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Received 2011-03-01

Abstract
In this paper we discuss an approach for achieving high adap-

tivity in complex dynamic environments through learning. Un-
like in traditional approaches, where adaptive systems need
to be strongly equipped with knowledge about their environ-
ment and possible adaptation strategies, we propose a direction
where the level of original preconceptions is kept low. In our
model, both the knowledge and the strategies emerge dynami-
cally and flexibly, during the system’s normal operation. The
proposed model also includes a mechanism that systematically
replaces old preconceptions with more accurate ones (e.g. to
observe new features). The proposed principles were evaluated
in a theoretical world via simulation; where the adaptive system
was challenged to win an amoeba game against opponents with
different strategies, and changing game rules (3-7 long series
required to win).
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Dávid Lányi

Department of Telecommuncations, BME, H-1117 Budapest, Magyar tud. krt.
2, Hungary

1 Introduction
Adaptive systems possess the ability of adjusting themselves

to the changes of the environment by fine-tuning their opera-
tional parameters or altering their behavioral strategy according
to the observed situation. Typically, adaptive systems use a feed-
back loop to achieve this: observe the actual state of the world,
determine the best action to do, and carry out the action [5].
Compared to traditional control systems, an immense difference
is that in adaptive case there is no preferred setting to find-the
world, so the adaptation target changes from time to time, and
the system must follow it, accordingly.

A traditional approach for achieving adaptivity is to maintain
a world model, detect when changes occur, and explicitly start
an adjustment process within the feedback loop. Powerful tools
like reasoning, semantics and ontology guarantee that the adap-
tation is effective and convergent [2, 7, 8]. However, the success
of this approach largely relies on the accuracy of the system’s
explicit knowledge: on the completeness of the world model and
on the efficiency of built-in adjustment mechanisms. As long as
environmental changes are in line with this knowledge, the sys-
tem is guaranteed to adapt efficiently; but it is theoretically im-
possible to react to changes that were not handled by the world
model, or to select adjustment strategies that were not encoded
previously. In other words, preconceptions that make the adap-
tation fast and effective in some cases form an impenetrable ob-
stacle in others. The adaptation potential of the system is highly
restricted by these hard preconceptions [3].

Our first research question was if the burdens of this explicit
knowledge can be avoided, in order to unbind the learning pro-
cess, and let the system openly find its way for adaptation (in-
stead of blindly following what scientist told it to do). Openness
is a goal on several layers: an open and flexible world model
which is free of hard preconceptions (e.g. the initial precon-
ceptions may be refined or removed based on the perceived evi-
dence); open adaptation strategy building where the system de-
velops behavioral directions itself from simple building blocks
instead of picking one of the injected preconceptional strategies;
and, finally, social-communicational openness, to share knowl-
edge with others and make use of the presence of multitude of
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learners. An extremity of such an open system is one without
any pre-injected model or strategy, an idea which tackles with
dimensions yet unknown in dynamic adaptation.

The topic described above obviously includes learning: we
proposed a system that not only adapts but also learns how to
adapt. However, in case of an adaptive system, it is usually not
easy or even not possible to gather feedback about the goodness
of each action – usually, the system senses failure and reward
situations but anything else is in a grey cloud. Hence, the learn-
ing model must handle the lack of continuous feedback, which
leaves only a few options for methodology choice.

Most of today’s learning based adaptive systems differenti-
ate between learning time and operation time. At learning time,
excessive simulations are used for finding an optimal param-
eter and strategy setting; while at operation time, this ’opti-
mal’ setting is applied without further modification. The learn-
ing phase often includes soft computing methodologies such as
genetic algorithms [6]. The main problem of this approach is
that the learning phase uses simulation (models the response of
the world), and if this model is inaccurate or the world simply
changes meanwhile, then the learned results will not be effective
in the real environment. Another bottleneck is that the learning
phase is separated from the system’s normal operation.

Our aim was to create/use a learning model which provides
seamless adaptation, and adapts to the real, actual problem case
instead of a simulated problem case. Learning must take place
during – and throughout – the system’s normal operation, ready
to react to changes at any time. As a consequence, the real re-
sponse of the real world is available after each action, so the
system needs much less to guess or simulate.

In this paper we discuss further details of the knowledge-
poor open adaptation model, originally published in [9]. The
model is called knowledge-poor because the level of explicit,
pre-injected modeling is kept very low. In this paper we investi-
gate the model from three new aspects.

