
Ŕ periodica polytechnica

Electrical Engineering
55/1-2 (2011) 31–43

doi: 10.3311/pp.ee.2011-1-2.04
web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2011

RESEARCH ARTICLE

Formal verification of secure ad-hoc
network routing protocols using
deductive model-checking
Levente Buttyán / Ta Vinh Thong

Received 2011-06-06

Abstract
Ad-hoc networks do not rely on a pre-installed infrastructure,

but they are formed by end-user devices in a self-organized man-
ner. A consequence of this principle is that end-user devices
must also perform routing functions. However, end-user de-
vices can easily be compromised, and they may not follow the
routing protocol faithfully. Such compromised and misbehav-
ing nodes can disrupt routing, and hence, disable the opera-
tion of the network. In order to cope with this problem, several
secured routing protocols have been proposed for ad-hoc net-
works. However, many of them have design flaws that still make
them vulnerable to attacks mounted by compromised nodes. In
this paper, we propose a formal verification method for secure
ad-hoc network routing protocols that helps increasing the con-
fidence in a protocol by providing an analysis framework that
is more systematic, and hence, less error-prone than the infor-
mal analysis. Our approach is based on a new process calculus
that we specifically developed for secure ad-hoc network routing
protocols and a deductive proof technique. The novelty of this
approach is that contrary to prior attempts to formal verifica-
tion of secure ad-hoc network routing protocols, our verification
method can be made fully automated.

Keywords
Formal verification · routing protocol · security · ad-hoc acti-

vals · process calculus · automatic reasoning.

Acknowledgement
The work described in this paper has been supported by the

High Speed Networks Laboratory (HSN Lab) at the Budapest
University of Technology and Economics. The first author has
been further supported by the Hungarian Academy of Sciences
through the Bolyai János Research Fellowship.

Levente Buttyán

Department of Telecommunications, BME, H-1117 Budapest, Magyar tud. krt.
2., Hungary

Ta Vinh Thong

Department of Electronics Technology, BME, H-1117 Budapest, Magyar tud.
krt. 2., Hungary

1 Introduction
In the recent past, the idea of ad-hoc networks have created a

lot of interest in the research community, and it is now starting
to materialize in practice in various forms, ranging from static
sensor networks through opportunistic interactions between per-
sonal communication devices to vehicular networks with in-
creased mobility. A common property of these systems is that
they have sporadic access, if at all, to fixed, pre-installed com-
munication infrastructures. Hence, it is usually assumed that the
devices in ad-hoc networks play multiple roles: they are termi-
nals and network nodes at the same time.

In their role as network nodes, the devices in ad-hoc networks
perform basic networking functions, most notably routing. At
the same time, in their role as terminals, they are in the hands
of end-users, or they are installed in physically easily accessi-
ble places. In any case, they can be easily compromised and
re-programmed such that they do not follow the routing proto-
col faithfully. The motivations for such re-programming could
range from malicious objectives (e.g., to disrupt the operation of
the network) to selfishness (e.g., to save precious resources such
as battery power). The problem is that such compromised and
misbehaving routers may have a profound negative effect on the
performance of the network.

In order to mitigate the effect of misbehaving routers on net-
work performance, a number of secured routing protocols have
been proposed for ad-hoc networks (see e.g., [6] for a survey).
These protocols use various mechanisms, such as cryptographic
coding, multi-path routing, and anomaly detection techniques,
to increase the resistance of the protocol against attacks. Un-
fortunately, the design of secure routing protocols is an error-
prone activity, and indeed, most of the proposed secure ad-hoc
network routing protocols turned out to be still vulnerable to at-
tacks. This fact implies that the design of secure ad-hoc network
routing protocols should be based on a systematic approach that
minimizes the number of mistakes made in the design.

As an important step towards this goal, in this paper, we pro-
pose a formal method to verify the correctness of secure ad-hoc
network routing protocols. Our approach is based on a new pro-
cess calculus that we specifically developed for modeling the op-

Secure ad-hoc network routing protocols using deductive model-checking 312011 55 1-2

http://www.pp.bme.hu/ee

eration of secure ad-hoc network routing protocols, and a proof
technique based on deductive model checking. The systematic
nature of our method and its well-founded semantics ensure that
one can have much more confidence in a security proof obtained
with our method than in a "proof" based on informal arguments.
In addition, compared to previous approaches that attempted to
formalize the verification process of secure ad-hoc network rout-
ing protocols [3, 11–13], the novelty of our approach is that it
can be fully automated.

The organization of the paper is the following: In Section 2,
we describe the SRP protocol [14] as an example for a secure
ad-hoc network routing protocol that we will use for illustration
purposes throughout the paper. In Section 3 we give an overview
of the most relevant related works. In Section 4, we introduce
the syntax and the semantics of our process calculus. In Sec-
tion 5, we demonstrate the expressive power of our calculus by
modeling the operation of SRP and by formally representing a
known security flaw in SRP. In Section 6, we discuss how the
verification process can be automated and describe our deduc-
tive proof technique. In addition, we demonstrate the applica-
tion of our method via an example. Finally, in Section 7, we
conclude the paper and discuss our planned future work on this
topic.

2 The SRP protocol and an attack on it
SRP is a secure on-demand source routing protocol for ad-

hoc networks proposed in [14]. The design of the protocol is in-
spired by the DSR protocol [15], however, DSR has no security
mechanisms at all. Thus, SRP can be viewed as a secure variant
of DSR. SRP tries to cope with attacks by using a cryptographic
checksum in the routing control messages (route requests and
route replies). This checksum is computed with the help of a
key shared by the initiator and the target of the route discovery
process; hence, SRP assumes only shared keys between com-
municating pairs.

In SRP, the initiator of the route discovery generates a route
request message and broadcasts it to its neighbors. The integrity
of this route request is protected by a Message Authentication
Code (MAC) that is computed with a key shared by the initia-
tor and the target of the discovery. Each intermediate node that
receives the route request for the first time appends its identifier
to the request and re-broadcasts it. The MAC in the request is
not updated by the intermediate nodes, as by assumption, they
do not necessarily share a key with the target. When the route
request reaches the target of the route discovery, it contains the
list of identifiers of the intermediate nodes that passed the re-
quest on. This list is considered as a route found between the
initiator and the target.

The target verifies the MAC of the initiator in the request. If
the verification is successful, then it generates a route reply and
sends it back to the initiator via the reverse of the route obtained
from the route request. The route reply contains the route ob-
tained from the route request, and its integrity is protected by

another MAC generated by the target with a key shared by the
target and the initiator. Each intermediate node passes the route
reply to the next node on the route (towards the initiator) with-
out modifying it. When the initiator receives the reply it verifies
the MAC of the target, and if this verification is successful, then
it accepts the route returned in the reply.

The basic problem in SRP is that the intermediate nodes can-
not check the MAC in the routing control messages. Hence,
compromised intermediate nodes can manipulate control mes-
sages, such that the other intermediate nodes do not detect such
manipulations. Furthermore, the accumulated node list in the
route request is not protected by the MAC in the request, hence
it can be manipulated without the target detecting such manipu-
lations.

Fig. 1. An attack scenario against the SRP protocol.

In order to illustrate a known attack on SRP, let us consider
the network topology shown in Fig. 1. Let us further assume
that node N1 initiates a route discovery to node N3. The attacker
node A can manipulate the accumulated list of node identifiers
in the route request such that N3 receives the request with the
list (N2, n,N4), where n is an arbitrary fake identifier. This ma-
nipulation remains undetected, because the MAC computed by
N1 does not protect the accumulated node list in the route re-
quest, and intermediate nodes do not authenticate the request.
When the target N3 sends the route reply, A forwards it without
modification to N1 in the name of N2. As the route reply is not
modified, the MAC of the target N3 verifies correctly at N1, and
thus, N1 accepts the route (N1,N2, n,N4,N3). However, this is a
mistake, because there is no link between N2 and n, and between
n and N4.

Note that the above attack has been found by manual analysis
of the protocol. However, there may be many similar attack
scenarios (and indeed, there are), and manual analysis would be
inefficient to find all of them. The very purpose of our formal
verification method to be introduced in the upcoming sections
of the paper is to make the analysis systematic and amenable for
automation such that it can efficiently find all possible attacks
against a protocol (within some limits of the underlying model).

