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Abstract
From the family of ad hoc communication protocols the most

challenging ones are those, that are designed to disseminate
messages to all, or most of the nodes in the system. By their na-
ture, these kinds of protocols use significant network resources,
as the communication must involve a large fraction of the net-
work nodes. Reducing the network load can be achieved by us-
ing the available local broadcast medium (radio channel), but it
is not trivial how to select the set of nodes that should partici-
pate in the dissemination process. Previous attempts delivered
algorithms that can provide reasonable performance and relia-
bility but mostly for specific cases of ad hoc networks. In this
paper a new way of tackling the broadcast problem is presented
that takes no assumptions about the nature of the underlying net-
work. Instead of using hand-optimizing protocols, we propose
a framework for a self-optimizing and self-managing system in-
spired by natural selection and evolution. A generic distributed
feed-forward performance evaluation criterion based on natural
selection is presented along with an implementation of a virtual
machine and a corresponding language for Genetic Program-
ming to be used in tandem with the natural selection process.
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1 Introduction
A significant fraction of ad hoc networks (like opportunistic

networks or Delay Tolerant Networks) uses multi-hop broadcast
to disseminate a message to all (or most) of the nodes in the
network. In contrast to ad-hoc routing protocols, the number of
transmissions is significantly higher in a broadcast scenario, as
the destination of a message is not a single node, but all of the
nodes in the network. The optimization of such a protocol bears
similarities with multicast protocols, but there is a distinguish-
ing feature that presents interesting optimization possibilities:
the availability of a local broadcast channel for every node. By
exploiting local broadcast, the number of transmissions could
be effectively reduced. The optimal solution is finding a mini-
mal set of nodes so that the radio range of them cover all of the
other nodes in the network. Finding such a set is not a trivial
problem considering the distributed nature of the system. Mo-
bility presents another challenge, as the optimal set of nodes will
change over time.

A large amount of research is available on the optimization
of broadcast protocols, and protocol design. Many of the sur-
veys [1, 5, 8, 14] show that the performance of these protocols
depends heavily on the parameters of the environment, such as
the peculiarities of the mobility environment (including pattern
and speed), density of nodes or traffic models. Some of the pro-
tocols also require the presence of specific devices (GPS, ad-
justable radio range) that may not be available to all nodes in a
heterogeneous environment. The large number of protocols and
their different "sweet-spots" make it hard to find a good compro-
mise. Real systems also change, and mobility patterns are hard
to model or predict, therefore even an initially sound decision
could become under-optimal over time. A real versatile proto-
col should cover all of the possible cases in a changing environ-
ment, but this is a hard task in practice. There is evidence that
the behavior of many of the efficient broadcast protocols could
be emulated by simple heuristics [6]. Finding those heuristics
are not trivial either, but an automated process may help find-
ing good candidates. In our work we present a possible solution
that uses natural selection to find good protocol candidates for a
given system. As we demonstrated, an off-line, pre-deployment
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optimization process – even if it is automated – is suboptimal,
as the conditions will inevitably change sooner or later. There-
fore, the natural selection and evolution of protocols must hap-
pen during the operation of the system. This way, we achieve an
adaptive system that changes behavior reacting to changes.

To avoid the issue of choosing manually the best protocol for
every given network, we investigated ways to achieve automatic
protocol selection. Such kind of system should be able to run
different protocols at the same time and be able to choose the
most fit ones to the particular scenario. In our previous work,
we introduced a natural selection based criterion for selecting a
well-performing protocol locally [10]. We provide an overview
of our selection criterion in Section 2. In this system a manually
selected set of protocols was available to all of the nodes of the
system, and nodes switched protocols according to their local
environment. While this approach used natural selection as an
optimization process, there was no real evolution implemented
as no new protocols were introduced.

By using natural selection instead of traditional feedback type
optimization we achieved a scalable and distributed adaptive
system. However our investigation showed that natural selection
itself is not enough, as the diversity of the competing protocols
depends entirely on the system operator who adds the protocols
to the selection pool. To overcome this limitation we decided to
add Genetic Programming (GP) capabilities to the system and
so achieve full evolution. To enable GP – most particularity on-
line GP – we had to design a specialized language and Virtual
Machine (VM) that is expressive and simple enough to produce
useful broadcast protocols. The description of our language can
be found in Section 4.

