
Ŕ periodica polytechnica

Electrical Engineering

55/3-4 (2011) 103–110

doi: 10.3311/pp.ee.2011-3-4.02

web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2011

RESEARCH ARTICLE

A study of various techniques for

storing inhomogeneous descriptive

data of digital maps

Roberto Giachetta / Zsigmond Máriás

Received 2012-07-09

Abstract

In contemporary Geographical Information Systems (GIS)

the large variety of digital map sources requires the handling

and storing of various descriptive data in a single storage facil-

ity. Although the number and type of attributes can vary among

different maps, the storage of such inhomogeneous data in a sin-

gle database is difficult, as querying is an essential task and re-

quires fast retrieval of data based on any present attribute.

In this study, the authors compare three different ap-

proaches to this problem based on relational and object-

oriented database systems by implementing and testing with

massive inhomogeneous and altering descriptive data. Since

this problem is not only typical in the field of GIS, the solution

can be applied generally to any domain using inhomogeneous

data, like e-commerce systems and document warehouses.

Keywords

geographical information systems · large-scale spatial

data storage · document-oriented databases · object-oriented

databases · performance analysis

Acknowledgement

The research is supported by the TÁMOP-4.2.1/B-09/1/KMR-

2010-003 project.

Roberto Giachetta

Department of Software Technology and Methodology, Eötvös Loránd Univer-

sity, H-1111 Budapest„ Hungary

Zsigmond Máriás

Department of Algorithms and Applications, Eötvös Loránd University, H-1111

Budapest„ Hungary

1 Introduction

Digital maps are the most important data source of Geograph-

ical Information Systems, and publishing of maps is an essen-

tial governmental task. For several years, the Eötvös Loránd

Universiy (ELTE) Faculty of Informatics has been developing a

digital map database server known as EDIT (short for Univer-

sity Digital Map Server in Hungarian) with the foremost aim of

assisting university scientific research projects and education by

providing online access to various digital raster and vector maps,

aerial and satellite imagery (see [1]). The EDIT system makes it

possible to perform queries based on any descriptive data of the

maps, and soon it will be able to perform spatial queries.

Our aim is to provide a database storage and retrieval system

that has the highest performance to execute database operations,

including the modification of data and structural information.

For this reason, several implementations have been concerned,

and the most promising three ones have undergone an extensive

performance measure procedure. Their results are presented in

the following.

The rest of the paper is arranged as follows. In Section 2 we

will introduce the problem and the abstract solutions. In Sec-

tion 3 our implementations are presented, with the performance

measure procedure and results in Section 4. We will conclude in

Section 5.

2 The database structure

2.1 Map database of the EDIT system

In EDIT system raster and vector maps are stored in differ-

ent categories. Every map category has different set of descrip-

tive data called map attributes. For example, every raster map

and satellite image contains information about image resolution

and spatial resolution, while vector maps do not contain this at-

tribute.

In the database each map category may have several subcat-

egories, for example we distinguish topographic maps, touristic

maps and remote sensed images, and among remotely sensed

images there are also different categories for multispectral and

hyperspectral images, and so on. Each subcategory inherits all

the descriptive data of its parent category and extends it with

Various techniques for storing inhomogeneous descriptive data of digital maps 1032011 55 3-4

http://www.pp.bme.hu/ee


several additional attributes. This structure is similar to the

concept of object-oriented programming, where categories cor-

respond to classes, subcategories are provided through inheri-

tance, and each record is an instance of the class.

Sometimes we have to alter the categories by adding or re-

moving attributes. This also affects the subcategories. For ex-

ample if we want to add copyright information to raster maps,

we have to alter raster map category and then have this informa-

tion inherited into every subcategory.

Beyond the maintenance of this category taxonomy, we have

to store and retrieve map instances for all categories, with all

the descriptive data of a certain category. Since the database

stores a huge amount of maps – at the moment over 30 000 –,

we need the functionality to retrieve not just single objects but

a set of maps based on different filter conditions. These filter

queries contain conditions based on the descriptive data, such as

retrieving maps with a specific attribute value, or class condi-

tions, such as retrieving all the objects in a specific category and

its subcategories.

2.2 Generalization

The goal was to design a database structure in which we can

define class inheritance taxonomy and store objects that belong

to the defined classes.

We need to store name and type information for every at-

tribute in our database. This information is called attribute

schema. It may also contain additional properties such as de-

fault values and measurement units, but since this information

does not affect the way objects are stored or filtered, we do not

consider them further on.