3 Related works
Our purpose in this paper is to provide a formal modelling

method for secure on-demand source routing protocols and a
systematic and automatic method for detecting attacks similar to
the attack we introduced in the previous section. Till now there

Per. Pol. Elec. Eng.32 Levente Buttyán / Ta Vinh Thong

are only few works addressing this problem. Each method pro-
posed in the most important related works [1–3, 7, 8, 12, 17–19]
has numerous drawbacks that we will discuss in the following:

In works [3, 12] the authors model the operation of the pro-
tocol participants by interactive and probabilistic Turing ma-
chines, where the interaction is realized via common tapes. This
model enables us to be concerned with arbitrary feasible at-
tacks. The security objective function is applied to the output
of this model (i.e., the final state of the system) in order to de-
cide whether the protocol functions correctly or not. Once the
model is defined, the goal is to prove that for any adversary, the
probability that the security objective function is not satisfied is
negligible. The main drawback of this method is that the proof
is not systematic and automated, and the framework is not well-
suited for detecting attack scenarios once the proof fails. In this
paper we aim at improving these works by adding automated
verification method based on deductive model-checking.

In [10] the authors present the applied π-calculus that is a
variant of the pure π-calculus [4]. The applied π-calculus is
well-suited for modelling security protocols because it provides
expressive syntax and semantics for reasoning of cryptographyic
primitives and operations. However, it lacks syntax and seman-
tics for reasoning of broadcast communication, neighborhood,
and communication range. Therefore, the applied π-calculus
cannot be used direcly for modelling routing protocols.

In order to give a formal and precise mathematical reasoning
of the operation of routing protocols several process calculi have
been proposed in the recent years. Among them the two works
[1, 2] are closest to our work.

In the works [1, 17] the author proposes the process calculus,
CMAN, for modelling mobile ad-hoc networks. The advantage
of CMAN is that it includes syntax and semantics for modelling
cryptographic primitives, neighborhood, broadcast communica-
tion. The main drawback of CMAN is that it does not provide
syntax and semantics for modelling the accumulated knowledge
of the attacker node, therefore, it cannot be directly used to
model the attack scenario against SRP protocol we showed in
the Section 2 or the similar attacks presented in [3]. In these
attacks the attacker node waits and collects information it inter-
cepts during the route discovery, which it uses later to construct
messages that contain incorrect route. In order to model these
kind of attacks we propose the notion of the active substitution
with range in our calculus.

In [2] the authors propose the ω-calculus. The main ad-
vantage of this calculus is that it has syntax and semantics
for neighborhood, broadcast communication and mobility. The
main drawback of this method is it does not provide syntax and
semantics for modelling cryptographic primitives and the at-
tacker’s knowledge base. In contrast to theω-calculus our calcu-
lus cryptographic primitives and attacker’s accumulated knowl-
edge can be explicitly modelled.

The advantage of these process calculi is that the operation
of mobile ad-hoc networks and several properties such as loop-

freedom and security properties can be precisely and systemat-
ically described with them, however, the drawback of them is
that the proofs and reasoning are still performed manually by
hand.

Several works in the literature address the problem of auto-
matic verification of routing protocols. In the works [18, 19]
the authors investigate the problem of verifying loop freedom
property of routing protocols. In [18] the LUNAR protocol is
verified using the SPIN, and UPPAAL model-checkers; in [18]
the authors verified the DYMO protocol using graph transfor-
mation. In contrast to these works we propose an automatic
verification method focused on verifying security properties of
“secure" routing protocols instead of loop freedom property.

The two works that are most related to our work are [7, 8]. In
the works [7] and [8] the authors address the problem of ver-
ification security properties of secure routing protocols using
the SPIN model-checker and CPAL-ES tools, respectively. The
main drawbacks of these methods are that they suffer from ex-
pressiveness limitation. In particular, they cannot directly model
cryptographic primitives and boadcast communications, instead
they simulate cryptographic primites with a series of bites [7]
and broadcast communication with a sequence of unicast com-
munication. In contrast to these works, our automatic verifica-
tion method provides a direct modelling of cryptography primi-
tives and neighborhood.

4 Our calculus
In this section we define our calculus: Its syntax and informal

semantics, as well as its operational semantics.
The advantage of our calculus is that its expressiveness al-

lows for modelling broadcast communication, neighborhood,
and transmission range like CMAN and the ω-calculus, and
cryptographic primitives like the applied π-calculus, however,
compared to them it includes novelties such as the definition of
active substitution with range that enables us to model the at-
tacker’s knowledge base and attacks in the context of wireless
ad-hoc networks. More precisely, our calculus can be seen as
the combination of the three calculi with some extensions. More
details about the novelties can be found in the technical report
[16].

4.1 Syntax
We assume an infinite set of namesN and variablesV, where

N∩V = ∅. Further, we define a set of node identifiers (node ID)
L, where N ∩ L = ∅. Each node identifier uniquely identifies a
node. Below the definition of term, denoted by t, is given:

t ::= req | rep | RouteOK | undef | true | c | n | l | x | f (t1, . . . , tk).

Terms take their values from a set of data of different types,
namely

• req and rep are unique constants that represent the req and rep
tags in route request and reply messages;

Secure ad-hoc network routing protocols using deductive model-checking 332011 55 1-2

• RouteOK is a special constant. The source node outputs
RouteOK when it receives the reply message and all the veri-
fications it makes on it are successful.

• undef and true are special constants that we use during the
analysis of the SRP protocol. More details will be given in
Section 5.

• c models communication channels for unicast communica-
tion; n models some data;

• l models a node ID; x is a variable that models any term.

• Finally, f is a function with arity k defined on terms. Hence,
the definition can be seen as a recursive definition. Function
is used to model cryptographic primitives, route request and
reply messages. For instance, digital signature is modelled
by the function sign(t1, t2), where t1 models the message to
be signed and t2 models the secret key. Route request and
reply messages are modelled by the function tuple of k terms
tuple(t1,. . . , tk), which we abbreviate as (t1,. . . , tk).

The internal operation of nodes is modelled by processes.
Processes can be inductively defined with the following syntax:

• The process c〈t〉.P represents the unicast sending of message
t on channel c, followed by the execution of P.

• The process c(x).P receives some message on channel c and
binds it to every variable x occurs in process P.

• The process 〈t〉.P represents the broadcast send of message t,
continued with the process P.

• The process (x).P represents the broadcast receive of some
message which will be bound to each occurence of x in P.
Compared to the unicast case the two broadcast processes do
not contain any certain channel, which intends to model that
there is not a specified target.

• Processes [t1 = t2]P and [l ∈ σ]P mean that if t1 = t2 and
l ∈ σ, respectively, then process P is "activated", else it stucks
and idle.

• The nil process 0 does nothing.

• Process let t = x in P represents the binding of term t to every
variable x that occurs in process P.

• Process P|Q is the parallel composition of processes P and Q
and behaves as processes P and Q running in parallel: each
may interact with the other, or with the outside world, inde-
pendently of the other.

• Finally, process !P represents the infinite replication of pro-
cess P.

Nodes are defined as bPcσl which represents a node that has
the identifier l and behaves as P, and its transmission range cov-
ers the nodes whose identifiers are in the set σ. Two nodes are
neighbors if they are in each other’s range. We note that σ can

be empty and a node is bPcl, which means that the node has no
connections.

A network, denoted as N, can be an empty network with no
nodes: 0N ; a singleton network with one node: bPcl; the parallel
composition of nodes: bP1c

σ1
l1
| bP2c

σ2
l2

, where σ1 and σ2 may
include l2 and l1 respectively; and the composition of networks:
N1 | N2.

Finally, in order to model attackers that improve their knowl-
edge by accumulating information they hear from their neigh-
bors, we extend the syntax of networks with the active substitu-
tion with range: An extended network E is defined as follows:

• An extended network can be a plain network N that we al-
ready discussed above.

• An extended network can be a parallel composition of two
extended networks: Ei|E j.

• An extended network is equipped with the active substitution
with range {t/x}σ. This says that the substitution {t/x} binds
term t to every variable x that occurs in any node bPic

σi
li

that
is in parallel composition with {t/x}σ, and li ∈ σ. Intuitively,
σ is the range of the substitution {t/x}. Again, we note that
the notion of active substitution with range is novel compared
with CMAN, the ω-calculus and the applied π-calculus.

4.2 Semantics
The operational semantics of our calculus is defined by the in-

ternal reduction rules, structural equivalences and the labelled
transition system (LTS) that composed of labelled transition
rules. Due to space limitation in this paper we only introduce
the most important rules. More details can be found in [16].

The internal reduction rules model the internal computation of
nodes such as comparing two terms, while the labelled transition
rules model the communication of nodes such as broadcast send
and receive.

(Internal reduction rules)
(Red. Let) blet x = t in Pcσl → bP{t/x}c

σ
l

(Red. If1) b[t = t]Pcσl → bPc
σ
l

(Red. If2) b[t = s]Pcσl → b0c
σ
l (i f t , s)

(Red. In1) b[l ∈ σ]Pcσl → bPc
σ
l (i f l ∈ σ)

(Red. In2) b[l ∈ σ]Pcσl → b0c
σ
l (i f l is not in σ)

The internal reduction relation is denoted by →. Rule (Red.
Let) models the binding of term t to variable x in process P. The
rules (Red. If1) and (Red. If2) model the equality check of two
terms. If the two terms are equal then the internal operation is
followed by P, else it stucks; Finally, the rules (Red. In1) and
(Red. In2) check if the node ID l is in the set σ.