• Optimization: we propose a novel mechanism that helps in
keeping the knowledge optimized, both in means of memory
space and in means of descriptive power and convergence.
This mechanism also enables the agent to develop new ob-
servation viewpoints which contribute to a better – less re-
dundant and smaller – world model and more speedy conver-
gence.

• Adaptation characteristics to different kind of changes: how
much the system is able to adapt to small changes, or, to com-
pletely new requirements.

• The social perspective: we investigate further aspects of the
knowledge sharing mechanism, specifically, the benefits and
drawbacks of the knowledge injection in light of the opti-
mized feature set.

The paper is organized as follows. Section 2 specifies the
problem space. Section 3 presents the basic model of the

knowledge-poor open adaptation. Section 4 introduces the
optimization mechanism that removes redundancy and failed
branches, gaining advantages in both calculation complexity and
in the speed of convergence. Section 5 tackles shortly with the
collective dimension of the learning. Section 6 describes further
general aspects and consequences. Section 7 summarizes the
results.

2 Problem statement
The problem space considered here is a world with actors who

observe their environment and make actions from time to time.
Certain states of the world mean reward to the actor who reaches
it, while other states result in penalty. We made the following
restrictions.

• Limited information. Actors use a rough, simplified world
model (instead of a fully observable complete one). At
startup, they have no preconceptions about rules, require-
ments or strategies available. Furthermore, the observation
ability of actors is limited as well: they may not gather in-
formation about all possible aspects of the complete world. –
typically they are able to observer their direct neighborhood
along some built-in or developed perspective.

• Time series model. We focus on scenarios which can be de-
scribed in means of discrete time-steps (from our actor’s point
of view). In each logical time step, either our actor or the
other actor(s) make an action. (For the sake of generality, a
pseudo-actor may be used for modeling those changes in the
world that were not caused by the real actors.) In order to
keep things simple, the actor "knows" when it is its turn.

• Dynamic goals. The environment is not only dynamic be-
cause of the effect of other actors; but also in means of the
goal to reach (general requirements or rules). In our model,
the rules may dynamically change from time to time. Please
note that this is a realistic requirement in many real-life sce-
narios, e.g. when the meta-goal is to make the human user
happy, and the human’s intentions or habits change from time
to time.

• No information injection. Actors get known with the actual
requirements only implicitly, through the received reward or
penalty. Feedback (reward or penalty) may be provided for
the actor after it performs an act, and this reward does not
merely refer to the least action but to the state the step re-
sulted. Typically, feedback is only received rarely, so, actors
need to decide about their steps without knowing the effect of
the previous ones.

• Collectiveness. The problem space is not limited to the level
of single actors. We allow single actors to communicate with
others, and share/accept knowledge.

While numerous concrete problem instances can be imag-
ined satisfying the above specification; we choose a showcase
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in which the basic abilities of the system can be demonstrated
and efficiently evaluated. This is actually a generalization of
a simple two-player, deterministic, fully observable, zero-sum
board game, often known as connect-5, gomoku, or amoeba.

2.1 Inspiration: The Connect-5 game
Connect-5 is a simple board game, an extension of tic-tac-toe

for bigger sized boards and longer combinations. There are two
players in the game, one with mark X and the other one with
mark O. The game starts with a board of tabular arranged empty
square cells. Players make steps intermittently; each one places
their mark onto an empty cell. A player wins the game, if five
of his signs are placed consecutively in one row, column, or in
a diagonal line on the board. When a player wins, the other one
looses. Tie is reached, if the board has no more empty cells, but
no one has won.

More formally, the state of the game is represented by the
board itself (cells and their contents). The transition between
states is the action of an actor, and the game is basically a time
series of game states. Only one actor is allowed to perform ac-
tion in each particular state. The action is mandatory, so if there
is an empty cell on the board, the upcoming actor must act. Af-
ter each action, the new state is evaluated by the environment,
and if winner or tie state is reached, actors receive feedback.

Actors are able to observe a rough model of the actual en-
vironment at any time; and are also able to receive feed-back
about winning/losing/tie state. They also may accumulate a lo-
cal knowledge base from these observations. The goal of the
actor is to find a strategy (actions) that leads to a winning state,
while the environment is dynamically modified by the opponent
from time to time.

2.2 Problem instance: a Generalized Connect-5 World
While the basic Connect-5 world incorporates several impor-

tant properties of our problem space, we decided to generalize it
in order to include further aspects of dynamism and collective-
ness.