Every class holds a number of attributes, which can be mod-

ified any time, so we need the ability to add and remove at-

tributes. Each class – except the base class – must have a parent

class, and all attributes of the parent class are inherited by their

descendant classes.

We want to store a large amount of objects possibly for each

class and we want to perform different kinds of filter queries.

We need the ability to reference and retrieve a single object and

also to get a set of objects based on different conditions:

• get all the objects of a certain class,

• get all objects with specific attribute values,

• combination of the two filters above: get all objects of a cer-

tain class with specific attribute value(s).

Due to the large number of objects and operations, perfor-

mance properties are crucial in finding an adequate solution. We

have to consider not only filtering the stored objects, but also

the modifications of database. In this paper we will describe

three different approaches to store and query this kind of object

database and measure their performance on several operations.

2.3 Other applications

Our basic goal is to design and analyze the performance of

different solutions to store a large amount of maps with var-

ious descriptive data, but the results are rather general. This

kind of hierarchy of classes and objects is very useful in appli-

cations like e-commerce systems or corporate document ware-

houses. If we consider e-commerce systems, classes are product

categories, objects are products, and attributes are product fea-

tures. In the case of document warehouses, classes are document

schemes, objects are documents and attributes are the document

fields. Searching facilities are very important in both cases.

Another current project of ELTE faces the same challenges

and is another use case of the class taxonomy. The workflow-

based ERP system known as Amnis handles all business pro-

cesses as workflows, and all required information as documents.

Workflows work on documents that can have any attributes and

can be altered any time with the ability to create custom se-

quences and assemble any type of document used during the

workflow process. Workflows and documents can be special-

ized, document attributes can be extended.

3 Implemented solutions

In previous research we have studied several kinds of rela-

tional database structures (presented in [3]), from which two

have been chosen: the two highest performing solutions. We

will compare them with a third, document-oriented database so-

lution, which is a rather natural implementation of our structure.

3.1 Relational database

We will describe two different approaches to store classes and

object instances. The main difference between the two solutions

is the way they store objects. The attribute and class schema def-

initions and the inheritance are described the same way. Hence,

first we describe the method of storing classes and attributes.

3.1.1 Class hierarchy

Class hierarchy is stored in three tables:

• attribute table defines the schema information of each at-

tribute in the system. This table stores the type of a certain

attribute and its name. It is possible to add measurement unit

information and default values as well.

• class table defines classes and inheritance relations. This ta-

ble stores the class id, the name of the class and the parent

class id.

• classHasAttributes table defines the attributes belonging to a

class. Each row of this table stores a class id and an attribute

id.

Creating, removing or modifying functions of classes are

quite simple and can be implemented in straightforward way.

There is one point that needs to be analyzed. When retriev-

ing the attributes of a class, we have to collect the attributes

Per. Pol. Elec. Eng.104 Roberto Giachetta / Zsigmond Máriás



of a given class and also its ancestors, which requires multiple

queries. As we have to perform this frequently – even when re-

trieving a single object from the database –, we should do some

improvements by denormalization.

Fig. 1. On-the-fly created tables with relation to the object table

This improvement is done by adding a new field into

classHasAttributes table that indicates whether an attribute is in-

herited or it is among the extension attributes of the given class.

This results in storing the inherited attributes multiple times,

causing redundancy in the database. However performance can

be significantly improved. This improvement affects the class

creating and modifying functions. The functions are still simple,

but the database consistency has to be maintained, by adding or

deleting the inherited attribute rows as well in the classHasAt-

tributes table.

An example

The database consists of two classes. Class "A" is the base

class, with one integer attribute called x, class "B" is a subclass

of "A" and it has a text (y) and a double (z) attribute and it in-

herits the integer attribute x from class "A". The database will

contain the following elements:

attribute [attr_id,attr_name,type]:

(attr_id_x, ’x’,’integer’)

(attr_id_y, ’y’,’text’)

(attr_id_z, ’z’,’double’)

class [class_id, class_name, parent_id]:

(class_id_A, ’A’, null)

(class_id_B, ’A’, class_id_A)

classHasAttributes [class_id, attr_id, inherited]

(class_id_A, attr_id_x, false),

(class_id_B, attr_id_y, false),

(class_id_B, attr_id_z, false),

(class_id_B, attr_id_x, true)

3.1.2 Storing classes in on-the-fly created tables

In case of a fixed attribute schema and fixed number of classes

the standard solution is to create tables for each class and store

objects as records of the table. Our first solution is similar to this

method, but we need to consider the frequent change of classes

and attribute schema. Objects are stored as records, but a sep-

arate table is generated automatically for each class when new

classes are added to the data. This implementation is similar to

the one introduced in [4].