In addition, internal reduction rules can be used to model mo-
bility of nodes by the following rules:

Per. Pol. Elec. Eng.34 Levente Buttyán / Ta Vinh Thong

(Reduction rules for mobility)
(Red. Connect)
bPcσ1

l1
| bQcσ2

l2
→{l1• l2} bPc

σ1∪ l2
l1

| bQcσ2∪ l1
l2

,
where l2 is not in σ1.

(Red. Disconnect)
bPcσ1∪ l2

l1
| bQcσ2∪ l1

l2
→{l1◦ l2} bPc

σ1
l1
| bQcσ2

l2
,

where l2 is not in σ1.
The rule (Red. Connect) model the scenario in which node l2
gets into the transmission range of the node l1. This reduction
relation is denoted by →{l1• l2}. Its counterpart is the rule (Red.
Disconnect) says that node l2 gets out of the transmission range
of the node l1. This reduction relation is denoted by→{l1◦ l2}.

In the following, the most important labelled transitions are
presented. Labelled transitions are used to model the commu-
nication of nodes, and play important roles in proofs. Labelled
transitions are denoted by a labelled relation that is an arrow
with a label:

α
−→.

(Labelled transition rules)
(Br-snd)

b〈t〉.Pcσl
νx.〈x〉:lσ
−→ {t/x}σ| bPcσl

(Br-rcv)

{t/x}σ| b(x).Qcσ2
l

(t):{l∈σ}
−→ {t/x}σ| bQ{t/x}cσ2

l
The first rule means that node l broadcasts t, so that t is now
available for the nodes in its transmission range σ. This is mod-
elled by the active substitution with range {t/x}σ and νx, which
restricts the substitution to the nodes that are within the range σ.
The second rule means that if the listening node l is within the
range σ then it receives the broadcasted t.

Finally, next we introduce the most important structural
equivalence rules on extended networks. The structural equiv-
alence relation is denoted by ≡. Using structural equivalence
rules we can tell if two networks are identical up to structure.

(Struct. Equiv. rules for extended networks)
(Struct. E-Par1) E|0N ≡ E
(Struct. E-Par2) E1|E2 ≡ E2|E1

(Struct. E-Par3) (E1|E2)|E3 ≡ E1|(E2|E3)
(Struct. E-Try) {t/x}σ|E ≡ {t/x}σ|E{t/x}σ

(Struct. E-Rewrite) {t1/x}σ ≡ {t2/x}σ (if t1 = t2)
The first rule says that the composition with an empty net-

work does not change anything. The next two rules concern
the commutative and associative properties. Rule (Struct. E-
Rewrite) says that two active subtitutions with the same range σ
and terms are stucturally equivalent. Rule (Struct. E-Try) tries
to apply the active substitution with range {t/x}σ to the extended
network E: For example, let E be

E = {t1/x1}
σ1 |. . . | {tk/xk}

σk | bQic
σi
li
|. . . |
⌊
Q j

⌋σ j

l j

Then E{t/x}σ is

{t1/x1}
σ1 |. . . | {tk/xk}

σk | bQic
σi
li
{t/x}σ | . . . | bQic

σi
li
{t/x}σ

Intuitively, this means that the substitution is tried on every plain
network. However, this substitution takes place at bQic

σi
li

only if

li ∈ σ. This is formally defined by a new rule (E-Subst) and the
relation ≡li∈σ below:

(Struct. E-Subst)
{t/x}σ| bQic

σi
li
≡li∈σ bQi{t/x}c

σi
li

We note that these labelled transition rules and structural
equivalence rules are novel compared to the related works we
mentioned above due to the application of the active substitu-
tion with range in each rule. In addition, the rules (Red. In1)
and (Red. In2) are also new.

4.3 Labelled bisimilarity in context of wireless ad-hoc net-
works and attacker’s knowledge base
In this subsection we give a definition of labelled bisimilarity

that says if two wireless ad-hoc networks are equivalent, mean-
ing that they cannot be distinguished by an observer which can
eavesdrop on communications.

Let the extended network E be
{
t1 /x1

}σ1 | . . . |
{
tn /xn

}σn | N1 |

. . . | Nn. The frame ϕ of E is the parallel composition
{
t1 /x1

}
|

. . . |
{
tn /xn

}
that models all the information that is output so far

by the network E, which is t1,. . . , tn this case.
We say that two extended networks E1 and E2 are statically

equivalent, denoted as E1 ≈s E2, if their frames are statically
equivalent. Two frames ϕ1 and ϕ2 are statically equivalent if
they include the same number of active substitutions and same
domain; and any two terms that are equal in ϕ1 are equal in ϕ2 as
well. Intuitively, this means that the outputs of the two networks
cannot be distinguished.

Definition 1 Labelled bisimilarity (≈N
l) is the largest symmet-

ric relation R on closed extended networks, such that E1RE2

implies: L(E1) = L(E2), C(E1) = C(E2), if

• E1 ≈s E2;

• if E1 → E′1, then E2 →
∗ E′2 and E′1RE′2 for some E′2;

• if E1
νx.〈x〉:lσ
−→ E′1, then ∃E′2 such that E2 →

∗
νx.〈x〉:lσ
−→ →∗ E′2 and

E′1RE′2 for some E′2.

Intuitively, this means that the outputs of the two networks of
same topology cannot be distinguished during their operation.
L(E) and C(E) are the set of node IDs, and the neighborhood
in E, respectively. In particular, the first condition means that
at first E1 and E2 are statically equivalent; the second condition
says that E1 and E2 remains statically equivalent after internal
reduction steps. Finally, the third condition says that if the node
l in E1 outputs something then the node l in E2 outputs the same
thing, and the "states" E′1 and E′2 they reach after that remain
statically equivalent. Here,→∗ models the sequential execution
of some internal reduction steps.

The accumulated knowledge of the attacker is defined as
the frame with the identifier of the attacker la as parameter:
ϕ(la). The frame ϕ(la) can be seen as the subset of the frame
ϕ because it includes only such active substitutions

{
ti /xi

}σi

(i ∈{1, . . . , n }) where la ∈ σi. Formally,

Secure ad-hoc network routing protocols using deductive model-checking 352011 55 1-2

ϕ(la) =
{
ti /xi

}σi |
{
t j /x j

}σ j
| . . . |
{
tk /xk

}σk ,

where la ∈ σi, la ∈ σ j, . . . , la ∈ σk, and {i, j, . . . , k} ⊆
{1, 2 . . . , n}.

5 Application of our calculus
Next we demonstrate the usabiliy of our calculus by mod-

elling the SRP protocol and the attack shown in Section 2. The
scenario in Section 2 is modelled by the extended network de-
fined as:

netw
de f
= bP1c

{l2,la}
l1
| bP2c

{l1,la}
l2
| b!PAc

{l1,l2,l3,l4}
la

| b!P3c
{la,l4}
l3
| bP4c

{la,l3}
l4

where the description of the nodes in the parallel compositions
above corresponds to N1, N2, A, N3, and N4, respectively.

We use the following functions: The function mac(t1, t2) com-
putes the message authentication code of the message t1 using
the secret key t2. The shared key between the nodes li and l j is
modelled by the function k(li, l j). The function list(l1, . . . , ln)
models the list of node IDs, and list() models the empty ID
list. Functions prev(List, li) and next(List, li) return the element
right before and after li in the list List, respectively; they re-
turn undef if there is no any element before or after li. Func-
tion toend(List, li) that appends li to the end of List. Functions
fst(List) and lst(List) represent the first, and last element of List,
respectively. Function i((t1, . . . , tn)) returns the i-th (i ∈{1,. . . n})
element ti of the tuple (t1, . . . , tn).

We note that in case of ad-hoc network, generally the be-
haviour of nodes can be specified in the same way meaning that
every node can be a source, an intermediate node, and a desti-
nation node. However, for the sake of brevity, below we specifi-
cally consider the scenario in Section 2 and define the behaviour
of nodes according to the scenario. This is sufficient to prove
the vulnerability of SRP. The operation of the source node is
specified as follows1:

P1
de f
= let MAC13 = mac ((l1, l3), k(l1, l3)) in Init.

Init
de f
= 〈(req, l1, l3,MAC13, list())〉.!Rep1.

