voltage signal (self-integrating circuit)

Based on these circuits, the dimensioning of current transmitters was accurate
for quasi-stationary signal transmission – even at some 10 kHz frequency. The
accuracy could be justified by comparing the measurement results. So these models
are well applicable for examining the transient signal transmission up to some
10 kHz frequency. Reducing frequency (in the case of transients, DC component
is possible) the models describe reality more and more accurately.

One of our goals is to calculate the output signals for both of the current trans-
mitters, based on the presented models, for the following input signals – frequent
in practice:
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1. Current transients at a fault far from the generator (Fig. 2a). The effect of the
generator can be neglected by most of the short circuits in power networks.

2. Current transients at a fault near to the generator (Fig. 2b). Examination of
the transmission of transient and subtransient currents flowing in a network,
which contains non-linear elements of synchronous generator.

3. Sinusoidal half wave current to test circuit breaker (Fig. 2c). This signal is
applied by synthetic short circuit tests of circuit breakers.

4. Current of impulse-operating inverter (Fig. 2d). Current transmitter is used
for supplying control electronics in the main circuit of the resonance circuit
inverter applied in induction heating.

a, fault far from the generator b, fault near to the generator

c, sinusoidal halfwave d, current of inverter

Fig. 2.

Further goals are to analyse the features of transient transmission and to
determine the dimensioning principles used at transient signal transmission.

The comparison of computation and measurement results would be extremely
difficult, – because of the complicated measurements – but according to the previ-
ously mentioned facts, it is not necessary because the applied computational models
describe the operation of current transmitters accurately enough.

For the examination, two kinds of computational methods were used. On
the one hand, the equations, which can be formulated for the measuring circuit,
were solved analytically, on the other hand, choosing appropriate time division, the
output response signals were determined by a numerical method. The accuracy can
be evaluated by comparing the results of the two different methods.
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2. Computational Methods

The equations necessary for computations are formulated based on the current-
integrating circuit (Fig. 1a). The input signal, the current to measure itself, flows
in the conductor encircled by the measuring coil. Generally it can be a current of
optional time function, let’s sign it byi1(t). The voltage induced in the measuring
coil, ui , is proportional to the derivative of the exciter current, while the coefficient
is the mutual inductance (M) between the primary conductor and the measuring
coil:

ui = M · di1

dt
. (1)

The value of the mutual inductance can be supposed to be constant, irrespective of
the value of the current, because it is provided by the design of the ideal magnetic
voltage measuring coil.

This voltage signal gives the input signal of the measuring circuit. The output
signal, in the case of current-integrating circuit, appears as a voltage signal in the
outlet of the capacitor (in the case of self-integrating current transmitter, the output
signal appears on the output resistor).

The voltage of the condenser can be expressed from a Kirchoff-I equation,
based on the current-integrating circuit inFig. 1a:

L · di2

dt
+ R · i2 + uC = ui . (2)

The previous equation is a first order, linear differential equation, which contains a
new variable, the current of the measuring circuit (i2). If the voltage of the condenser
is expressed by its current, the equation we get contains only one variable, but it is
an integro-differential equation:

ui − L · di2

dt
− R · i2 − UC0 − 1

C
·
∫ t

0
i2(τ )dτ = 0. (3)

The solution of this depends on the time function of the input signal, according to
(1). uc(0) = 0 andi2(0) = 0 , when the elements of the circuit have no energy.
The situation is more complicated, if the boundary conditions are not equal to zero
−uc(0) = Uco andi2(0) = I2o.

In the case of self-integrating current transmitter (Fig. 1b) the exciter signal
(ui ) can be described also byEq. (1) and from that the output voltage can be
expressed also based on a Kirchoff-I equation. The situation is more simple than
it was in the previous case, because the circuit contains only one energy storing
element, so the differential equation is only a first order one:

ui − L · di2

dt
− R · i2 − i2 · Rki = 0, (4)

whereRki = Ra · Rv
Ra + Rv

.
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If the coil contained some energy at momentt = 0 – its current differed from
zero –, initial valuei2(0) = I2o has to be taken into consideration.

Initial values can be considered by inserting ideal voltage and current source.
Because there will be more than one sources, theorem of superposition is suitable
to use.

The solution will be created by two different methods.