2 Inverted decision by using natural selection
The essence of broadcast protocols is the approximation of a

Minimal Connected Dominating Set (MCDS) [8, 12]. In prac-
tice, finding an MCDS is likely to be NP complete, but it does
not matter too much, as in practice the graph could change faster
than it is possible to discover the changes. As calculating an
MCDS is impossible in reality, all of the broadcast protocols
use some approximation based on simple heuristics and local
knowledge. These heuristics differ in sophistication, from sim-
ple counter based and probabilistic methods to complex graph
theoretic approximations [5, 9]. These heuristics are dependent
on the environment, therefore it makes sense to choose a proto-
col according to the local situation.

If we exclude manual design, then the only possible way to
select suitable protocols is to measure their performance locally.
This leads to the problem of feedback:

• Only senders could reliably measure the real cost of success-
fully transmitting a message. Lost messages could not be seen
by other nodes.

• Only receivers could reliably measure the number of dupli-
cated messages.

• Receivers could measure only the local duplications, but not
the total duplications.

• Collection of these measurements are possible only through
message passing using the same channel as broadcast pay-
loads.

• Measurement messages could get lost.

Our observations imply that implementing a centralized (even
locally centralized) protocol selection criterion is not practical.
Instead we proposed a feed-forward selection method using stig-
mergy and natural selection, that we introduced in [10]. The idea
of natural selection is not new, in [2] the authors used a form of
natural selection for parameter optimization, using explicit feed-
back from neighboring nodes. However, our approach differs in
that it does not need any feedback mechanism and works with
arbitrary broadcast protocols.

Fig. 1. Natural selection based protocol selection. Algorithm B is running
on the node while a message from algorithm A arrives.

The proposed solution is based on the idea of decision-
inversion. The naive way could be that a sender collects its per-
formance metrics from the surrounding receivers and chooses
the next protocol according to this measurement. As we ex-
plained earlier, this can not be efficiently implemented in prac-
tice. Instead of choosing locally, we implement the decision at
the receivers, because they are in the best position to observe the
performance of a protocol. To make this possible, the receivers
must know the protocol that sent a given payload message. This
is achieved by senders attaching the code of the sender proto-
col to every payload. This compound packet acts as a virtual
seed where the nutritional part of the seed is the payload, and
the genetic material is the code of the sender protocol.

Nodes collect seeds from surrounding nodes and assign scores
to the protocol instances contained in them. Every payload that
is useful to the receiver node means a score for the sender pro-
tocol. Every unnecessary message (duplicate) means a negative
score to the sender protocol. This algorithm is summarized in
Fig. 1.

To reduce the number of messages sent out a cost must be
assigned to transmission. As the selection of new algorithms
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happen at the receivers it is impossible to implement explicit
cost calculation without expensive control overhead. To avoid
this, we adopted a stigmergic solution: by assigning a limited
transmission budget to each protocol instance, the protocols are
forced to make good use of channel resources. Any lost or du-
plicate message is a lost opportunity for reproduction, therefore
transmission has an implicit cost function, even if it is not ex-
pressed directly. Similarly, we added a timer, that upon firing
removes the current protocol, and replaces it with a new gener-
ation.

3 Genetic programming of protocols
Genetic algorithms are global search algorithms directed to-

wards an optimal solution with the advantages of a random
search. They eventually result in an optimal solution if one ex-
ists, by generating all of the possible solutions – however this
could take an arbitrary long time. The algorithm evaluates each
solution and ranks them using a fitness function. After the fit-
ness of the solutions is evaluated the algorithm creates a new
generation of them. The genetic operators include selection,
crossover and mutation. Selection and crossover ensures the so-
lutions are converging to an optimal solution and mutation gives
the algorithm a random behavior, which is crucial for optimal
results. Genetic Programming (GP) is a form of genetic algo-
rithm, where solutions are programs composed of instructions
in a particular programming language.