The name of the tables are objectsOfClass_{class_id}, and

these tables contain an object_id and the attribute fields. For

each attribute a separate column is created in the table. The

name and type of the column is calculated after the at-

tribute table’s attr_id and type values: attr_{attr_id}: base-

TypeOf(attr_id) This structure can be seen on Fig. 1. For the

example described in Section 3.1.1 the following tables stores

the objects:

objectsOfClass_{class_id_A}:

[object_id: int, attr_{attr_id_x}: integer]

objectsOfClass_{class_id_B\}:

[object_id: int, attr_{attr_id_x}: integer,

attr_{attr_id_y}: text, attr_{attr_id_z}: double]

When a class is altered by adding or deleting attributes, not

only the class hierarchy needs to be changed but the tables of

the class and its descendants are affected, which also needs to be

considered for the altering functions. When a class is deleted,

the tables of the descendants have to be dropped as well.

Although the class operations are quite complex, retrieving

and filtering objects remain simple in this approach. If we

want to retrieve a single object from the database, a simple

select query has to be performed in the proper data table. To

archieve that, an additional lookup table called objects is main-

tained which stores pairs of object and class identifiers. Using

this table, objects can be retrieved by performing a simple query

in the proper table.

Filtering objects by class is simple in this case. Retrieving a

set of objects in a specific class or several specific classes can

be done by simple "select" queries. If the class identifiers are

given, the tables are determined in which the queries have to be

performed. The queries are generated by string operations.

Filtering the objects by specific attribute value conditions can

be done in two steps. These conditions are given by an attribute

identifier, a relation and a value. First, the classes are determined

that have the attribute with a query on the classHasAttributes

table, and then a simple selection is performed in all class tables

that contain the attribute. The "where" conditions are generated

by string operations based on the attribute schemas. If several

attribute conditions are given, then several sets of classes are

calculated, and the intersection of these sets is used.

Filtering a class’ objects with a specific attribute value is

pretty simple; the select query has to be performed only on

one table. This query is generated based on the class attribute

schema and the given attribute conditions.

Various techniques for storing inhomogeneous descriptive data of digital maps 1052011 55 3-4



Fig. 2. Multiple attributeInstances tables with the object table

In this solution creating and modifying a class are quite com-

plex, because these operations can have consequences (the cor-

responding data need to be transformed), but the filtering algo-

rithms are quite simple, and are generated by the class’ attribute

schema and the filter conditions. Our expectation was that this

solution will work well in searching and filtering, which is the

most expensive part of usage in most applications.

3.1.3 Storing objects and attribute instances in separate

tables

In our second approach, instead of generating tables for each

class, attribute instances are stored in separate tables, according

to two guidelines.

• Each attribute type has its own table, named {base-

type}AttributeInstances, in which instances are stored. For

example if we allow integer, text and double attributes in a

system, three tables are created. These tables store an object

identifier of the object the instance belongs to, an attribute

identifier and the attribute value.

• The objects table stores the object and class identifiers as in

the previous solution.

In this implementation, there is no need to create new tables,

so creating a class need no further operations. When inserting

an object, the attribute values are placed in the proper attribute

instance tables in multiple records. Objects can be retrieved by

first determining their attribute schema, then by queries in each

attribute instance table and, and after that the result is processed

using the attribute schema.

Filtering objects is a more complex operation. Class filter per-

forms one query in the objects table, searching the objects with

specific class identifier(s), and then, if we need the attributes of

objects as well, we have to collect them from the attribute in-

stance tables as discussed above. This structure can be seen on

Fig. 2.

Filtering the objects by a specific attribute value conditions

can be done in two steps. First, we get the value instances from

attribute instance tables to obtain all object identifiers with the

specific value. After that, the object attributes are collected if

needed. If multiple filter conditions are given, several sets of

object identifiers are calculated and the intersection of these sets

will be the result.

Filtering a class’ objects with attribute values is done by join-

ing the attribute instance table and the object table on the object

identifier with the specific class and attribute conditions. This

way, the object identifiers are obtained, so attributes can be col-

lected if needed. If several attribute conditions are given, then a

set of objects is calculated via multiple joins and the result will

be the intersection of these sets. This can be done with several

quite complex queries.

Queries can be simplified using three enhancements of this

solution.