• Analytical method
The input signals presented in the introduction can be divided into simpler
elementary functions (e.g. sinusoidal, exponential functions, their sum or
product), the time function of the measuring circuit is written for them and
after the substitution into the differential equation, the equation is solved by
Laplace-transformation. Taking the advantage of additive features of the
transformation, it is easier to write the response for complex test signals,
based on the results. However, the exciter signal is simple, the final formula
we get in such a way is extremely complicated.

• Applying a numerical method
The initial differential equation is solved by computer, in a numerical way.
The applied algorithm is the simplest one which fulfils the requirements in
terms of accuracy and speed.

2.1. Analytical Method

The first step is to write the initialLaplace-transformed form which gives the basis
of the Laplace-transform of output signals for input signals with arbitrary time
function. Here the most common situation is given, when a parallel connected
‘loss’ resistance is present in the circuit and the storing element of the circuit is not
energy-free.

As an effect of input signali1(t), induced voltageui (t) (its Laplace-transform
is: Ui(s)) appears on the outlet of the coil. The further possible exciter signals are
given by the initial conditions.

2.1.1. General Solution

When the energy storing element in the case of current-integrating current trans-
mitter (Fig. 1a) is supposed to have some energy, then a

UCo(s) = UCo

s
(5)

ideal voltage source – connected serially to the condenser – and an

I2o(s) = I2o

s
(6)
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ideal current source – connected parallel to the inductance – are inserted.
Because there are more than one excitations in the circuit, the theorem of

superposition is applied. Let’s take exciter signalUi(s) first and substitute the
current source by a disconnection and the voltage source by a short circuit. Using
voltage dividing formula, the voltage of the condenser:

UC1(s) = Ui(s) ·
1

L · C

s2 + s ·
(

R

L
+ 1

Rv · C

)
+ Rv + R

Rv · L · C

.

The simplest way to determine the voltage of condenser generated by the current
of current source (6) is to use current dividing formula:

UC2(s) = I2o · L ·
1

L · C

s2 + s ·
(

1

Rv · C
+ R

L

)
+ R + Rv

L · C · Rv

.

The voltage of condenser created by the voltage source (5) can be written by the
formula of voltage division:

UC3(s) = UC0

s
− UC0

s
·

(
s · L

Rv
+ Rv + R

Rv

)
· 1

L · C

s2 + s ·
(

1

Rv · C
+ R

L

)
+ R + Rv

L · C · Rv

.

According to the theorem of superposition and adding the voltages with correct
sign:

UC (s) = UC1(s)+ UC2(s)+ UC3(s)
(7)

= UC0

s
+

[
Ui (s)+ I20 · L − UC0

s
·
(

s · L

Rv
+ Rv + R

Rv

)]
·

1

L · C
(s − s1) · (s − s2)

,

s1 = −1

2
·

 R

L
+ 1

Rv · C
−

√(
R

L
+ 1

Rv · C

)2

− 4 · (R + Rv)

L · C · Rv


 ,

where

s2 = −1

2
·

 R

L
+ 1

Rv · C
+

√(
R

L
+ 1

Rv · C

)2

− 4 · (R + Rv)

L · C · Rv


 . (8)

Let’s introduce the integrating time constant of the integratorTi = R · C, the
nominal circular frequencyω2

n = 1/L · C, the time constant of the parallel, so
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called ‘loss-circuit’Tv = Rv · C. The previous roots expressed by the introduced
quantities are:

s1 = −1

2
·
[

Ti · ω2
n + 1

Tv

]
−

√(
Ti · ω2 + 1

Tv

)2

− 4 · (R + Rv)

L · C · Rv
,

(9)

s2 = −1

2
·
[

Ti · ω2
n + 1

Tv

]
+

√(
Ti · ω2 + 1

Tv

)2

− 4 · (R + Rv)

L · C · Rv
.

In Eq. (7) the two components can be separated very well. The first part is the
response of the system to the exciter signal, while the second one represents the
output signals caused by the initial energies. These signals can be examined ab-
solutely independently and finally summarised. The output voltage caused by the
initial energies can be obtained by a simpleinverse Laplace-transformation.

uC(t)=UC0 +
I20

C
− UC0

Rv · C
s1 − s2

· (es1·t − es2·t)

− UC0 · (Rv + R)

Rv · L · C
·
[

1

s1 · s2
+ es1·t

s1 · (s1 − s2)
+ es2·t

s2 · (s2 − s1)

]
. (10)

In the case of self-integrating circuit, theLaplace-transformed form can be written
based onEq. (4). If the coil is not free of energy at switching in, an ideal current
source has to be inserted. As with the previous case, the theorem of superposition
can be applied. The voltage appearing at the outlet as a result of the input signal is
the following:

URa1(s) = Ui(s) · Rki

Rki + R + s · L
= Ui(s) ·

Rki

L
Rki + R

L
+ s

.