The problems present in ad hoc networks such as the unpre-
dictability of the position or speed of the mobile node and the di-
versity of devices that can be present in such a network makes it
an ideal target for genetic programming. Using this approach it
is possible to freely blend the behavior of protocols based on dis-
tinct principles. Various protocols have distinct "sweet spots":
they work best under different conditions. By increasing the di-
versity of the used protocols and enabling them to adapt freely
to the current environmental conditions it is possible to always
have a protocol (or a family of protocols) that works best in the
current environment. This approach can be considered as an au-
tomated protocol design tool. In [6] the authors used machine
learning algorithms to approximate the behavior of sophisticated
broadcast algorithms and found that simple heuristics were able
to reproduce them in 87 % of the time. This result indicates that
in practice small, but powerful heuristics could provide good ap-
proximations. Such heuristics are usually hard to find by design,
but a GP based system could find them by evolution.

The goal of introducing GP to our previous natural selection
framework was to achieve greater diversity among the compet-
ing protocols. A simple natural selection scheme could result in
a phenomenon known from Evolutionary Game Theory, namely,
that the orbit of the system in the state space of protocol mixtures
has no fix point but a limit cycle instead. This situation arises
from the fact that many protocols are in a "rock-paper-scissors"
relation of each other, periodically overthrowing each other in
the network.

4 GP language for Multi-hop broadcast protocols
To be able to apply genetic programming to our protocols we

have to express them in a particular programming language. Us-
ing a general language is problematic as genetic operators result
in random modifications of the programs often causing syntac-
tic errors. We have designed a language called GPDISS, with
the purpose to describe multi-hop broadcast protocols, with the
goal to optimize it for using genetic operators on it. In our lan-
guage GP operators could be applied on the program code while
still preserving syntactic correctness. This is crucial to reduce
defective programs. The data structures and the instruction set
is comprised of primitives, which are the basic building blocks
of several well-known multi-hop broadcast protocols. The gran-
ularity of the instructions should by high in such a language in
order to be "optimal" for genetic programming, resulting in a
language, which is expressive enough to facilitate easy proto-
col implementation and the mixing of the behavior primitives
through genetic operators.

Algorithm 1 Sample algorithm implementing a simple loop that
executes five times
handler hello {

1

do

int.inc

int.dup

5

int.gt

dowhile

}

One promising approach to GP languages is using an artificial
chemistry [7], as they provide great resilience against random
modifications. A good example of such a language is Fraglets
[13], which was used to conduct experiments in protocol evolu-
tion in [15]. While these languages may have great possibilities,
in our approach we followed a more conservative approach, and
selected the well-known Push3 language as a base. The ratio-
nale is that evolved protocols are notoriously difficult to analyze
for a human and artificial chemistries result in even more com-
plicated systems.

Our language is based on the stack based PUSH(3.0) [11],
which means that it has typed stacks for every type in the sys-
tem. Instructions get their parameters from these stacks. This
way we can avoid the use of variables, which results in a much
cleaner and easier language. The code of a protocol is divided
into event handlers, which are the base of genetic operators. For
example a crossover operator is mixing the instructions of two
event handlers, a mutation modifies one event handler. Each
message type has an event handler, which are activated when
the appropriate messages arrive. The semantic correctness of
the programs can not be guaranteed after the use of genetic op-
erators. If an instruction does not have an argument available
on the stack, it can not be executed. These instructions default
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Algorithm 2 Sample algorithm finding the 2-hop neighbors of the node
// Pushes a copy of the relation to the relation stack (for Step1)

relation.dup

// Pushes a copy of the relation to the relation stack (for Step2)

relation.dup

node.self // Pushes the identifier of the node to the node stack

//Step1: Look up my direct neighbors

relation.filter_key eq // Filters the top element of the relation stack

by key, leaving only those rows whoose key column equals to the node

//Step2: Look up neighbors of the neighbors

relation.join // Joins the two relations (filtered one and the original),

so finding our neighbor’s neighbors in the original map

to a no-op instruction, which does nothing and execution goes
on undisturbed. The implementation of a protocol is a list of
the assembly-like instructions grouped into event handlers. This
results in a quasi-linear [4] genetic programming language. We
designed the language with an emphasis on easy extensibility:
it is easy to make use of extra devices such as GPS receivers
when designing protocols. Adding a new instruction is as easy
as adding it to the grammar and writing its implementation. Ta-
ble 1 shows some of the instructions in the language.