Rep1
de f
=
(
xrep

)
.[1(xrep) = l1] [2(xrep) = rep]

[3(xrep) = l1] [4(xrep) = l3]
[f st(5(xrep)) ∈ {l2, la}]
[mac

((
l1, l3, 5(xrep)

)
, k(l1, l3)

)
= 6(xrep)]

〈RouteOK〉.0

Intuitively, the first row models that the node l1 computes the
MAC using the key it shares with the destination node l3. The
second row means that node l1 generates the route request mes-
sage that includes the ID of the source and the target nodes, and
the message authentication code MAC13, then l1 broadcasts it
and waits for the reply. The exclamation mark models the infi-
nite replication of Rep1. Finally, the third row means that when
l1 receives a message, it checks whether (i) it is the addressee,

1Due to page limitation we omit the presence of sequence number and mes-
sage ID in messages, but we note that our attack works in the same way in the
presence of them.

(ii) the message is a reply, (iii) the ID of the source and the target
nodes, and (iv) the message authentication code are correct. If
all are correct then it signals the special constant RouteOK.

The description of the process P2 is the following:

P2
de f
=
(
yreq

)
.[1(yreq) = req].

〈
(
1(yreq), 2(yreq), 3(yreq), 4(yreq), toend(5(yreq), l2)

)
〉.!Rep2.

Rep2
de f
=
(
yrep

)
.[1(yrep) = l2][2(yrep) = rep]

[next
(
5(yrep), l2

)
∈ {l1, la}]

〈
(
l1, 2(yrep), 3(yrep), 4(yrep), 5(yrep), 6(yrep)

)
〉.0

Intuitively, on receiving a message node l2 checks if it is a re-
quest, if so then node l2 appends its ID to the end of the ID list,
then re-broadcasts the request and waits for a reply. When it re-
ceives the reply message it checks (i) if the message is intended
to it, (ii) the message is a reply, (iii) the ID next to l2 in the list
corresponds to the neighbors of node l2 and forwards the reply
to the source node l1 if all verification steps pass.

Finally, the operation of the destination node is modelled as:

P3
de f
=
(
zreq
)
.[1(zreq) = req][3(zreq) = l3]

[mac
(
〈2(zreq), 3(zreq)〉, k(l1, l3)

)
= 4(zreq)].

let MAC31 = mac(
(
1(zreq), 2(zreq), 3(zreq), 5(zreq)

)
, k(l1, l3))in

let lprev = lst
(
5(zreq)

)
in〈
(
lprev, rep, 2(zreq), 3(zreq), 5(zreq),MAC31

)
〉.0

Intuitively, on receiving a message node l3 checks (i) if the
message is a request, and (ii) it is the destination, and verifies
the MAC embedded in the request using its shared key with l1.
If so then node l3 creates a reply message and sends it back to
the last node in the list.

The description of the node l4 is the same as the node l2 with
the difference that it appends l4 to the list instead of l2. We refer
the reader to [16] for details.

We give the model (MA) of the attacker node as follows:
We assume that the attacker cannot forge the message authen-
tication codes MAC13 and MAC31 without possessing correct
keys. Initially, the attacker node knows the IDs of its neigh-
bors {l1, l2, l3, l4}. The attacker can create new data n, and can
append elements of {l1, l2, l3, l4}, and n to the end of the ID list
it receives. Finally, it can broadcast and unicast its messages to
honest nodes.

The attacker overhears only messages sent by its neighbors.
The attacker combines this accumulated knowledge and its ini-
tial knowledge to perform attacks. Let Tlp be a tuple that consists
of the elements in {l1, l2, l3, l4}.

Formally, the operation of the attacker node is defined as fol-

lows: PA
de f
= (x̃) .νn.〈 f (x̃,Tlp , n)〉, where x̃ is a tuple (x1,. . . ,xm)

of variables, νn means that the attacker creates new data n. The
function f (x̃,Tlp , n) represents the message the attacker gener-
ates from (i) the eavesdropped messages that it receives by bind-
ing them to x̃, (ii) its initial knowledge and (iii) the newly gen-
erated data n, respectively.

Per. Pol. Elec. Eng.36 Levente Buttyán / Ta Vinh Thong

As the next step, we define an ideal model of netw, denoted as
netwspec. The definition of netwspec is the same as netw except

that the desription of N1 is
⌊
Pspec

1

⌋{l2,la}
l1

. Process Pspec
1 models the

ideal operation of the source node N1 in the sense that although
the source node does not know the route to the destination it is
equipped with the special function consistent(List) that informs
it about the correctness of the returned route.

We define this ideal source node as follow:

Pspec
1

de f
= let MAC13 = mac ((l1, l3), k(l1, l3)) in Initspec.

Initspec
de f
= 〈(req, l1, l3,MAC13, list())〉.!Repspec.

Repspec
de f
=
(
xrep

)
.[1(xrep) = l1] [2(xrep) = rep]

[3(xrep) = l1][4(xrep) = l3][f st(5(xrep)) ∈ {l2, la}]
[mac

((
l1, l3, 5(xrep)

)
, k(l1, l3)

)
= 6(xrep)]

[consistent
(
5(xrep)

)
= true].〈RouteOK〉.0

Intuitively, in the ideal model, every route reply that contains
a non-existent route is caught and filtered out by the initiator of
the route discovery. Therefore, security is achieved by defini-
tion.

Next we give the definition of secure routing based on la-
belled bisimilarity:

Definition 2 A routing protocol is said to be secure if for all
extended networks E and its corresponding ideal network Espec

where both include the same but arbitrary attacker node, we
have: E ≈N

l Espec.

Theorem 1 The SRP protocol is insecure.

Proof 1 (Sketch) We will show that netw ≈N
l netwspec does not

hold in the presence of the attackerMA because the third con-
dition of the Definition 1 is violated. When the attacker node re-
ceives the request message (req, l1, l3, MAC13, [l2]) from node
l2, it creates some new fake node indentifier n, then it adds n
and the identifier l4 to the list [l2], then it re-broadcasts (req,
l1,l3,MAC13,[l2, n, l4]). When this message reaches the target
node l3 it passes all the verifications made by l3. Then, node l3
generates the reply (l4, rep, l1, l3,MAC31) and sends it back to
l4. The attacker node overhears this message and forwards it to
the source l1 in the name of l2. As the result, in netw node l1 ac-
cepts the returned invalid route [l2, n, l4] and outputs RouteOK

by the
νx.〈x〉:l1{l2la}
−→ transition step. However, in netwspec node l1

does not accept the returned route, thus, RouteOK is not output.
Formally, at this point netwspec cannot perform the transition
νx.〈x〉:l1{l2la}
−→ , which violates the third condition of Definition 1.

6 On automating the verification
In this section, we present a novel automated verification

technique based on deductive model checking. The novelty of
our method compared with the other related works is that it sup-
ports explicit modelling of cryptographic primitives which is not
the case in [2, 7]. Compared to [3, 11] our method can be fully
automated. Our technique was inspired by the concept of the

ProVerif automatic verification tool [9], however, as opposed to
[9] it is designed for verifying routing protocols and includes
numerous novelties such as broadcast communications, neigh-
borhood, and considers an attacker model specific to wireless ad
hoc networks.

The reason why we propose a custome verification algorithm
and not apply directly existing frameworks, such as the Process
Analysis Toolkit (PAT) [20], is that in their current version they
are very cumbersome to use for finding these kind of subtle at-
tacks against secure routing protocols. Currently PAT does not
support any special module for secure routing protocols. Al-
though PAT supports the CSP module that is based on algebra,
the verification engine of CSP is not optimized for verifying se-
cure routing protocols due to the lack of formal syntax and se-
mantics. Furthermore, we found that the verification engine of
the ProVerif tool is very effective and closely related to our prob-
lem. Finally, this engine can be extended/modified for secure
routing protocols in a straightforward way.

6.1 From the process calculus to Horn-clauses
In the ProVerif verification tool [9] the input of the tool is the

protocol description in the syntax of the applied π-calculus. The
tool then translates this to Prolog rules, which are Horn clauses,
to make automatic reasoning. Following this concept, in our
verifcation method, routing protocols are specified in the syntax
of our calculus. This is then translated to Horn-clauses using
translation rules. The reader can find details in [16].

Terms t in the calculus are translated to patterns p of Horn-
clauses that is defined as follows: Variables x and node IDs l
in the calculus are translated to xp and lp of Horn clauses, re-
spectively. The attacker node has the unique identifier lp

att. Node
identifiers are atomic values (i.e., constants). Data n and func-
tion f are encoded as functions with arity k and t: n[p1, . . . , pk],
and f (p1, . . . , pt), respectively. Finally, s is a special variable
that takes values from the set {honest, advr}, where honest and
advr are constants.

The protocol and the computation ability of the attacker are
modelled by the implication rules (clauses) of the form F1

∧. . .∧ Fn → C, where Fi i ∈ {1, . . . , n} and C are facts that are
defined as predicate application pred(p1,. . . ,pm). The left side
of the rule is called as hypothesis while the right side is called
as conclusion.