The second exciter signal, the current source generates the following voltage at the
output:

URa2(s) = I2s · Rki

Rki + R

L
+ s

.

Summarising the two components – using notations1 = − Rki + R

L
the output

signal can be obtained:

URa(s) = URa1(s)+ URa2(s)
[
Ui(s)+ L · I20

] ·
Rki

L
s − s1

. (11)
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If there is no excitation, the output voltage caused by the initial energies is:

uRa (t) = I20 · Rki · es1·t . (12)

To know the total response signal, the response for the excitation has to be known.
In the case of complex signals used in practice it would give complicated mathemat-
ical deductions, therefore, using the additive property ofLaplace-transformation,
the test signals are divided into elementary functions and after theinverse Laplace-
transformation, the response signals are provided by the appropriate linear combina-
tion of the results (this summarisation is independent of the type of the integrator).
These elementary functions are sinusoidal, exponential functions or originating
from these products. The results can be found inTable 1. A further simplification
will be made: we do not take into account that the transmitters are receiving their
input signals via inductive connection. It means that not functioni1(t) will be sim-
plified, butui (t). With this method a derivation can be saved and, anyway, for us
theLaplace-transformed form of ui (t) is necessary in the initial equations.

2.1.2. Transmission of Exciter Signals

In this part the response signals caused by the input signals, that we wanted to
examine originally, will be determined analytically, using the results we got, like
simple panels, which have to fit together in an appropriate way to get the response
of more complex signals, which have practical significance.

a. Fault far from the generator (Fig. 2a)
The time function of the current will be the sum of a cosinusoidal and an

exponential function.

i1(t) = Im ·
[
cos(ω · t + ψ − ϕ)− e− t

Th · cos(ψ − ϕ)
]

= Im ·
[
cos(ω · t + α)− e− t

Th · cos(α)
]
. (13)

The parameters are:Im is the stationary peak value of the fault current,Th is the
time constant of the fault circuit,ϕ is the phase angle of the circuit,ψ is the angle of
switching in (it is coincidental, its value depends on the phase angle of the supply
voltage at the moment of switching in),ω is the circular frequency.

The response signal can be determined from the previously obtained functions
(Table 1) in the following way:

uki (t) = −M · Im · ω · [L3(t) · cos(α)+ L4(t) · sin(α)]
+ Im · M

Th
· cos(α) · L2(t, Th). (14)
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Table 1.

ui (t) Current-integrating Self-integrating

ε(t) L1(t) = 1

L · C
·
[

1

s1 · s2
+ es1·t

s1 · (s1 − s2)
− es2t

s2 · (s1 − s2)

]
L1(t) = Rki

L
· es1·t − 1

s1

e− t
T L2(t, T ) = e− t

T

L · C
·
[

1

s′
1 · s′

2
+ es′

1·t
s′
1 · (s′

1 − s′
2)

− es′
2t

s′
2 · (s′

1 − s′
2)

]
L2(t, T ) = Rki

L
· e− t

T · es′
1·t − 1

s′
1

sin(ω · t) L3(t)= 1

L · C
·[A1·sin(ω·t)+ A2 ·cos(ω·t)+ A3 ·ω·es1·t + A4 ·ω·es2·t ] L3(t) = Rki

L
· [−A1 · sin(ωt)− A2 · cos(ω · t)+ A3 · ω · es1·t ]

cos(ω · t) L4(t)= 1

L · C
·[A1·cos(ω·t)− A2 ·sin(ω·t)+ A3 ·s1·es1·t + A4 ·s2 · es2·t ] L4(t) = Rki

L
· [−A1 · cos(ωt)+ A2 · sin(ω · t)+ A3 · s1 · es1·t ]

e− t
T sin(ω · t) L5(t, T )= e− t

T

L · C
·
[

A′
1·sin(ω·t)+ A′

2 ·cos(ω·t)+ A′
3 ·ω·es′

1·t + A′
4 ·ω·es′

2·t ] L5(t, T )= e− t
T ·Rki

L
·
[
−A′

1 ·sin(ωt)− A′
2 ·cos(ω·t)+ A′

3·ω·es′
1·t

]

e− t
T cos(ω · t) L6(t, T )= e− t

T

L · C
·
[

A′
1·cos(ω·t)− A′

2 ·sin(ω·t)+ A′
3 ·s′

1·es′
1·t + A′

4·s′
2 ·es′

2·t ] L6(t, T )= e− t
T ·Rki

L
·
[
−A′

1 ·cos(ωt)− A′
2 ·sin(ω·t)+ A′

3·s′
1 ·es′

1·t
]