• Collectiveness. Instead of a single actor-opponent pair, the
world consists of a society of players, engaged in multitudes
of parallel games. The members of the society are still au-
tonomous actors – with individual experience, strategy and
decision ability –, but they also possess the ability of com-
municating with each other. Actors may share their expertise
with other actors, or learn from others’ shared knowledge.
Please note that it is not guaranteed that the members of the
society face the same problem instance – e.g. same opponent
style or the same rules – nor do we say that the knowledge
of any individual agent is guaranteed to be of help for others.
However, the pure ability of sharing one’s dynamically built
knowledge is an important attribute for a collective system,
also from the theoretical point of view. Pair-wise knowledge
sharing may also – but not necessarily – lead to the emergence
of society level "common knowledge".

• Dynamic opponent style and strength. The strategy, good-
ness and consistency of the opponent may change over time,
resulting in dynamically changing environ mental require-
ments from the actor’s point of view. Extremities may be a
random opponent (just picking random steps), and an ana-
lytically optimal opponent (who chooses the mathematically
optimal strategy for the actual game state and rule set).

• Changing game rules. We also allow the game rules to be
changed dynamically during the actor’s life cycle. For exam-
ple, the competitive aspect may be removed, so, the player
gets rewarded for their own 5-long series regard less of the
other player’s moves. Another way of changing the rules is
to modify the length of the required series: e.g. 4 or 10 items
long series may mean victory.

We believe that this generalized Connect-5 world fits with the
problem space specification well. The states of the world form
a time series. Actors are able to observe the world’s state and
perform actions. They may receive feedback from the environ-
ment in certain states. The world changes because of the actor’s
action or because of factors that are outside of the actor’s con-
trol (e.g. opponent’s action). Besides the above, we also made
the assumption that the actor has no pre-injected knowledge of
the rules of the world or about the goal to reach – it has to reach
(positive feedback) game states by ’learning by doing’. This
may seem to be a selfish requirement under static conditions
(where explicit world modeling could result in optimal behavior
from the startup), but our goal here is to ensure the openness
of the system and its dynamic adaptation ability for immensely
new requirements set by the dynamically changing environment
(e.g. changing game rules).

The state space in the showcase example – supposing a lim-
ited board size – is finite. However, we do not think this makes
the showcase too week or inappropriate, as the observation abil-
ity of an agent is finite by definition too (so any board size larger
than the player’s vision would work as infinite), and the math-
ematical model we use for learning can be easily extended for
non-binary (multi-value or even continuous interval) cases too.

In summary, the agent’s job is to learn the dynamically chang-
ing rules of the world through a feedback mechanism in order to
select actions that lead to success; plus, to do this on-the-fly,
without having had any pre-injected knowledge or preliminary
training session; and possibly in a collective manner (by knowl-
edge sharing).

3 The basic learning model
This section describes the basic learning and adaptation

model used within the open autonomous agents. The model
combines known basic models (Markov Decision Process and
Temporal Difference Learning) with specific extensions.
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3.1 Starting point: Markov Decision Process
The inspiration of our model comes from reinforcement

learning (RL), a general approach that tackles with problems
very similar to our problem statement. RL is not one specific
mechanism but a dynamically improving domain of machine
learning models. A common approach [1, 12] focuses on find-
ing actions in an actual world state, in order to achieve a goal
desired in that context. It is assumed, that an agent complet-
ing this task is able to sense the environment to some extent, is
able to perform actions which influence that state, and is able to
receive feedback from the environment about its success.

A widely used mathematical model describing reinforcement
learning problems is the Markov Decision Process (MDP). It is
defined as a five-tuple (S, A, R, P, γ), where S is the set of world
states, A is a set of actions, P is a state transition probability
function P : S × A × S 7→ [0, 1], (where P(s′, a, s) tells the
probability of reaching state s′ after performing action a in state
s), R is the reward function R 7→ R, and γ is a discount factor
from interval (0, 1]. It’s important to note that the observation
capacity of the agent is limited; hence, the state observed may
significantly differ from the real world state. At this stage, S
refers to the real world state (later, it will be replaced by the
agent’s perception).

RL models are often equipped with value functions and poli-
cies to help making automatic decisions. We follow the termi-
nology and notation of [4]. There is a value function defined for
states which is able to better describe the real utility of a state
than the reward function itself (which would only tell whether
state is terminal). The value function is associated with a policy
π, which is a mapping from states to actions, π : S 7→ A. A
value function for a given policy, Vπ : S 7→ R is defined as the
expected discounted sum of rewards received when starting (in
t=0) from state s, and following policy π:

Vπ(s) = E

 ∞∑
t=0

γtR (st)
∣∣∣ s0 = s, π


It can be shown [10] that this value function satisfies Bell-

man’s equation, and may be expressed in the following way:

Vπ(s) = R(s) + γ
∑
s′∈S

P(s′, aπ, s)Vπ(s′)

If the reward function R and transition probability function
P are both known, this formula can be analytically solved as a
linear system. However, in most RL settings – including our
case – the probability function P is not known; the agent only
has access to a subset of state transitions (own experience) and
to the feedback coming from the reward function.