In our method the rules use the facts wm(p) and att(p) which
model that the wireless medium and the attacker know the pat-
tern p, respectively. The fact routeok(s) is used for signalling
that the returned reply has been accepted by the source node.
We will discuss routeok(s) in detail later. In addition, the fact
route(lp

src, l
p
dest) is used to assign the source node lp

src and the
target node lp

dest for a given route discovery. Finally, the fact
nbr(lp

i , l
p
j) models that node lp

j is in the transmission range of
node lp

i .

Secure ad-hoc network routing protocols using deductive model-checking 372011 55 1-2

6.2 Generating protocol clauses
We exploit the fact that each node behaves in the same way in

a route discovery phase of routing protocols. Hence, the opera-
tion of every node can be uniformly defined as follows:

Pi
def
= !i1 InitPi |!i2 IntermPi |!i3 DestPi

Every node can start a route discovery towards any other node,
in this case the Init process is invoked. Every node can be an
intermediate node, in which case its Interm process is invoked.
Finally, every node can be a target node when the Dest process
is invoked. We note that the specified structure of each process
depends on the specified routing protocol. However, in general
form Pi can be modelled as:

InitPi
def
= cPi (xdest).Protinit.〈xmsgreq〉.!i4 RepPi

init.

RepPi
init

def
= (xrep).Verifinit.〈RouteOK〉.

IntermPi
def
= (yreq).Protinterm.〈ymsgreq〉.!i5 RepPi

interm.

RepPi
interm

def
= (yrep).Verifinterm.〈ymsgrep〉.

DestPi
def
= (zreq).Verifdest.〈zmsgrep〉.

Process InitPi receives on the channel cPi the ID of the destina-
tion node to which it starts the route discovery. Then Pi goes
through a protocol dependent processing part Protinit, followed
by broadcasting the request xmsgreq and then it waits for the reply
at the end.

On receiving a reply xrep, process RepPi
init does verification

steps in a protocol dependent manner and then signals the term
RouteOK if xrep passes all verifications.

Process IntermPi describes the case when Pi is an intermediate
node and says that when Pi receives some request yreq it goes
through a protocol dependent processing part Protinterm, and re-
broadcasts the request ymsgreq. Finally, it waits for the reply.

On receiving a reply yrep, process RepPi
interm does verification

steps in a protocol dependent manner and then forwards the
(may be modified) reply ymsgrep.

Process DestPi describes the case when Pi is a destination
node and says that when Pi receives some request zreq it does
verification steps and then sends back the reply zmsgrep.

We assume that the reply messages xrep, yrep, ymsgrep, and
zmsgrep include the information of the addressee. Hence, when a
node receives a reply it can check whether the reply is intended
to it.

The exclamation mark !i models replication, where i is a ses-
sion identifier to distinguish different process instances in repli-
cation. Session identifier further is used to track attack traces.

Process Pi is then translated to the protocol rules. A routing
protocol modelled by Pi is specified in the following clauses
that serve as a template of the correct operation of the routing
protocol:

(Protocol rules: Template of the correct operation) ::=

Rreq
1 . route(xp

src, x
p
dest)

p,i1
−→ wm(xp

msgreq)

Rrep
1 . wm((xp

rep, s)) ∧ Verif f acts
init

p,i2
−→ routeok(s).

Rreq
2 . wm(yp

req) ∧ nbr(yp
f rom, y

p
to)

p,i3
−→ wm(yp

msgreq).

Rrep
2 . wm((yp

rep, s)) ∧ Verif f acts
interm

p,i4
−→ wm((yp

msgrep, s)).

Rreq
3 . wm(zp

req) ∧ nbr(zp
f rom, l

p
dest) ∧ Verif f acts

dest

p̃,i5
−→

wm((zp
msgrep, honest))

When a message is received by an attacker node:

Ratt
1 . wm(yp

req) ∧ nbr(yp
f rom, l

p
att)

p,i6
−→ att(yp

req)

Ratt
2 . wm(yp

rep) ∧ nbr(yp
f rom, l

p
att)

p,i7
−→ att(yp

rep)

We note that these rules represent the protocol independent
form, however, in specified protocols such as SRP the transla-
tion will take into account the Verif and ProtDep parts. This
may yield additional rules, and hypotheses. See Section 6.6 for
examples. Verif f acts

init , Verif f acts
interm and Verif f acts

dest are set up by a con-
junction of fact(s).

We assume that the route request and reply messages xp
rep,

yp
req, yp

rep and zp
req include identifiers of the nodes from which

they are received. The identifiers are specified by the patterns
xp

f rom, yp
f rom, and zp

f rom.
Rules Rreq

1 and Rrep
1 model the operation of the source node.

In particular, rule Rreq
1 says that the source node xp

src generates
the request message xp

msgreq and then broadcasts it. Rule Rrep
1

says that if the source node receives a reply message and if all
verification steps the source node made on the reply pass then
the returned route is accepted, this is modelled by the derivation
of the fact routeok(s). The variable s is a flag that takes its value
from the set {honest, advr}, and is used to determine whether
the attacker node intercepts a reply message (when s = advr)
during the route discovery or not (when s = honest). More
precisely, the derivation of the fact routeok(honest) means that
the request or reply are modified by honest nodes only, while
when routeok(advr) is derived the messages are manipulated
by the attacker node. The variable s is appended after each reply
message forming the tuples (xp

rep, s), (yp
rep, s), (yp

msgrep, s), and
(zp

msgrep, honest).
Rules Rreq

2 and Rrep
2 model the operation of intermediate

nodes. In particular, rule Rreq
2 says that if the node yp

to is in the
transmission range of the yp

f rom then node yp
to receives the re-

quest yp
req sent by yp

f rom. The messages yp
req and yp

msgreq could be
the same depending on the specified protocol. After processing
the request yp

req node yp
to re-broadcasts it. Rule Rrep

2 says that if
an intermediate node receives the message tuple (yp

rep, s) then it
makes verification steps. If all verifications pass it appends s
unchanged to the reply yp

msgrep then forwards the message tuple
(yp

msgrep, s). Again, the messages yp
rep and yp

msgrep could be the
same depending on the specified protocol.

The rule Rreq
3 models the operation of the destination node

and says that if the destination node lp
dest is the neighbor of some

honest intermediate node zp
f rom then the destination receives the

request zp
req. If all the verifications made by the destination pass

it generates a reply zp
msgrep and adds the flag honest signalling

Per. Pol. Elec. Eng.38 Levente Buttyán / Ta Vinh Thong

that the attacker still has not seen the reply. Finally, it sends
back the tuple (zp

msgrep, honest).
Rules Ratt

1 and Ratt
2 concern the case when the attacker node lp

att

intercepts the request yp
req and reply yp

rep because it is a neighbor
of some honest node yp

f rom.

6.3 Knowledge and computation ability of the attacker
The ability of an attacker node is represented in the following

rules. These rules represent the strongest actions that can be
performed by the attacker node lp

att.

(Init. knowl.) ::= ∀lp
n neighbors of lp

att:
I1. att(lp

att), att(lp
n); I2. att(k(latt, l

p
n)); I3. nbr(latt, l

p
n).

I1 means that initially the attacker knows its own ID and the ID
of its honest neighbors, I2 means that the attacker possesses all
the keys it shares with the honest nodes. Finally, I3 means that
the attacker is aware of its neighborhood.

In addition, we define a strong computation ability for the
attacker node as follows:

(Computation ability - protocol independent) ::=

C1.att(i)→ att(n[i])

C2.For each public function f of n-arity

att(xp
1) ∧ . . . att(xp

n)→ att(f (xp
1 , . . . , x

p
n))

C3.For each public function g that

g(f (xp
1 , . . . , x

p
n), yp)→ xp :

att(f (xp
1 , . . . , x

p
n)) ∧ att(yp)→ att(xp)

C1
4.att(yp

req) ∧ nbr(lp
att, y

p
to) ∧ Verif f acts

att

p,i8
−→ wm(yp

msgreq).

C2
4.att((yp

rep, s)) ∧ nbr(lp
att, y

p
to) ∧ Verif f acts

att

p,i9
−→ wm((yp

msgrep, advr)).

C3
4.att(zp

req) ∧ nbr(lp
att, l

p
dest) ∧ nbr(lp

dest, l
p
att) ∧ Verif f acts

att

p,i10
−→ att((zp

msgrep, honest)).

C4
4.att((xp

rep, s)) ∧ nbr(lp
att, l

p
src) ∧ Verif f acts

att

p,i11
−→ routeok(advr).

Rule C1 means that the attacker node can create arbitrary new
data n such as fake identifiers, where i is a session ID to identify
that the data is created in which protocol run. Rule C2 means
that the attacker can generate arbitrary messages based on its
actual knowledge. Rule C3 means that the attacker can perform
computation on function f . For instance, if f is a digital signa-
ture sign then its corresponding "inverse" function g, which is
checksign can be performed to verify the signature. The set of
functions depends on the protocol we are examining.