A1 = s1 · s2 − ω2

(s2
1 + ω2) · (s2

2 + ω2)
A′

1 = s′
1 · s′

2 − ω2

(s′2
1 + ω2) · (s′2

2 + ω2)
A1 = s1

s2
1 + ω2

A′
1 = s′

1
s′2
1 +ω2

s′
1 = s1 + 1

T A2 = ω · (s1 + s2)

(s2
1 + ω2) · (s2

2 + ω2)
A′

2 = ω · (s′
1 + s′

2)

(s′2
1 + ω2) · (s′2

2 + ω2)
A2 = ω

s2
1 + ω2

A′
2 = ω

s′2
1 +ω2

s′
2 = s2 + 1

T A3 = 1

(s2
1 + ω2) · (s1 − s2)

A′
3 = 1

(s′2
1 + ω2) · (s′

1 − s′
2) A3 = 1

s2
1 + ω2

A′
3 = 1

s′2
1 +ω2

A4 = 1

(s2
2 + ω2) · (s2 − s1)

A′
4 = 1

(s′2
2 + ω2) · (s′

2 − s′
1)
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b. Fault near to the generator (Fig. 2b)
One phase fault current of a generator consists of several, different type sig-

nals. It consists of a transient, subtransient, a stationary and a DC component. The
function is the following (RETTER, 1992):

i1(t)=
[
(I ′′

Z − I ′
Z) · e

− t
T ′′

d + (I ′
Z − IZ ) · e

− t
T ′

d + Iz

]
· cos(ω · t + α)

− I ′′
Z · cos(α) · e

− t
T ′

S ,

uki (t)=M ·
{
(I ′′

Z − I ′
Z) ·

[
L5(t, T ′′

d ) ·
(

sin(α)

T
− ω · cos(α)

)

−L6(t, T ′′
d ) ·

(
cos(α)

T
+ ω · sin(α)

)]
(15)

+ (I ′
Z − IZ) ·

[
L5(t, T ′

d) ·
(

sin(α)

T
− ω · cos(α)

)

−L6(t, T ′
d)

(
cos(α)

T
+ ω · sin(α)

)]

−IZ · ω · [L3(t) · cos(α)+ L4(t) · sin(α)] + I ′′
Z

T ′
S

· cos(α) · L2(t, T ′
S)

}
.

In this case the given functions can be substituted, but let’s disregard this because
it would result in a long and complicated formula.
c. Sinusoidal halfwave (Fig. 2c)

This is such a case of simple sinusoidal wave when only one half of the total
period is taken into consideration. Because the argument of theLaplace-integral
is valid in the total positive time domain, the function can be generated as a sum of
a sin(ωt) function, switched in att = 0 and a(− sin(ωt)) function switched in at
t = π/ω. The formula using unit step signal:

i1(t) = Im · [ε(t) · sin(ω · t)− ε(t − T ) · sin(ω · t)]
= Im · [ε(t) · sin(ω · t)+ ε(t − T ) · sin(ω · (t − T ))],

whereT = π/ω,

uki (t) = M · Im · ω · [ε(t) · L4(t)+ ε(t − T ) · L4(t − T )].
d. Current signal of an impulse operating inverter (Fig. 2d)

In steady transient state (disregarding the run up of the inverter) the current
signal of the inverter consists of several signals based on (KOLLER and TEVAN
1993) as follows.

i1(t) = −C · ω · Um ·
(

1 + k2

4

)
· e− k

2 ·ω·t · sin(ω · t)

= −Im · e− k
2 ·ω·t · sin(ω · t) (0 ≤ t ≤ T ),
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where

β = Ti

T
, k = cosϕ√

1 − cos2 ϕ
, ω = 2 · π · fs =

√
1

L · C
−

(
R

2 · L

)2

,

Im = C · ω · Um ·
(

1 + k2

4

)
,

i1(t) = Im ·
(
1 − e− k·π

2

)
· e− k

2 ·ω·(t−T ) · sin(ω · t) (T < t ≤ 3T/2).

i1(t) = 0 (3T/2< t < T ).