Enhancements First, the attribute instance tables can be

contracted into one single attributeInstances table that has a sep-

arate column for each attribute type as seen in Fig. 3. This tables

stores columns for each attribute type, and in each record only

the used column is filled, other fields contain null values. To

store the attribute description (name, type, measurement unit,

etc.), we use an attributeSchema table. With this improvement

the required space for the database grows, but the queries be-

come simpler and faster, due to faster joins.

Fig. 3. A single attributeInstances tables with the object table

Second, the filters that contain both class and attribute condi-

tions can be simplified, if we store the class information in this

table as well. With this caching, these conditions result can be

calculated by using only the attribute instance table. This tech-

nique creates redundancy in the database, so it’s very important

to create the new class_id field properly. The third possibility

is to store the attribute description information also inside the

attributeInstances table to spare another join operation. This

operation also results in redundant data.

3.2 Document-oriented database

As opposed to relational databases, document-oriented

databases do not have a schema that describes the structure of

each record. Instead, records are stored as documents, which

can have any number of fields, and each field can be of any type

and can contain even multiple pieces of data. Documents are

stored in collections, without any structural information, so each

document can have a different structure inside a collection. In-

formation can be added or removed any time without the need

Per. Pol. Elec. Eng.106 Roberto Giachetta / Zsigmond Máriás



of schema alternation; therefore it can provide an ideal solution

for frequent structural changes. Fields can be of any complexity,

it is even allowed to store complete documents inside the fields.

Also, the documents’ fields are named and typed, so they can be

exactly parsed to objects of an object-oriented application.

In our project we have chosen MongoDB as the document-

oriented database engine. MongoDB is known to be one of

the fastest schema-free document-oriented solutions (see [5]),

therefore it serves as a perfect candidate for our performance

measure. It is based on JSON, allowing the storage of semi-

structured data, and the nesting of data into complex structures

that still can be queried and indexed. It also provides the full

functionality of relational databases.

Fig. 4. Document-oriented storage of classes and objects

In our model it is easy to match objects against documents

simply by transforming every attribute of an object to a field of

the document. Due to the lack of structuring, objects can be

stored in a single collection (named objects). However, since

class data can only be obtained from each document separately,

it is vital for performance to store also the class description data.

We use a separate collection (classes) for that purpose. Due to

the complex structuring abilities, attribute properties (like name,

type, default value) can be nested inside the class information

document. Inheritance is implemented using reference identi-

fiers and recursive queries. Thus, we have a structure seen in

Fig. 4.

4 Performance measure

To measure the performance of each approach, we have de-

veloped a testing environment to implement all three solutions

using the Microsoft .NET Framework and the C# programming

language. We have chosen C# because it’s object-oriented

and strongly typed, and most importantly it’s the backbone of

ASP.NET Web applications. Also, the EDIT project is devel-

oped in C# as well. We have chosen MySQL, as our relational

database engine.

The test environment implements the abstract object and class

concepts, and provides three classes for the different database

types. Each operation’s time is measured, including the trans-

formation of the object or class from and to the solution, but

not including any other environmental delays. All operations

have been implemented including creation, insertion, altering

and querying of objects and classes. Operations can be pre-

formed multiple times, and with different weights for each op-

eration time. Data can be imported from any database struc-

tured according to one of our implementations and generated

by providing detailed class information, or simply just generat-

ing random names and values. Also the database size is con-

stantly monitored. Time and size values can be output to charts

or spreadsheets.

It must be noted, that our testing method relies on the per-

formance of the .NET Framework, so the results can vary be-

tween implementations, but the ratio of the values should not

change too much, since all used application programming inter-

faces (the MySQL Connector and the MongoDB Driver) use the

same network connection protocols, data structures and there-

fore the same .NET facilities for retrieving and modifying infor-

mation in the database, so the comparison should be accurate.

4.1 Performance results

Results have been gained by performing all operations sev-

eral thousand times and summing runtimes. For simplification,

the solutions are marked by numbers. In the first solution, ta-

bles are generated on-the fly for each class as described in Sec-

tion 3.1.2. The second solution stores objects and attributes in

separate tables as described in Section 3.1.3. We have imple-

mented all combinations of enhancements. Measurements show

that using a single attribute instance table enormously raises per-

formance with only 5 to 20 percent in database size growth,

and also the caching of identifiers and descriptions can have a

speed advance of 20 to 40 percent. The third solution uses the

document-oriented implementation described in Section 3.2.

