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Abstract
This paper investigates a relaxed version of the delay-

constraint (i.e. time dependent) data collection in wireless sen-
sor networks, namely maximizing the number of collected data
with given delay-constraint. In particular, we aim to maximize
the total amount of data that can be successfully delivered to the
base station within a time delay constraint T . In addition, this
problem is studied in networks with rechargeable nodes, where
the battery of each sensor node can be recharged, by using an
external energy source (e.g. the sun). Given all this, we aim to
devise an efficient routing algorithm that takes all of the afore-
mentioned aspects into account, exploiting the advantages of the
relaxation and the ability of energy recharging. In this paper,
we propose a decentralized algorithm for the relaxed problem,
which, under certain assumptions, is optimal in terms of achiev-
ing maximal collected data. We prove that this algorithm have
polynomial time complexity. In addition, by using extensive sim-
ulation results, we show that the algorithm has low communica-
tion overhead on average.
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1 Introduction
Due to the recent advances in electronics and wireless com-

munications, the development of low-cost, low-energy, multi-
functional wireless sensors have received increasing attention
[7], and are becoming extensively used in a wide variety of ap-
plications ranging from environmental, habitat and traffic mon-
itoring, to object tracking and military field observations (for
more details see [10, 15]). Since one of the major goals of the
wireless sensor networks (WSNs) is to collect information from
the surrounding environment [16], it is important to develop ef-
ficient data collection schemes within the WSN domain. To
this end, this paper focuses on time dependent data collection
(TDDC), whereby data has to be collected with respect to given
delay constraints. This is especially important in applications,
such as object tracking and area surveillance systems, where
real-time data transmission plays an important role. To date,
within the TDDC domain, most research studies are concerned
with collecting all the data in the network, such that the delay of
each data packet cannot exceed a given threshold. In the litera-
ture, this problem is referred to as the Hop-bounded Minimum
Spanning Tree (HBMST) problem, which is proven to be NP-
hard [2]. However, due to the emerging real-time applications,
there is a need to relax this problem so that it can lend itself to
solutions in polynomial complexity.

Furthermore, most of the proposed algorithms focuses on
energy-awareness, in order to maximize the life span of the
WSNs. That is, it is necessary to efficiently manage the energy
consumption of the sensor nodes. Otherwise, rapid battery de-
pletion may lead to insufficient data collection from the network.
Recently, however, a number of research works have proposed
energy harvesting sensors, which have the capability of scav-
enging ambient energy from their surrounding environment, us-
ing solar, vibration, temperature, and radioactive sources [5,17].
For example, the ZebraNet project used solar harvesting nodes
mounted to the zebras to monitor the animals’ behavior [19].
Within such applications, agents typically seek to comply with
the concept of energy-neutrality, in which the energy consump-
tion of an agent should be equal to the harvested energy. The ad-
vantage of such approaches is that agents can indefinitely extend
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their life span, which is especially important when data collec-
tion has to operate over a prolonged period of time. By exploit-
ing this capability, designers can focus on novel approaches of
data collection, which are energy-neutral.

With these approaches, WSNs can achieve better performance
compared to their energy-aware counterparts, since they are not
constrained by energy limits. To date, however, most of previ-
ous work on efficient delay-constraint data collection in WSNs
do not exploit the advantages of energy harvesting sensors. A
notable exception is the work of Tran-Thanh and Levendovszky
[18], which, similarly to this work, investigates relaxed delay-
constraint schemes for data collection in WSNs with energy har-
vesting. However, they ignored the energy consumption of re-
ceiving, that is they assumed that to receive a single data packet,
each sensor did not have to consume energy. In fact, real world
sensors also need to spend a certain amount of energy in order to
accept messages from other nodes [13]. Given this, our work can
be regarded as the extension of Tran-Thanh and Levendovszky
[18], in which we also take the energy cost of data receiving into
account, and thus, make the model more realistic.

On the basis of this background, we propose a energy-neutral
data collection scheme for data collection in WSNs, that takes
receiving cost into account. In so doing, we first regard a WSN
with energy harvesting nodes. Then we address TDDC from the
following perspective: we aim to achieve maximal data collec-
tion with time limit, subject to a given delay constraint, instead
of building up a minimum spanning trees. Then we propose an
optimal decentralized algorithm to solve this relaxed problem,
proving that the complexity of the algorithm is polynomial in
time. finally, by extensive simulation results, we show that the
proposed algorithm has low communication overhead in aver-
age.