The rules C1
4, C2

4, C3
4 and C4

4 say that the attacker can broad-
cast the messages it has. Rule C1

4 describes the case in which
the attacker broadcasts the request yp

req that is received by its

neighbor yp
to who then outputs some message yp

msgreq if all veri-
fications it made on yp

req (modelled by Verif f acts
att) pass. Rule C2

4

says that the reply yp
req forwarded by the attacker is overheared

by its neighbor yp
to who then forwards the reply with the flag

advr signalling that the reply is forwarded by the attacker. Rule
C3

4 concerns the scenario when the destination node lp
dest and the

attacker lp
att are neighbors of each other and says that if the re-

quest zp
req broadcasted by lp

att passes all the required verifications
then the destination sends back a reply message along with the
flag honest signalling that the reply is just generated and has not
been seen by the attacker. Finally, rule C4

4 concerns the scenario
when the source node lp

src is a neighbor of the attacker lp
att and

says that if the reply zp
rep forwarded by lp

att passes all the required
verifications made by lp

src then the reply is accepted. The impli-

cation
p,i
−→ includes the message and session ID that required for

tracking attacks.

6.4 Deductive algorithm
The operation of a routing protocol is modelled by resolution

steps, defined as follows:

Definition 3 Given two rules r1 = H1 → C1, and r2 = F∧H2 →

C2, where F is any hypothesis of R2, and F is unifiable with C1

with the most general unifier σ, then the resolution r1 ◦F r2 of
them yields a new rule H1σ ∧ H2σ→ C2σ.

Let us recall the example in Fig. 1. The resolution route(lp
1 , l

p
3)◦F

R1, where p=(req, xsrc, xdest, ID, MAC) and F = route(xp
src, x

p
dest)

yields the fact wm(req, lp
1 , lp

3 , ID, MAC) with the unifier {xp
src ←

lp
1 , xp

dest ← lp
3}. This resolution step models the broadcasting of

the route request message (req, xsrc, xdest, ID, MAC) generated
by node lp

1 .
In the following we give a sketch of the deductive algorithm

of our method. More details can be found in [16].

Algorithm 1 The input of the algorithm is the tuple (T0, {Nlp
n
},

{Nlp
att
}, route(lp

src, l
p
dest), K , A) : T0 is the set of protocol rules;

the two sets {Nlp
n
} and {Nlp

att
} specify the neighborhood of the

honest node lp
n and the attacker node lp

att which are given by
the set of facts nbr(lp

n , l
p
i) and nbr(lp

att, l
p
j), respectively; the fact

route(lp
src, l

p
dest) specifies the source and target nodes for a given

route discovery; A and K are the sets of attacker computation
rules and the knowledge base of the attacker, respectively.

The algorithm is based on the breadth-first search to reach
the destination node lp

dest from the source lp
src. Each node broad-

casts its message to neighbors. This is modelled by resolu-
tion steps at each node. The algorithm starts with the resolu-
tion route(lp

src, l
p
dest) ◦route(xp

src,x
p
dest)

Rreq
1 , which says that the source

node broadcasts the request. The request is then forwarded by
intermediate nodes, which are modelled by the resolutions of
rules Rreq

2 or Rreq
3 in T0 with the conclusions resulted in the pre-

vious resolutions.
When the destination node receives a request it sends back a

reply if the verifications it made on the request were successful,
this scenario is modelled by the rule Rreq

3 .

Secure ad-hoc network routing protocols using deductive model-checking 392011 55 1-2

The backward propagation of the reply is modelled by the res-
olution steps between the results of a previous resolution with
the rules Rrep

2 , Rrep
1 . Resolutions with rule Rrep

2 means that the re-
ply is returned to intermediate nodes, while resolutions with rule
Rrep

1 model the scenario in which the reply reaches the source
node and is accepted.

When the attacker node intercepts a message p broadcasted
by one of its neighbors (happens when resolutions made by the
algorithm includes Ratt

1 or Ratt
2) it adds the new fact att(p) into

K . This step represents that the attacker collects information
during the route discovery. After updating its knowledge, the
attacker attempts to construct incorrect messages and forwards
them to honest nodes based on the collected information K and
its computation rulesA.

Theorem 2 If there is an attack for a given network topologyN
and tuple (lp

s , lp
d , lp

att) then the algorithm will find some attack.

The proof of this theorem is complicated and we need to take
into account auxiliary definitions and theorems. Due to page
limitation we refer the reader to [16] for details. In the next the-
orem we discuss the complexitiy of the algorithm. Because the
algorithm is mostly based on resolution steps, below we provide
the complexity by upper bound the number of total resolution
steps.

Theorem 3 Let us assume that Verif f acts
init , Verif f acts

interm and
Verif f acts

dest are empty. The number of resolution steps made by
the algorithm is upper bounded by (D+ 2)(|N|+ |E|)+B, where
|N|, |E| are the number of nodes and edges of the topology;D is
the total number of incorrect messages created by the attacker
during the algorithm that are accepted by its honest neighbors;
and B is the total number of the resolution steps (computation
steps) made by the attacker during the algorithm. For practical
reasons bothD and B are assumed to be finite.

Proof 2 (sketch) The propagation of a request from the source
to the destination can be seen as a breadth-first traversing in the
graph. In case there is no attacker in the network, the algorithm
performs at most |N| + |E| resolution steps. The same is true re-
garding the propagation of the reply. Note that in most cases the
reply is returned by unicast sending instead of broadcast, thus,
the number of resolution steps equals to the length of the route.
Taking into account the attacker node, whenever it intercepts a
new request/reply it attempts to compute incorrect messages that
will be accepted by its honest neighbors. These incorrect mes-
sages will propagate to the source/destination, which takes at
most D(|N| + |E|) resolution steps. Finally, the total resolution
steps made by the attacker to construct incorrect messages is B.

We note that in case Verif f acts
init , Verif f acts

interm and Verif f acts
dest are not

empty, the complexity depends on the maximal number and the
type of the facts they contain. In a general case the complexity
can be exponential, however, by taking into account the property
of the specified protocols and properly restricting the attacker

ability this complexity can be reasonably reduced as in case the
SRP protocol.

6.5 Derivability and derivation tree
In order to give the definition of derivability and graphical

representation of the reasoning in the previous subsection we
introduce the notion of derivation tree.

Definition 4 We say that F is a closed fact if it does not contain
any variable.

For example routeok(honest), routeok(advr) and route(lp
src, l

p
dest)

are closed facts. However, route(xp
src, x

p
dest) is not closed.

Definition 5 Let F be a closed fact. Let C be a set of clauses. A
derivation tree of F from C is a finite tree defined as follows:

1 Its nodes are labelled by the name of the rule that is applied
in the resolution. In our case these rules can be the protocol
rules Rreq

1 ,. . . , Rreq
3 , Ratt

1 , Ratt
2 , or the attacker rules I1, I2, I3,

C1, C2, C3, C1
4, C2

4, C3
4, and C4

4. In addition, nodes can be
captioned by the pair (p, i).

2 Its edges are labelled by the facts using in the resolution steps.
Incoming edges represent the hypotheses of the rule that is
applied in the resolution steps while the outgoing edge repre-
sents the conclusion of the rule.
If the tree contains a node such that:

(i) it is labelled by the rule R, where R = H′1 ∧ . . .∧ H′n
p,i
−→

C′, H′i (1 ≤ i ≤ n) and C′ are not closed facts; (ii) it has the
incoming edges labelled by H1, H2,. . . , Hn and an outgoing
edge C, where Hi (1 ≤ i ≤ n) and C are closed facts.
Then the n resolutions Hi ◦H′i R of the n facts Hi (1 ≤ i ≤ n)
and the rule R are successful with the unifiers σi (1 ≤ i ≤ n),
and the result of the resolutions is the conclusion C, where C
= C′σ1 . . . σn.
In short, this means that the closed fact C can be derived from
H1, H2,. . . , Hn using rule R.

The right side of the Fig. 2 shows the resolution
route(lp

s , l
p
d) ◦route(xp

s ,x
p
d) R, where R is the rule route(xp

s , x
p
d)

p,i
−→ wm(xp

s , x
p
msgreq).

6.6 Application of our automatic verification method
Next, we give an overview of how our verification method

works in case of the SRP protocol considering the scenario in
Section 2.