To limit the size of |S | – to keep computations on an easy-
to-handle level –, often, estimations or approximations are used
instead of exact models or values.

We also introduced a feature extraction step between the raw
perceived state and the state principle used within the model.
Feature extraction helps highlighting important properties of a

state, by preprocessing the raw observation be-fore learning.
The exact realization of this feature extraction step is an impor-
tant attribute of the agent, as the extracted information deeply
influences the learning process. In the basic model, the feature
extraction mechanism is wired-in (and this is all the knowledge
– even though being implicit, we call it knowledge – the agent
gets at startup). In general versions of the model, features may
be introduced or removed on the fly.

In means of terminology, a feature based linear approximator
[10] for the value function is defined as:

Vπ(s) ≈ wTφ(s)

where φ ∈ Rk is a feature vector based abstraction belonging to
the state s, and w ∈ Rk is a parameter vector.

While the usage of feature vectors was originally suggested in
order to keep the computational complexity under control and
to be able to deal with large or even infinite state spaces, we
use it for two other purposes, respectively: (a) to facilitate con-
vergence with the selection and usage of relevant and meaning-
ful features, and (b) to bring openness into the model through
the possibility of dynamically adding and removing features –
hence refreshing the implicit world mo-del of the agent.

With these approximations we lose the applicability of Bell-
man’s equation, but there are other efficient ways for finding the
solution, such as the LSTD.

3.2 Least-Squares Temporal Difference Method
The Least-Squares Temporal Difference (LSTD) algorithm

provides way for finding a parameter vector w that approxi-
mately satisfies Bellman’s equation. Without the full deduction
of the method discussed in [4,11] and recalled in [10] we denote
the main formulae, and review it from the aspect of our setting.
LSTD attempts to find a fixed point of the approximation

w = f̃ (w) = argminu∈Rk ||Φu − (R̃ + γΦ′w)||2

in which Φ and Φ′ are matrices containing m samples of ob-
served state transitions from s to s′ in their rows, represented
with Φ(s)T and Φ(s′)T in each row; R̃ is a vector containing the
obtained reward ri for each of the m transitions. Because the
term to be minimized contains Euclidian norms only, the op-
timal fixed point can be analytically determined by solving a
linear system Ã−1b̃, where

Ã =
m∑

i=1

φ(si)
(
φ(si) − γφ(s′i)

)T ; b̃ =
m∑

i=1

φ(si)ri

In other words, the only knowledge required by the agent for
selecting the desirable next state is only a vector (b) and a matrix
(A).

• Vector b gives a picture about the perceived goodness of each
state, based on the total (positive or negative) reward experi-
enced there.
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• Matrix A describes the experienced state transition pairs.
Transitions model the effect of the agent’s action along with
the effect of the opponent’s action, in one unit. The discount
factor helps in distinguishing between states immediately pre-
ceding an end state and states that are far away. Please note
that this abstraction does not include any preconception about
the number or nature of opponents, so the model is also ap-
plicable for n > 2 players.

From our point of view, the most important property of vector
b and matrix A is that they can be constructed iteratively; each
new experience means a minor addition to them.

The agent may use two different approaches for translating
the knowledge (matrix A, vector b) into an action:

• Calculate the expected effect of each possible action, and se-
lect the most desirable one based on the value of the result
state. (If the number of actions is too large – or infinite –,
a sampled subset of the possible actions may be used, with
hierarchical refinement.)

• Analytically identify the most desirable result state and then
search for an action that leads to it. This approach is more
problematic because (a) it is not guaranteed that the state
space is connected enough so an arbitrary end state can be
reached from the current state, and (b) transitions are not de-
terministic because of the effect of the opponent, so we may
end up in a very different end state than desired.

We used the approach (1) in the model.

3.3 The model
Our open adaptation model uses an extended version of

LSTD. The world model of the agent is directly incorporated in
the matrix A and vector b, and indirectly in the feature extrac-
tion mechanism. The decision making uses LSTD’s maximum
likelihood decision maker. In each turn, the agent evaluates two
things: the provisory effect of its own action (the value of the
reached state) and the provisory effect of all the actions of other
agents.