If only one period is examined, the total function will be the following, using unit
step functions:

i1(t) = −ε(t) · Im · e− k
2 ·ω·t · sin(ω · t)+ ε(t − T ) · Im · e− k

2 ·ω·t · sin(ω · t)

+ ε(t − T ) · Im ·
(
1 − e− k·π

2

)
· e− k

2 ·ω·(t−T ) · sin(ω · t)

− ε(t − 3

2
· T ) · Im ·

(
1 − e− k·π

2

)
· e− k

2 ·ω·(t−T ) · sin(ω · t),

uki (t) = M · Im ·
{
−ε(t) ·

[
ω · L6

(
t,

2

k · ω
)

− 1

T
· L5

(
t,

2

k · ω
)]

+ ε(t − T ) ·
(

e− k
2 ·ω·T + 1 − e− k·π

2

)
·
[
ω · L6

(
t − T,

2

k · ω
)

− 1

T
· L5

(
t − T,

2

k · ω
)]

− ε

(
t − 3T

2

)
·
(
1 − e− k·π

2

)
· e− k

2 ·ω· T
2

·
[
ω · L6

(
t − 3 · T

2
,

2

k · ω
)

− 1

T
· L5

(
t − 3 · T

2
,

2

k · ω
)]}

.

This formula gives the response signal for one period of the current signal of the
inverter substituting the appropriate functions.

Because it is difficult to determine the results analytically in the case of com-
plicated signals, it is useful to make the calculations by a numerical method. A
further advantage is that by comparing the results obtained from different methods,
we can check their correctness. The method can be built on the Kirchoff-I equation
of the circuit and the necessary quantities can be calculated without iteration – using
numerical integration and derivation.

Appropriate accuracy is required, because the results (output signals) we got
in this way have to be compared to the exciter signals and small differences have to
be determined.
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If the numerical procedure is not accurate enough, the results will be strongly
distorted.

E.g. if the current transmitter transmits the given signal with a fault of 1%
and the difference between the numerical and the analytical method is also 1%, the
distortion of the transmission errors can reach 100%. Therefore the time step has to
be kept on a small value. Its only disadvantage is that it increases the computational
requirements and in such a way the computing time as well.

The basic idea of the method is that the integrals and derivatives of the vari-
ables in the Kirchoff-I equation are generated from the results of the previous time
moments.

If the Kirchoff-I equation for the current-integrating circuit remains anintegro-
differential equation (3), we have to integrate and derive numerically. The voltage
of the condenser can be expressed from its current in such a way that the mean
value of the currents in the previous and current moment is generated (Fig. 3). For
that it is necessary to compute the rate of the change in the current. This will be the
quantity to find, and from that the current of the circuit can be expressed, as well
as the voltage of the condenser.

If in the case of current-integrating circuit, the initial equation (2) (which is
a first order differential equation) is written in a slightly different form – variable
i2(t) is expressed from variableuC(t) –, we get a second order differential equation.

Fig. 3.

This second method gives more accurate results, in the case of the same time
division. However, it produces, understandably, a great error at switching in because
the second derivative is calculated from the results of two previous moments. The
error decreases drastically after some (5–10) time steps.

The variables and their derivatives can be substituted by their numerical ver-
sions.
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2.2. Comparing the Numerical and the Analytical Methods

By an appropriate computer program, it is possible to compare the numerical and
analytical methods. Choosing different exciter signals, the deviance between the
output signal calculated by a numerical method and the analytical solution can be
examined. Increasing the time step (�t) the deviance is increasing rapidly (Fig. 4).
In the case of a fault far from a 50 Hz generator, the following relative deviance
(�h) can be determined:

Current-integrating Self-integrating

�t = 1µs 2.621 10−4% 1.046 10−4%

�t = 10µs 2.621 10−3% 1.046 10−3%

Fig. 4.
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2.3. Numerical Method

These deviations are very small related to the errors that we want to examine because
the error of the transient signal transmission of practically used current transmitters
is 1–2%.

If the time step is chosen to be approximately at least 200 times smaller than
the time of period (in the case of 50 Hz it is 10µs), the error of the numerical
method is negligible. Naturally, if the frequency of the excitation is increasing, the
time step has to be reduced proportionally to that.

The formulas of the analytic method are complex and complicated, therefore
it requires more computational time than the numerical method. Therefore it is
more advantageous to use the numerical method for computer-aided analysis.
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