The node identifiers of the five nodes are the constants lp
1 ,

lp
2 , lp

3 , lp
4 , and lp

att. The input of the algorithm is the tuple (T0,
{Nlp

i
|1 ≤ i ≤ 4}, Nlp

att
, route(lp

1 , l
p
3), K , A) where: T0 contains

11 rules in total including the rules Rreq
1 , Rreq

2 and Ratt
1 that we

use in this demonstration.
The topology is defined by the five sets

Nlp
1
,Nlp

2
,Nlp

3
,Nlp

4
, and Nlp

att

Per. Pol. Elec. Eng.40 Levente Buttyán / Ta Vinh Thong

Fig. 2. On the left: The derivation of the closed fact C from H1, H2,. . . , Hn

by using rule R, where R = H′1 ∧ . . .∧ H′n
p,i
−→ C′, H′i (1 ≤ i ≤ n) and C′ are not

closed facts
On the right: The derivation of the fact wm(xp

s , x
p
msgreq)σ, where

σ = {xp
s ← lp

s , x
p
d ← lp

d }, from route(lp
s , l

p
d) using rule route(xp

s , x
p
d)

p,i
−→

wm(xp
s , x

p
msgreq).

where :

Nlp
1
=
{
nbr(lp

1 , l
p
2), nbr(lp

1 , l
p
att)
}

;

Nlp
2
= {nbr(lp

2 , l
p
1), nbr(lp

2 , l
p
att)};

Nlp
3
= {nbr(lp

3 , l
p
att), nbr(lp

3 , l
p
4)};

Nlp
4
=
{
nbr(lp

4 , l
p
att), nbr(lp

4 , l
p
3)
}

;

Nlp
att
=
{
nbr(lp

att, l
p
1), nbr(lp

att, l
p
2),

nbr(lp
att, l

p
3), nbr(lp

att, l
p
4)
}

The initial knowledge K and the computational ability A
of the attacker are defined by the two sets {I1, I2, I3} and
{S 1, S 2, S 3, S 4, S 5}, respectively. The initial knowledge is the
same as in Section 6.3. The rules S 1, S 2, S 3, S 4 and S 5 are
specified as follows:

S 1.att(i)→ att(n[i])

Rule S 1 is the same as rule C1 in Section 6.3.

S 2. att
(
(reqp, xp

src, x
p
dest, x

p
ID, x

p
mac,Listp)

)
∧ att(yp

l)
→ att((reqp, xp

src, x
p
dest, x

p
ID, x

p
mac, [Listp, yp

l]))

Rule S 2 is the special case of rule C2 and says that the attacker
node can append any data it has to the end of the ID list em-
bedded in the request it receives. Pattern Listp represents an ID
list, which can be empty. The variables xp

src, xp
dest, xp

ID, and xp
mac

specify the ID of the source and destination node, the message
ID, and the message authentication code, respectively.

S 3. att((xp
l , repp, xp

src, x
p
dest, x

p
ID,Listp, xp

mac)) ∧ att(yp
l)

→ att((yp
l , repp, xp

src, x
p
dest, x

p
ID,Listp, xp

mac))

Rule S 3 is an another special case of rule C2 and
says that if the attacker receives a reply message
(repp, xp

src, x
p
dest, x

p
ID,Listp, xp

mac) addressed to node xp
l then

it can replace the node identifier at the beginning of the mes-
sage, which specifies the addressee, by an another identifier yp

l .
This rule intend to model that the attacker can forward the reply
in the name of another nodes.

S 4. att
(
reqp, xp

src, x
p
dest, x

p
ID,MAC req, [Listp, xp

prev]
)

∧nbr(lp
att, x

p
dest) ∧ nbr(xp

dest, l
p
att)

∧nbr(xp
dest, x

p
prev)

p,i10
−→

att
(
(xp

prev, repp, xp
src, x

p
dest, x

p
ID, [Listp, xp

prev],
MAC rep

1), honest
)
.

where MAC req is

mac((repp, xp
src, x

p
dest, x

p
ID, k(xp

src, x
p
dest))

and MAC rep
1 is

mac
(
(repp, xp

src, x
p
dest, x

p
ID, [Listp, xp

prev]), k(xp
src, x

p
dest)
)
.

Rule S 4 is the special case of rule C3
4 concerning the case when

the destination node and the attacker node are neighbors of each
other. In this special case Verif f acts

att is nbr(xp
dest, x

p
prev) that mod-

els the verification step in which the destination checks if the
last ID in the ID list belongs to its neighbor.

S 5.att
(
(p

src, repp, xp
src, x

p
dest, x

p
ID, [xp

next, Listp],

MAC rep
2), s

)
∧ nbr(lp

att, x
p
src) ∧ nbr(xp

src, x
p
next)

p,i11
−→ routeok(advr).

where MAC rep
2 is

mac
(
(repp, xp

src, x
p
dest, x

p
ID,Listp), k(xp

src, x
p
dest)
)
.

Rule S 5 is the special case of rule C4
4 concerning the case when

the source node is a neighbor of the attacker node.
The most important protocol rules that we use in this demon-

stration are the rules Rreq
1 , Rreq

2 and Ratt
1 :

Rreq
1 = route(xp

src, x
p
dest)

p̃,i1
−→

wm(reqp, xp
src, x

p
dest, ID,

mac((reqp, xp
src, x

p
dest, ID, k(xp

src, x
p
dest)), [])

Rule Rreq
1 models the scenario when the source node xp

src creates
and broadcasts the request message(

reqp, xp
src, x

p
dest, x

p
ID,

mac
(
(reqp, xp

src, x
p
dest, x

p
ID), k(xp

src, x
p
dest)
))
.

Rreq
2 = wm

(
(reqp, yp

src, y
p
dest, y

p
ID, y

p
mac, [])

)
∧

nbr(yp
src, y

p
lx

)
p,i2
−→

wm
(
(reqp, yp

src, y
p
dest, y

p
ID, y

p
mac, [y

p
lx

])
)

Rule Rreq
2 says that if the route request message is broadcasted

by the source node then the honest neighbors of the source node

Secure ad-hoc network routing protocols using deductive model-checking 412011 55 1-2

receive the request and they append their own identifier to the
request and re-broadcast the modified request.

Ratt
1 = wm

(
(reqp, yp

src, y
p
dest, y

p
ID, y

p
mac, [Listp, yp

prev])
)

∧ nbr(yp
prev, l

p
att)

p,i6
−→

att
(
(reqp, yp

src, y
p
dest, y

p
ID, y

p
mac, [Listp, yp

prev])
)

Rule Ratt
1 says that if a route request message is broadcasted by

an intermediate node and the attacker node is its neighbor then
the attacker intercepts that request. Listp is a pattern that repre-
sent a list of node identifiers, which can be empty.

Fig. 3. This part of the derivation tree describes the resolution steps that
represent the propagation of the request message from the source node lp

1 to
the attacker node lp

att .

The derivation of one possible attack against the SRP pro-
tocol is modelled by derivation trees shown in the Fig. 3 and
Fig. 4. Fig. 3 describes the propagation of the request message
from the source node lp

1 to the attacker node lp
att via the interme-

diate node lp
2 . First, the resolution route(lp

1 , l
p
3) ◦route(xp

src,x
p
dest)

Rreq
1

is computed. With the unifier σ1,

σ1 = {x
p
src ← lp

1 , x
p
dest ← lp

3 }route(lp
1 , l

p
3)

◦route(xp
src,x

p
dest)

Rreq
1

yields the fact

wm((reqp, lp
1 , l

p
3 , ID,mac((lp

1 , l
p
3 , ID), k(lp

1 , l
p
3)), [])),

which is then resolved with Rreq
2 and yields the rule R1

tmp:

R1
tmp = nbr(lp

1 , y
p
lx

)
p,i2
−→

wm
(
(reqp, lp

1 , l
p
3 , IDp,mac((lp

1 , l
p
3 , ID), k(lp

1 , l
p
3)), [yp

lx
])
)

where the unifier σ2 of the above resolution is

σ2 = {y
p
src ← lp

1 , y
p
dest ← lp

3 , y
p
ID ← ID,

yp
mac ← mac

(
(reqp, lp

1 , l
p
3 , ID), k(lp

1 , l
p
3)
)
}.

Afterwards, the facts in the set Nlp
1

are resolved with
R1

tmp. The resolution nbr(lp
1 , l

p
2) ◦nbr(lp

1 ,y
p
lx

)R1
tmp with

the unifier σ3, σ3 = {yp
lx
← lp

2 } yields the fact
wm((reqp, lp

1 , l
p
3 , ID,mac((lp

1 , l
p
3 , ID), k(lp

1 , l
p
3)), [lp

2])). Intu-
itively, this means that node lp

2 received the request message
broadcasted by lp

1 , and then lp
2 appends its identifier to the

request and re-broadcasts it.
The following resolution steps model the case when the at-

tacker node intercepts the request broadcasted by node lp
2 :

The resolution

wm((reqp, lp
1 , l

p
3 , ID,mac((lp

1 , l
p
3 , ID), k(lp

1 , l
p
3)), [lp

2])) ◦F Ratt
2

where F is

wm
(
(reqp, yp

src, y
p
dest, y

p
ID, y

p
mac, [Listp, yp

prev])
)

and the the unifier

σ4 is σ2 ∪ {Listp ← [], yp
prev ← lp

2 }.