The paper is organized as follows. In section 2, we give an
overview of the related work. In section 3, we introduce our
models of the radio links and the WSN. The data collection with
time limit problem is discussed in section 4, and an optimal de-
centralized solution for this problem is also proposed within the
section. finally, we conclude this work in section 5.

2 Related Work
In the literature, approaches to TDDC include: (i) real-time

minimal-delay routing techniques; and (ii) delay-constraint data
collection (i.e. data collection with time limit).

From the perspective of minimal-delay routing, most of
the related worksfocuses on energy-awareness. For instance,
Akkaya and Younis [1] suggested an energy-aware routing pro-
tocol to deliver the data within a bounded delay in the WSNs. In
the proposed mechanism, energy-aware paths, that guarantees
a certain end-to-end delay, are chosen for data forwarding. In
addition, Ammari and Das [4] advocated an approach that char-
acterizes the trade-off between energy and delay. The authors
divided the transmission range of sensors into concentric circu-
lar bands (CCBs), in order to help a node to express its degree

of interest in minimizing two conflicting metrics, namely energy
consumption and delay. More related to our work, He [11] pro-
posed a DFS tree based delay-minimum energy-aware routing
protocol (DERP) for real-time communication. This algorithm
minimizes the worst-case delay in the network.

In the domain of delay-constraint data collection, Althaus et
al. [3] proposed an algorithm to compute a feasible-hop span-
ning tree with expected cost O(log n) times of the optimal case,
where n was the number of the vertex in the graph. Cheng et al.
[6] studied the delay-degree-bounded data collection problem,
and presented three heuristic algorithms. But the most related to
our work is the one proposed by Xu et al. [20]. There, a load-
aware power-increased topology control algorithm (LPTC) was
proposed in order to heuristically solve the TDDC, taking the
total number of relaying packets into account.

Although the number of proposed approaches is numerous,
to our best knowledge, they are all energy-concerned, not ex-
ploiting the energy harvesting capability of the (new generation)
nodes. In the contrast, Tran-Thanh and Levendovszky [18] de-
veloped two data collection schemes that takes energy harvest-
ing into account. However, as mentioned earlier, their model is
not realistic, since they ignored the receiving cost of data for-
warding.

3 Model Description
WSN is typically a set of wireless sensor nodes, including a

base station, that collects the data from the nodes by multi-hop
packet forwarding via certain paths. Let N = {1, 2, . . . , n} be
the set of nodes, and let BS denote the base station. We as-
sume that all nodes are static and their battery are rechargeable.
Consequently, the main goal here in our case is not to minimize
the energy consumption of the nodes, since the energy can be
refilled from time to time.

However, due to the limited capacity of the battery and the
fact that energy harvesting does not happen at every single time
slot, we assume that at every time slot, each node i has a bound
for its available energy called "energy capacity" for both trans-
mission and receiving, denoted with BT x

i , and BRX
i , respectively.

That is, during that time slot, the transmission and receiving en-
ergy consumption of node i cannot exceed BT x

i , and BRX
i , respec-

tively. For the sake of simplicity, we assume that both BT x
i and

BRX
i are fixed overtime.
Now, let PT x

i denote the transmission power level of node i.
Let τb

i denote the time needed to transmit a single bit from node
i. If li, j(t) denotes the size of total data transmitted via link (i, j)
at time slot t, then

PT x
i τ

b
i

∑
j∈Oi

li, j(t) ≤ BT x
i ,∀i ∈ N, (1)

where Oi is the set of node i’s neighbors, which can receive data
from node i. That is, the energy consumption of total trans-
mitted data at time slot t cannot exceed the transmitting energy
capacity.
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Similarly, let PRx
i denote the receiving power level of node i.

Let σb
i denote the time needed to receive a single bit at node i.

Given this, we have:

PRx
i σ

b
i

∑
j∈Ii

l j,i(t) ≤ BRx
i ,∀i ∈ N, (2)

where Ii is the set of node i’s neighbors, which can transmit data
to node i.