The extensions we made on LSTD are the followings:

• Dynamic features. The feature extraction mechanism is not
static, new features may be added or removed at runtime.
(When the feature set changes, A and b get modified accord-
ingly – rows/columns are added or removed.)

• Knowledge optimiztaion. We created a systematic opti-
mization algorithm which removes redundancy and failed
branches from the agent’s knowledge. This algorithm reduces
the size of A and b, as well as the feature extraction logic, au-
tomatically.

• Collective layer. We added a collective layer, enabling agents
to exchange and combine their knowledge (A, b).

4 Knowledge optimization
The number and goodness of features is a key factor in the

convergence speed of the agent’s knowledge. Too many fea-
tures cause the calculations to be computationally costly. Irrel-
evant features increase the computational cost and may hinder
the convergence by pointing out false directions for the agent to
follow. Redundant features increase the computational cost and
may hinder the convergence too (e.g. if they are not strongly
connected on the lowest observation level). Constant zero fea-
tures, which describe aspects that never occur in practice, also
waste the computational energy. It may also happen that a fea-
ture is useful for the model and helps at decision points, but the
totality of the features together is not optimal (e.g. too much
redundancy).

We propose an automatic knowledge optimization mecha-
nism that helps transforming the set of observable features and
the knowledge itself into a format that is better in means of con-
vergence and, at the same time, is computationally cheaper to
handle. The optimization mechanism is based on three sub-
mechanisms:

• Feature extraction: a mechanism to re-organize features so
that they get more useful for learning. By usefulness we
mean that they depict more informative properties (e.g. com-
bination of simple features); or, the feature set as a whole is
less redundant (each feature refers to a different aspect of the
world instead of co-referring to the same aspect many times).

• Feature removal: features that are of no help are removed.

• Feature generation: a mechanism to create completely new
features. The difference between feature extraction and fea-
ture generation is that the former works from the current fea-
ture set while the latter is independent of that.

Another important element of the optimization mechanism is
the triggering: when to start the optimization, in order to make
sense and not harm.

4.1 Feature extraction
Feature extraction is rather a purpose than a tool, it is a com-

mon name for several, often really unsimilar methods that all
serve the same goal: to make the set of features better. Fea-
ture extraction typically analyzes the original features by taking
a representative sample from the data and analyzing the feature
matrix of this sample. In the feature matrix, each row refers
to one line of data, and each column refers to one feature (e.g.
m(i, j) means the jth feature of the ith data sample).

Traditional feature extraction techniques cannot be applied to
our model directly, because we do not collect data samples.

On the other hand, we do collect a more sophisticated extract
from the world states: the state transition matrix A. We decided
to use A as the basis of feature extraction.

Traditional feature extraction techniques include autocorre-
lation analysis, Singular value Decomposition, Principal Com-
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Algorithm 1 Feature extraction. The optimization algorithm first identifies the correlation groups, and then replaces the original
features in the group with a single combined one. This means, that both the feature calculation logic (which determines what are
the feature values for a given worlds state), both vector b and matrix A need to be updated.
1 Find correlation groups in A. Greedy algorithm:

1.1 For each row i in A:

1.1.1 If i is already assigned to a correlation group, then continue with the next i.

1.1.2 Create a new correlation group Gi. Put i into Gi.

1.1.3 For all rows j > i:

If j is already assigned to a group, then continue with the next j.

If (for each row r in Gi: corr(A[r],A[j]) > CORRELATION_LIMIT), then put j into Gi.

1.1.4 If the cardinality of Gi is below 2 then throw Gi away.

2 For each correlation group, update the feature calculation logic.

2.1 For each rowId in the group: remove the corresponding feature from

the feature calculator logic.

2.2 Add a new feature which is the combination of the original (removed) features.

We used the average function as the combination operator.

f[new] = g(f[rowId1], f[rowId2],.. f[rowIdn])

3 For each correlation group, update the b vector.

3.1 For each rowId in the group: remove the corresponding value from b.

3.2 Add a new value which is the combination of the original (removed) values.

We used the average function as the combination operator.

b[new] = g(b[rowId1], b[rowId2],.. b[rowIdn])

4 For each correlation group, update the A matrix.

4.1 For each rowId in the group: remove the corresponding row from A.

4.2 Add a new row which is the combination of the original (removed) rows.

We used the average function as the combination operator.