As the result we get the rule R2
tmp:

R2
tmp = nbr(lp

2 , l
p
att)

p,i6
−→

att
(
(reqp, lp

1 , l
p
3 , ID,mac((lp

1 , l
p
3 , ID), k(lp

1 , l
p
3)), [lp

2])
)

Finally, the algorithm searches for the fact nbr(lp
2 , l

p
att)

in the set Nlp
2
. When nbr(lp

2 , l
p
att) is found the resolution

nbr(lp
2 , l

p
att)◦nbr(lp

2 ,l
p
att) R2

tmp is computed, which yields the fact

att
(
(reqp, lp

1 , l
p
3 , ID,mac((lp

1 , l
p
3 , ID), k(lp

1 , l
p
3)), [lp

2])
)
.

Fig. 4 describes the behaviour of the at-
tacker node after intercepting the message
(reqp, lp

1 , l
p
3 , ID,mac((lp

1 , l
p
3 , ID), k(lp

1 , l
p
3)), [lp

2]): First, the
attacker creates a fake identifier n[i] by rule S 1. Afterwards,
the fake identifier is appended to the ID list [lp

2], this step is
modelled by the two resolutions

att
(
(reqp, lp

1 , l
p
3 , ID,mac((lp

1 , l
p
3 , ID), k(lp

1 , l
p
3)), [lp

2])
)

◦F S 2 and att(n[i]) ◦att(yp) R3
tmp

where R3
tmp is the result of the first resolution.

Thereafter, the attacker appends the identifier lp
4 to the list

[lp
2 , n[i]]. This is modelled by the two resolutions

att
(
(reqp, lp

1 , l
p
3 , ID,mac((lp

1 , l
p
3 , ID), k(lp

1 , l
p
3)),

[lp
2 , n[i]])

)
◦F S 2 and att(lp

4) ◦att(yp) R4
tmp

where R4
tmp is the result of the first resolution.

We note that att(lp
4) is an element of the set I1 that is a part of

the initial knowledge of the attacker node.
Then the attacker node broadcasts the modified request,

which is received by the destination node lp
3 . The destination

node accepts the message sent by the attacker node and gener-
ates the reply message. Afterwards, the destination node sends

Per. Pol. Elec. Eng.42 Levente Buttyán / Ta Vinh Thong

Fig. 4. The behaviour of the attacker node after intercepting the message

(reqp, lp
1 , l

p
3 , ID,mac((lp

1 , l
p
3 , ID), k(lp

1 , l
p
3)), [lp

2]).

back the reply to the node lp
4 , which is overheared by the attacker

node. This step is modelled by the resolutions involving the rule
S 2. On receiving the reply the attacker replaces lp

4 by lp
1 . This

step is modelled by the resolution steps involving the rule S 3.
Finally, the attacker node forwards the reply to the source node
in the name of the node lp

2 . This step is modelled by resolutions
using the rule S 5.

7 Conclusion
We argued that designing secure ad-hoc network routing pro-

tocols requires a systematic approach which minimizes the num-
ber of mistakes made during the design. To this end, we pro-
posed a formal verification method for secured ad-hoc network
routing protocols, which is based on a novel process calculus
and a deductive proof technique. Our method has a clear syntax
and semantics, and it can be fully automated; this latter being a
distinctive feature among other formal approaches for verifying
secure ad-hoc network routing protocols.

The work described in this paper is work in progress, and we
are currently extending it in many ways. The two most impor-
tant future work items are (i) the development of a fully auto-
mated protocol verification software tool based on the theoret-
ical foundations described in this paper, and (ii) the extension
of the described verification method to handle arbitrary network
topologies and arbitrary number of attacker nodes.

References
1 Godskesen J Chr, A Calculus for Mobile Ad Hoc Networks, COORDINA-

TION, 2007, pp. 132-150.
2 Singh A, Ramakrishnan C R, Smolka S A, A process calculus for Mobile

Ad Hoc Networks, Sci. Comput. Program. 75 (2010), no. 6, 440–469, DOI
10.1016/j.scico.2009.07.008.

3 Buttyán L, Vajda I, Towards provable security for ad hoc routing protocols,
SASN ’04: Proceedings of the 2nd ACM workshop on Security of ad hoc and
sensor networks, 2004, pp. 94–105, DOI 10.1145/1029102.1029119.

4 Milner R, Parrow J, Walker D, A calculus of mobile processes, parts I and

II, Information and Computation (September 1992).
5 Abadi M, Gordon A, A calculus for cryptographic protocols: the Spi calcu-

lus, SRC RR 149, January, 1998.

6 Hu Y.-C., Perrig A, A Survey of Secure Wireless Ad Hoc Routing, IEEE
Security and Privacy 2 (2004), no. 3, 28–39.

7 Todd R A, Yasinsac A, Automated Evaluation of Secure Route Discovery in

MANET Protocols, SPIN ’08: Proceedings of the 15th international workshop
on Model Checking Software (2008), 26–41.

8 Marshall J D, Xin Yuan, An Analysis Of The Secure Routing Protocol For

Mobile Ad Hoc Network Route Discovery: Using Intuitive Reasoning And

Formal Verification to identify flaws, THE FLORIDA STATE UNIVERSITY,
2003.

9 Blanchet B, Automatic Proof of Strong Secrecy for Security Protocols,
IEEE Symposium on Security and Privacy, May 2004, pp. 86–100, DOI
10.1109/SECPRI.2004.1301317.

10 Fournet C, Abadi M, Mobile Values, New Names, and Secure Communica-

tion, In Proceedings of the 28th ACM Symposium on Principles of Program-
ming, POPL’01 (2001), 104–115.

11 Ács G, Buttyán L, Vajda I, Provable security of on-demand distance vector

routing in wireless ad hoc networks, In In Proceedings of the Second Eu-
ropean Workshop on Security and Privacy in Ad Hoc and Sensor Networks
(ESAS 2005 1 (2005), 113–127, DOI 10.1007/11601494_10.

12 Ács G, Buttyán L, Vajda I, Provably Secure On-demand Source Routing

in Mobile Ad Hoc Networks, IEEE Transactions on Mobile Computing 5
(2006), no. 11, DOI 10.1109/TMC.2006.170.

13 Ács G, Buttyán L, Vajda I, The security proof of a link-state routing pro-

tocol for wireless sensor networks, IEEE Workshop on Wireless and Sensor
Networks Security 1 (2007), DOI 10.1109/MOBHOC.2007.4428765.

14 Papadimitratos P, Haas Z J, Secure Routing for Mobile Ad Hoc Networks,
Networks and Distributed Systems Modeling and Simulation (2002).

15 Johnson D, Maltz D, Dynamic source routing in ad hoc wireless networks.,
Mobile Computing 1 (1996), DOI 10.1007/978-0-585-29603-6_5.

16 Buttyán L, Thong T V, Formal verification of secure ad-hoc network

routing protocols using deductive model-checking, Technical Report (2010),
http://www.crysys.hu/tvth/adhocTechreport2010.pdf.

17 Godskesen J Chr, A Calculus for Mobile Ad-hoc Networks with Static Lo-

cation Binding, Electron. Notes Theor. Comput. Sci. 242 (2009), no. 1, 161–
183, DOI 10.1016/j.entcs.2009.06.018.

18 Wibling O, Parrow J, Pears A, Automatized verification of ad hoc rout-

ing protocols, Formal Techniques for Networked and Distributed Systems
FORTE 1 (2004), 343–358, DOI 10.1007/978-3-540-30232-2_22.

19 Saksena M, Wibling O, Jonsson B, Graph grammar modeling and verifi-

cation of ad hoc routing protocols 1 (2008), DOI 10.1007/978-3-540-78800-
3_3.

20 Jin Song Dong, Jun Sun, Yang Liu, Tutorial: Introduction to PAT Frame-

work, The 17th International Symposium on Formal Methods (2011).

Secure ad-hoc network routing protocols using deductive model-checking 432011 55 1-2

http://www.crysys.hu/tvth/adhocTechreport2010.pdf

	Introduction
	The SRP protocol and an attack on it
	Related works
	Our calculus
	Syntax
	Semantics
	Labelled bisimilarity in context of wireless ad-hoc networks and attacker's knowledge base

	Application of our calculus
	On automating the verification
	From the process calculus to Horn-clauses
	Generating protocol clauses
	Knowledge and computation ability of the attacker
	Deductive algorithm
	Derivability and derivation tree
	Application of our automatic verification method

	Conclusion