We assume that each node has a limited memory, that is, it
can receive a limited size of data at each time slot (however,
the BS does not have memory limit). Let Qi denote this limit
(QBS = ∞). Thus, one can write:

Rei(t − 1) +
∑
j∈Ii

l j,i(t) −
∑
j∈Oi

li, j(t) ≤ Qi,∀i ∈ N, (3)

where Rei(t − 1) is the amount of residual data (i.e. data left in
the memory) of node i after time slot (t − 1). Note that

Rei(t) = Rei(t − 1) +
∑
j∈Ii

l j,i(t) −
∑
j∈Oi

li, j(t) (4)

In real-world, data loss may occur, due to signal interference
and channel fading. When data loss occurs, re-transmission is
needed in order to deliver data to the destination. Thus, data
loss has a large impact on the value of effective bandwidth (i.e.
effective capacity of a communication link). As mentioned ear-
lier, other parameters such as the channel coding technique also
affects the value of the effective bandwidth. Here, we assume
that both the sender and the receiver nodes of the communica-
tion link know this value. Let ci, j denote the effective bandwidth
of the communication link between nodes i and j. If there is no
communication link between these nodes, then ci, j = 0. Thus,
we have

li, j(t) ≤ ci, jτ,∀i ∈ N,∀ j ∈ N ∪ {BS } (5)

where τ is the length of a single time slot (we assume that ev-
ery time slot has the same length). That is, the transmitted data
over link (i, j) at each time slot is limited by the link’s effective
bandwidth.

Finally, we assume that data received at each node i at time
slot t can only be forwarded from slot (t + 1). This assumption
is reasonable, since without it, data could be delivered to the BS
instantaneously.

4 Maximal Data Collection with Time Limit
In this section, we study data collection with time limit in the

WSN domain. In particular, we concentrate on applications in
which the goal is to maximize the total collected data from the
network, given a fixed time limit. Here we use the notations
defined in Section 3. Let M denote the set of nodes which want
to send data to the BS. If i ∈ M then let mi denote the size of
data (in bytes) node i want to send. Given time limit T , our goal
here is to maximize the following formula:

max
T∑

t=1

∑
j∈I(BS )

l j,BS (t) (6)

s.t.
T∑

t=1

∑
p∈Oi

li,p(t) ≤ mi +

T∑
t=1

∑
q∈Ii

lq,i(t),∀i ∈ M (7)

T∑
t=1

∑
p∈O j

l j,p(t) ≤
T∑

t=1

∑
q∈I j

lq, j(t),∀ j ∈ N/M (8)

These two constraints guarantee that the nodes cannot send more
than the amount of received data (including the amount of col-
lected data as well). In addition, we also take the constraints
mentioned in Section 3 (equations 1, 2, 3 and 5).

Given this, we transform the problem into a max flow problem
in order to find the optimal solution for the problem defined in
formula (6). It can be done as follows. Let G be the graph with
vertices rt

i , vt
i and ut

i, for all i ∈ N and t ∈ [0,T ]. Here, each tuple
of vertices (rt

i , v
t
i, u

t
i) represents the node i at time slot t. If nodes

i and j in the WSN network can communicate to each other (i.e.
there is a communication link between them), then in the graph
G, for all t ∈ [0,T − 1] we connect ut

i with rt+1
j by a link with

capacity ci, jτ.
Now, to model the receiving capacity of each node i, we do

the following. Since the energy limit for receiving at node i is
BRX

i , the maximal size of data node i can receive at each time

slot t is BRX
i

PiRXσb
i
. Given this, let connect vertices rt

j and vt
j by a link

with capacity BRX
i

PiRXσb
i
.

Similarly, to model the transmission capacity of each node i,
for each i, we connect vt

i with ut
i by a link with capacity BT X

i

PiT Xτb
i
,

where t ∈ [0,T − 1].
Furthermore, to model that the memory limit for each node i

is Qi, we connect vt
i with vt+1

i by a link with capacity Qi.
In addition, we also add a vertex S to G, and if node i ∈ M

, then we connect S with v0
i in G by a link with capacity mi

(i.e. the amount of data to be delivered on node i). Finally, we
add a vertex BS to G as well, this vertex represents the BS in
the WSN. If node i can communicate directly with the BS in
the WSN, then we connect rt

i with BS via a link with capacity
ci,BS Tτ, for each t ∈ [1,T ]. Given this directed acyclic graph
(DAG) G, our goal is to find the maximal flow from S to BS ,
with respect to the given link capacities.

Here, the similarity between this problem and our original,
maximal data collection with given time limit problem is clear.
Thus, we focus on solving this maximal flow problem. In the lit-
erature, a number of polynomial time decentralized algorithms
have been proposed for the maximal flow problem, such as the
pre-flow-push approach of Goldberg and Tarjan [9], and the aug-
menting path method introduced by Ford-Fulkerson [8]. In this
paper, we rely on the method proposed by Pham et al. [14]. This
distributed algorithm is based on the aforementioned preflow-
push technique, which can be briefly described as follows.