A[new] = g(A[rowId1], A[rowId2],.. A[rowIdn])

4.3 For each rowed in the group: remove the column from A.

4.4 Add a new column which is the combination of the removed columns. For each row i:

A[i,new] = g(A[i,rowId1], A[i,rowId2],.. A[i,rowIdn])

ponent Analysis and other techniques that are good, but have
certain computational cost.

We decided to use a simpler, cheaper, and more intuitive
methodology: the filtering of correlation groups.

The algorithm is based on the observation that in a well
trained agent, the rows of the matrix A seem often to be very
similar to each other. We used correlation to describe this simi-
larity:

corr(A[i], A[ j]) =
cov(A[i], A[ j])
σA[i]σA[ j]

=

E[(A[i] − µA[i])(A[ j] − µA[ j])]
σA[i]σA[ j]

where A[i] means the ith row of A, cov is the covariance operator,
E is the expected value operator, µ denotes the expected value
and σ denotes the standard deviation.

Correlation group in matrix A is a set of rows whose pair-
wise correlation is very high.

The optimization algorithm has O(n3) computational cost and
O(n2) space cost where n is the number of original features.
Please note that the matrix A contains n2 values so it is impos-
sible to process its contents in less than O(n2) times. The most
significant factor in the computational complexity is the 1st step.

The feature extraction influences the feature count, hence, and
the size of A and b. Each correlation group adds a new feature

and removes as many old features as the cardinality of group.
If FC denotes the feature count, |x| means the cardinality of a
group, then the feature count can be calculated as follows:

FCnew = FCold + |G| −
∑
|Gi|

4.2 Feature removal
Please note that both the horizontal and the vertical usefulness

needs to be taken into account. Otherwise, we would mistakenly
remove features that occur in reward states, so are on the end
side of an action. For these features, the row corresponding to
them will remain unfilled forever, but the corresponding column
is in active use.

4.3 Feature generation
Our work on systematic feature generation is not detailed

in this paper. We used template generation and a shift-
ing/rotation/translation/reflection. Some experiment also in-
cluded the usage of an extended Dynamic Time Warping (DTW)
model.

4.4 Triggering
The knowledge optimization needs a stable starting point, in

other words, a stable knowledge to optimize. If the optimization
is executed on a half-developed knowledge, it may not detect
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Algorithm 2 Feature removal. We propose a simple feature removal algorithm which removes those features that are never used.
1 For each row r in A: determine if it’s unnecessary

1.1 Count sum of values in the rth column (sum_vertical) and in the rth row (sum_horizontal).

1.2 If sum_vertical < USEFULNESS_LIMIT and sum_horizontal < USEFULNESS_LIMIT

then mark r as unnecessary.

2 For each unnecessary row r: remove the corresponding row and column.

important redundancies or may detect false correlation groups
(due to the sparsity or unbalanced contents of A).

We propose to use a shifting window based self-evaluation
function in order to trigger optimization cycles. When the agent
feels that within the last few rounds its performance was stable,
it starts an optimization cycle.

5 Collective learning
Adaptivity is often required in distributed situations, where

autonomous building blocks of the system need to find their op-
timum locally, without central help or control. Collective adap-
tive systems make use of the connectivity of individual blocks
– through communication – in order to help converging faster
or globally better. In typical collective-adaptive system, there is
a common world model, shared by the members of the society.
The presence of an explicit world model facilitates the collective
behavior, as it provides a common and well-defined understand-
ing of the world and of possible strategies. However, in our ap-
proach, there is no clearly defined common world model to share
– each agent builds and optimizes its knowledge autonomously.

We defined a collective self-evaluation and expertise sharing
mechanism for the society of knowledge-poor adaptive systems
[9]. Knowledge sharing is realized as multitude of pair-wise
shares, in a self-organizing manner, without central control and
without stashing common knowledge centrally. The knowledge
sharing mechanism includes the following:

• Knowledge import model: a mechanism to integrate external
knowledge into the one’s own knowledge base.

• Self-evaluation mechanism: a metric for the agent to evaluate
the goodness of its knowledge in the actual environment.

• Sharing and acceptance mechanism: a mechanism that initi-
ates and controls knowledge sharing/acceptance. Participants
of the share – donor and acceptor – are autonomous elements,
so it is their free decision what, when and with whom to share
or accept.

For more details please refer to [9].

6 Discussion
This section discusses consequences, generalization direc-

tions and limitations of the pervious models.