In the case of network protocols, performance is crucial to re-
duce latency. As it is demonstrated by many virtual machine im-
plementations (Java Virtual Machine, Common Language Run-
time, etc.) near real-time performance is achievable by using
smart just-in-time (JIT) compilers. The only factor that causes
non-deterministic latency using these runtime environments is
the Garbage Collector that automatically manages deallocation
of objects on the heap. Our language is stack based, so the pop-
ular Virtual Machines are good candidates as compile targets.
Luckily, the GPDISS language has a very limited instruction
set, and heap based operations are not present therefore avoid-
ing most of the latency caused by garbage collection runs. Also,
object-oriented features are missing, so the JIT compiler is free
to inline methods as there are no polymorphic calls. In sum-
mary, the following features of GPDISS make it a good choice
for low-latency applications:

• Low-level, assembly like instruction set that allow efficient
and simple compilation of its instructions to machine code

• No dynamic memory management (no garbage collection in-
volved)

• The very few operations that may need dynamic allocation
could be simply implemented using an Arena Based Garbage
Collection algorithm, very similar to that of the MySQL query
compiler. This effectively ensures zero overhead deallocation
in contrast to other (Copying, Mark-Sweep-Compact) deallo-
cation approaches.

• No polymorphism is present, all of the methods are inlineable.

This allows the instruction scheduler of the compiler to pro-
vide global reorderings to efficiently feed the CPU pipelines

In our current work we have not investigated the performance
of the language in practice, as that would need a real compiler,
which was not our goal at this point. In the future we plan to im-
plement a compiler that targets the JVM runtime environment,
and may also provide an implementation using the Low Level
Virtual Machine (LLVM) framework that produces high quality
native code for many architectures.

Algorithm 3 APF data handler in pseudo-code
On receive ( data : DataMessage ) :

delta := 2

if contains ( seen , data ) then

period := period + delta

// Increase broadcast period on duplicates

else

to_send := to_send + data

seen := seen + data

In Algorithm 1 and Algorithm 2 we show some examples of
the language in use. The first algorithm is a simple loop con-
struct that executes five times, implemented by a counter on the
integer stack. The second algorithm is a more complex one
that demonstrates the relational instructions by calculating the
2-hop neighbors of the node, given the neighborhood graph rep-
resented as a set of relations.

Adaptive Periodic Flood (APF) is a controlled flooding proto-
col, which achieves better performance than blind flood without
the use of control messages. We give another demonstration
of the language with an event handler of the APF protocol be-
cause it is easy to implement and provides an insight into the
logic of the GPDISS language. In the example receive in Algo-
rithm 3 and Algorithm 4 the event handler uses two lists storing
data messages. The list on the top of the global stack is called
"to_send" and contains the messages we are about to send when
the timer we started earlier fires. The next list is the "seen" list
and contains the data messages we have seen so far. This list is
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Tab. 1. Instructions in the GPDISS language

Stack Instruction Description

* dup, drop, swap, rotate, hold,

release, ...

Common instructions available on all stacks.

They are ideal for common stack handling

tasks.

number add, div, mult, random, ... Simple floating point arithmetic and random

number generation

bool and, or, not, ... Boolean logic for control flow.

list additem, nth, remove_first,

delete_duplicates, ...

Typed list handling. Common operations are

available.

relation addpair, union, join, remove_first,

invert, intersect, ...

Typed relations are like two column tables.

They can be filtered, joined, intersected, etc.

messages* send, sender, ... Common instructions for handling all types of

messages.

timer id, start_timer, ... Timers can be used to schedule different tasks

at different points in time.

- if, else, endif, do, while, return,

...

Control flow constructs.

used to detect duplicate incoming messages and reduce the rate
of periodic transmissions.