Let V and E denote the set of vertices and edges of the flow
network, respectively. Let c(e) denote the capacity of edge
e ∈ E. finally, let s and t denote the source and sink nodes of the
network, respectively. Each node v ∈ V maintains a height func-
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tion h(v) such that it satisfies: (i) for the sink node t, h(t) = 0;
and (ii) h(u) ≥ h(v)+1 if (u, v) ∈ E. In fact, h(v) is a lower bound
on the shortest path (on number of hops) from node v to the sink
t. Furthermore, let excess(v) denote the difference between the
total incoming flow and the total outgoing flow of node v, that
is:

excess(v) =
∑
u∈Iv

f (u, v) −
∑
w∈Qv

f (v,w) (9)

where f (i, j) is the flow function of edge (i, j) ∈ E. Based
on this, we can define the pre-flow as follows. A preflow f is a
function f : E → R+ with:

• 0 ≤ f (e) ≤ c(e),∀e ∈ E

• excess)v≥0, ∀v ∈ V/{s, t}

Let us note that our original problem also defines a pre-flow
(see equations 7 and 8).

The idea of the algorithm is to push the excess of a node in
a pre-flow towards the sink t, from a vertex with higher height
to one of its neighboring vertices with lower height. In order to
do this in a decentralized environment, each of the nodes exe-
cutes asynchronously a program that coordinates the moves of
the algorithm. For more details, see [14].

Fig. 1. The communication cost of the proposed algorithm.

However, in our case, each physical node i has 3(T + 1) vir-
tual instances (rt

i , v
t
i, u

t
i, t ∈ [0,T ]) in the network flow. That is,

we have to modify the algorithm, since real physical communi-
cation is allowed only between real nodes. Given this, we make
two different modifications as follows.

• Each node i runs 3(T +1) instances of the program, represent-
ing virtual vertices rt

i , v
t
i, u

t
i.

• To make the communication of virtual vertices possible, each
physical message must contain the ID of the sender and re-
ceiver vertices. For instance if ut

i wants to communicate with
rt+1

j , then the message is sent via the communication link (i, j)
with sender ID < ut

i > and receiver ID < rt+1
j >.

In the cited work [14], the authors proved that the algorithm
has O(n2m) communication complexity (overhead) and O(n2)

time complexity, where n is the number of vertices and m is
the number of edges in the flow network. Here, since each
node i of the WSN has 3(T + 1) instances of vertices in G,
thus, n = 3N(T + 1). To calculate m, we do the following.
Each real communication link is represented T times in G, thus
we have mWS NT links that represent the communication links,
where mWS N is the number of communication links in the WSN.
Furthermore, each rt

i is connected with vt
i, vt

i with ut
i, and vt

i with
vt+1

i . That is, in addition, we have another (3T −1)N links. Thus,
m = mWS NT + (3T − 1)N. Therefore, the complexity of the al-
gorithm is O(9N2T 3mWS N + 9N3T 2(3T − 1) in communication
and O(9N2(T + 1)2 in time in our case.

Since the communication complexity is O(9N2T 3mWS N +

9N3T 2(3T − 1), this indicates that the algorithm needs approx-
imately 9N2T 3mWS N messages on average in order to achieve
optimal routing scheme (mWS N typically dominates N , that is,
mWS N is O(N2)). However, this complexity is typically signifi-
cant, compared to the communication complexity of other data
collection algorithms. Nevertheless, by using extensive simula-
tions, we demonstrate that the communication overhead of the
algorithm is typically low in WSNs, compared to the number
of the nodes. In so doing, we set up a simulation environment,
where all the parameters, such as number of nodes, energy con-
sumption values, memory limit, and number of packets to send,
are all randomly set. We group the simulation results into groups
by the number of nodes. Thus, our main focus was to measure
the average number of messages per node needed in the algo-
rithm. The results are depicted in Fig. 1. According to the re-
sults, the number of messages per node in the worst case is lin-
ear, compared to the total network size (number of nodes in the
network). This is much better than the previously determined
theoretical communication complexity

5 Conclusions
In this paper, we have introduced a relaxation of the TDDC

problem, namely: the maximal data collection with given time
limit problem. This problem is relevant for WSNs, in which
nodes are capable of energy recharging, and the communication
links are limited in bandwidth. For this relaxed problem, we
proposed a polynomial time algorithm, that achieves optimal so-
lution. We have also demonstrated that the proposed algorithm
has low communication overhead as well.
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