6.1 Descriptive properties
The descriptive properties of the model were partially cov-

ered in Section 3: the model is suitable for problems where the

state of the environment changes from time to time and the ac-
tor is able to perform actions picked from a finite – or, when
approximation is acceptable, then even infinite – set of possi-
ble actions. Opponents and environmental rules are not directly
modeled within the agent’s knowledge, so the model is gen-
erally applicable for multi-actor situations. The learning pro-
cess is knowledge-poor, so, except for the initial features, the
agent does not need pre-injected knowledge. Learning happens
naturally, during the agent’s normal activity; which is in con-
trast with today’s popular adaptive system approaches, where
the learning phase precedes the phase of normal operation.

6.2 Interesting phenomena
A very important factor influencing the learnability of a prob-

lem is how well the actual problem case is presented, hence,
the behavior of the opponent. Opponents may significantly in-
fluence the convergence of the learning process, especially for
up-experienced agents. When playing against a dummy (e.g.
random) opponent, the agent easily spends significant amount
of time in irrelevant sections of the problem space – as none
of the players knows how to become successful. In case of a
strong opponent the agent learns fast what to avoid and, proba-
bly, also what to do to win (see section 6). It is an interesting
question whether the strongest opponent is the best, or it is more
optimal to learn against consequent but imperfect players. The
advantage of an imperfect opponent is that it leaves space for the
agent to learn how to correct errors and how to make use of the
other’s mistakes. We believe, and tests indicate, that the variety
of opponent styles leads to the best kind of know-ledge for static
and dynamic cases, respectively.

The agent’s own strategy may also hinder the emergence of
good knowledge. Too fast convergence in the knowledge may
be dangerous because it develops over-specialized strategies that
work well against the current opponent but may not help if the
environment changes. To avoid overspecialization, the agent
may choose prevention strategies, such as picking second-best
directions. Such a strategy leads to a better coverage of the prob-
lem space, which may be suboptimal in the current game, but
could help against future opponents with yet unknown strate-
gies.

The collective layer of the learning may become sensitive to
unbalances in the self-interpretation of the agent. An extreme
case is when the agent’s self-confidence is so low that its origi-
nal knowledge gets zero weight at knowledge import, meaning
that the imported knowledge replaces the receptor’s own knowl-
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edge (suppressive import). In this case the receptor becomes
the donor’s equal copy or clone. This may be desirable if the
imported knowledge is guaranteed to be of high value while the
knowledge of the receptor is clearly non-performing. However,
suppressive import may easily lead to a drastic drop in the pop-
ulation’s diversity which may become dangerous when the en-
vironment changes again.

7 Evaluation
Models were evaluated through simulation. This section in-

cludes the most important results about the standalone learning,
adaptation ability, and the collective dimension.

The standalone model was evaluated along two lines. First
we wanted to see, how efficient is the on-line learning ability in
the connect-5 world, with no initial experience, trained against
opponents with different strengths. In this setting, we also mea-
sured, how the self-evaluation mechanism performs compared
to an objective evaluator. After this we examined how trained
agents react to drastic environmental changes.

7.1 Adaptation with no initial knowledge

Fig. 1. Learning characteristics and self-evaluation vs. opponent style.

The experiment consisted of an adaptation phase and an ob-
jective evaluation phase.

1 First, the untrained agent plays 350 games against a fixed-
algorithm opponent, and uses its learning mechanism to
adapt. Win/lost/tie statistics were also collected here. We
evaluated five identical agents, each playing with a different
opponent, namely: one random player; and the four oppo-
nents with mathematically optimal strategies but with some –
15%, 10%, 1% and 0% – chance of making an error (failing
to choose the perfect action).

2 In the evaluation phase, learning was switched off in order to
get an unbiased picture about the knowledge of each agent.
Agents were allowed to use their existing knowledge, and
were evaluated by playing 100 games against the "perfect"
(0% failure rate) opponent, as an absolute measure. Their
preliminary self-evaluation (based on the training phase) was
compared to the actual measured strength. (Strength is de-
fined as the percentage of non-lost games.)

Columns in Fig. 1 visualize the outcome of the adaptation phase,
while the curves refer to the self-evaluated and objectively mea-
sured strength. Training results show that the number of games
won by the agent falls as opponents get stronger. Surprisingly,
the number of lost games does not increase with stronger oppo-
nents; instead, games tend to end more often with a tie. Evalua-
tion results indicate that the real gameplay strength is higher for
agents trained against stronger opponents. Please note, that al-
though the agent trained with the random player holds the lowest
strength, it could also fray out a tie in 17 percent of the games
against the strongest opponent. The difference between the self-
estimated strength and the actual strength is unexpectedly small,
expect for the divergent (random) training environemnt.