5 Simulation
To test that our language is able to provide a functional broad-

cast service, we simulated six scenarios that used two very basic
protocols as a starting point, APF (explained in Section 4) and
Blind Flood. We chose these because they are easy to implement
and understand, so they simplify the validation of our language
and virtual machine. The parameters of the simulation were:

Node count 100
Simulation area 100m × 100m
Mobility model Random Direction Mobility

Transmission range 5m
Interference range 7m

Transmission speed 1Mb/s
Incoming traffic New message

in every 20s
Avg. payload 250 byte

Starting protocols APF, Blind Flood

We simulated the system using no selection mechanism, nat-
ural selection, and using GP. In the natural selection scenario
no genetic operators were used. The reproduction strategy sim-
ply picks the best protocol seen by the virtual machine (mes-
sages transfer the sending protocol along with them). In the
GP scenario we used a simple mutation, which alters the num-
ber constants in the code according to the following formula:
mut(x) := x + gaussian() · x. Using this formula we can keep
the magnitude of the constant, therefore it emulates a form
of parameter optimization. For the GP scenario the reproduc-
tion strategy produced a new generation of protocols with SUS
(Stochastic Universal Sampling) [3] selection. This selection al-
gorithm provides zero bias and minimum spread. The new gen-
eration were then shuffled and for each pair the crossover and

Algorithm 4 APF data handler in GPDISS language
handler data {

// if a new message is arrived

// data between event handlers are

// shared through a global stack

number.popglobal

list.popglobal // to_send

list.popglobal // seen

data.dup

// making a copy of the data message

// true on the bool stack if the data message

// is on the stack , false otherwise .

// Note : the lists are typed .

list.inlist

if

// if we alrady saw this message

number( 2 )

number.add

// increase period with delta

else

// if the message is new

data . dup

list.additem // add message to seen

list.swap // to_send , seen

list.additem // add message to to_send

endif

number.pushglobal

list.pushglobal

list.pushglobal

}
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Tab. 2. Results of 200 seconds of simula-
tion, using different mixtures of initial protocols
(NS=Natural Selection; GP=Natural Selection with
Genetic Programming)

APF 20% BF 80% APF 80% BF 20%

Selection strategy None NS GP None NS GP

Useful messages 1259 680 1504 5033 1942 595

Duplicates 32212940 6485 5945 4396 2046 1580

mutation strategy were applied. The mutation strategy was the
parameter optimization that was described above.

Our crossover strategy for the scenario was a modified one-
point crossover. It works on two protocols, A and B.

1 Choose an event handler from A randomly

2 If handler is present in B

(a) Two crossover points are selected
(b) Event handlers are cut along the crossover points giving

two fragments – a head and tail for each handler
(c) With 1/2 probability we swap the head and tail we are about

to attach.
(d) Handler fragments are glued together such that the event

handler’s tail chosen from A is attached to the event han-
dlers head chosen from B.

(e) The same goes on for the tail from B and the head from A.

For safety reasons we had to limit the size of the event han-
dlers. Ever growing event handlers can cause messages that
cannot be transferred due to limitations in the virtual machines
(each protocol from a generation has a transfer bound). All
strategies were given a threshold value, a probability of their
application.

Table 2 shows the results of 200 seconds of measurements us-
ing different mixtures of protocols as a starting point. According
to the measurements, there is no clear winner. The GP approach
proved best in a relatively hostile (aggressive channel usage by
Blind Flood) scenario where it outperformed all of the other ap-
proaches. In other scenarios it performed relatively poorly, al-
though it was far from catastrophic – unlike the "No selection"
scenario, that produced duplicates three magnitudes more than
others. It is also clear that the GP scenarios maintained service
in every case without rendering the channel unusable, which is
quite remarkable regarding that the protocols were produced by
an unguided process.

6 Conclusion and further work
In our article we introduced a language and a framework for

dynamically adapting broadcast protocols for an unknown en-
vironment. We showed that such an approach could work in
practice, and GP generated protocols using our natural selec-
tion method could maintain a multi-hop broadcast service with-
out breaking it. We proved that such a system could in certain
situations surpass simple hand-designed protocols, although we
highlighted that this does not happen in every case. The practi-
cal applicability of this framework at this stage is not yet possi-
ble, several improvements must be done to make real-world use
feasible.

In the future we will implement many of the more advanced
broadcast protocols in our language and we will test them under
an evolutionary scenario. We will also fine-tune the selection
mechanism to increase the efficiency of the system and investi-
gate further possibilities in the genetic recombination method,
including heuristics to exclude most of the dysfunctional proto-
cols.
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