7.2 Adaptation potential to different changes

Fig. 2. Adaptation to changing rules (Connect-4 to Connect-5).

The second experiment examines the level of adaptivity to
world changes. We used a trained agent, which had a train-
ing session of 50 connect-4 games (a game with the same rules
as connect-5, except that the combination of four is enough for
the victory). Then, the agent had to play connect-5 against the
strongest opponent, without any notification or adjustment re-
garding the rule change. Fig. 2 shows that in the first 25 games
the agent had serious problems using the experience gathered
earlier, resulting in a defeat rate of almost 96 percent. Although,
after 50 games it could defend with 50 percent accuracy, and af-
ter 125 games, it reached almost the same strength level, as in
the previous on-line learning test. Tests with other rule change
schemes (C-5 to C-4, no compettiveness) brought similar re-
sults.

7.3 Knowledge optimization
Fig. 3 shows the difference between the default and the op-

timized knowledge. First, an agent with the default knowledge
was trained against a perfect opponent in 40 rounds (K1 agent,
54 features). Then, its knowledge was declared to be stable,
and, correlation groups and new complex features were identi-
fied. We trained an independent agent using the previously iden-
tified optimized features against the perfect opponent, again, in
40 rounds (K2 agent, 28 features). Finally, both K1 and K2
got evaluated with an offline opponent of 0.5 failure rate. It’s
clearly visible that the optimized features lead to faster conver-
gence, win more games than K2 and, furthermore, managed to
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Fig. 3. Evaluation of the optimized knowledge.

avoid lost situations completely.

7.4 Collective learning

Fig. 4. Collective effects (evaluated against the 100% opponent)

The collective dimension was evaluated along various as-
pects, here we present one. Differently trained agents got knowl-
edge injections, and then, got evaluated off-line. Listed com-
binations are: empty (untrained) acceptor + best trained donor
(trained with the strongest opponent), randomly trained acceptor
+ best trained donor, Connect-4 trained receptor + best trained
donor, and best trained acceptor + random donor. Fig. 4 shows
that knowledge injection had positive effects in all cases. This
is not surpising in the first three cases when the injected knowl-
edge was clrealy more accurate than the agent’s own. In the last
case, a good agent received "worse" knowledge, and still, this
helped it to gain winning which was out of question beforehand
(however, general strength dropped slightly). This effect can be
explained with the nonlinearity of the problem space.

8 Summary
We described an approach for an open learning, collective-

adaptive system where learning and adaptation emerge from
simple steps during the system’s normal operation, even
amongst drastically changing environmental conditions. Dy-
namic features and the lack of mandatory – and too explicit
– semantics bring real openness to the model. The model is
also equipped with a cooperative layer where learners can share
knowledge and help each other to converge faster. The model
was evaluated via simulation for a large number of scenarios,
and the practical results confirmed its theoretic advantages.

Our model extends the state of the art in the followings: (a)
applies temporal difference (LSTD) learning for the problem of

adaptive systems where requirements change dynamically over
time (b) introduces the possibility of an on-the-fly, automatic
knowledge optimization through feature extraction and feature
removals (c) brings TD learning into a collective dimension.
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3 Benkő B K, Brgulja N, Höfig E, Kusber R, Adaptive services in

a distributed environment, Proc. of 8th International Workshop on Ap-
plications and Services in Wireless Networks, posted on 2008, DOI
10.1109/ASWN.2008.8, (to appear in print).

4 Bradtke S J, Barto A G, Linear least-squares algorithms for temporal dif-

ference learning, Machine Learning 1996/22, posted on 1996, 33-57, DOI
10.1007/BF00114723, (to appear in print).

5 Brun Y, Di Marzo Serugendo G, Gacek C, Giese H, Kienle H, Litoiu

M, Müller H, Pezze M, Shaw M, Engineering self-adaptive systems through

feedback loops, Springer, Heidelberg, 2009, LNCS 5525/2009.
6 De Jong K, Evolutionary computation: a unified approach, In Proc. of the

2008 GECCO conference companion on Genetic and evolutionary computa-
tion, posted on 2008, 2245-2258, DOI 10.1145/1570256.1570404, (to appear
in print).

7 Goldsby H J, Goal-based modeling of dynamically adaptive system re-

quirements, Proc. of 15th Annual IEEE International Conference on the
Engineering of Computer Based Systems (ECBS), posted on 2008, DOI
10.1109/ECBS.2008.22, (to appear in print).

8 Harel D, Marelly R, Come, let’s play: scenario-based programming using

LSCs and the play-engine., Springer, Heidelberg, 2005.
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