This kind of empirical testing does not make use of any the-

oretical background. However our previous work with this ap-

proach (see [6]) shows promising practical results.

• Class creation and removal

Without considering inheritance, class creation is the first op-

eration to be executed, and also sometimes needed during op-

eration. Class creation time is primary determined by the at-

tribute count in case of the second implementation, but it does

not significantly affect the runtimes for the other two solutions

(as seen on Fig. 5). Class removal is quite fast in all cases, but

usually determined by the number of objects also needed to

be removed is case the relational database solutions. The re-

moval is only slightly affected in the third solution, in case of

large objects. It has been observed that the document-based

implementation is about ten times faster in creation and re-

moval than the first implementation. The second implemen-

tation takes at least two times as much time as the first, and the

difference is even greater with a large number of attributes.

When using inheritance the third solution is still not affected,

the other solutions are affected as much as without inheri-

tance, but with the same amount of attributes. Removal of

objects is linearly affected in the first solution by the amount

of child classes.

• Object creation and removal

Various techniques for storing inhomogeneous descriptive data of digital maps 1072011 55 3-4



Fig. 5. Class creation time with fixed number of total attributes (50) and classes (5)

The number of attributes clearly affects object creation time,

but with different amount. Our tests show that the first and

third solutions only slightly drop in performance (logarithmi-

cally) by raising the attribute count of the classes, while the

second solution is linearly affected (with a constant multiplier

of 1/2, see Fig. 6).

Fig. 6. Object creation time witch variable number of total attributes

Raising the number of classes linearly increases time taken

by the second implementation (with the same total number of

attributes), but does not affect the other two implementations,

therefore the second solution generally requires at least three

times as much for insertion and removal compared to the first

solution (affected by the number of classes), while the third is

again clearly much more efficient, producing the fraction of

time used by the other two implementations.

We must note that the lack of speed of the second solution is

mostly due to the number of insert and delete commands that

need to executed by the test environment. This can be im-

proved by creating strored procedures on the database server

to execute these multiple operations, todignificantly shorten

the communition time of the application.

• Class queries

Quickly querying an entire class is the main promise of the

first solution, as it only needs to fetch an entire table. This

results between 1.2 and 4 times the speed of the third so-

lution. The difference lies in the number of objects stored

in the database. The second solution’s query times exponen-

tially grow with the number of objects, the total number of at-

tributes, and the number of classes as well (as seen on Fig. 7).

• Attribute queries

Somewhat unexpectedly of the second solution is an order of

magnitude better than the first with attribute queries. In case

of few (1-2) filter conditions, it is even double as fast as the

document-oriented implementation. However, the number of

attributes influences it in linear time, while the third solution

is not affected by this number. Also, the first solution is pretty

much resistant to the number of objects, but can be influenced

by the number of total attributes. The advanatage of the third

solution is even better when raising the number of filter con-

ditions (due to less documents to be returned). This is shown

in Fig. 8.

When filtering for attributes of a certain class, the first solu-

tion proves to the best again, but the much less advantage, as

with simpla class queries.

• Class altering

As expected, adding or removing attributes from a class is

quite slow with the first implementation with foremost the at-

tribute count of the class influencing its speed. This can be

seen in Fig. 9. Both the second and third implementation are

only slightly affected by the number of (descendant) classes,

Per. Pol. Elec. Eng.108 Roberto Giachetta / Zsigmond Máriás



Fig. 7. Class query time with fixed number of total attributes (50) and classes (5)

Fig. 8. Attribute query time with variable (1 to 10) and fixed filter count (2)

and the number of objects.

• Balanced usage

It is not easy to determine the balanced operational load of

a system using this architecture, because it can vary by us-

age. Our monitoring of the EDIT system has revealed the fol-

lowing aspects. About 90 to 95 percent of the operations are

queries, equally distributed between class and attribute filters.

Significant part of the remaining operations are object related

(creation and removal), and a few are class related operations.

In case of the Amnis project, where many documents are cre-

ated during runtime, query times have less importance, but

still take about 50% of the operations.

When calculating with these times, we can see that the third

solution outperformes both relational implementations, and

the first implementation is somewhat better then the second

in both cases.

• Database size It’s easy to calculate that in terms of the re-

lational implementations the first solution needs less storage

space due to the redundant data storage of the second solu-

tion. Using all enhancements this difference can grow very

fast, and the database size can become the multiple amount

of the first solution. The MongoDB implementation is also

sensitive to the amount and size of stored objects. With small

object and attribute count (e.g. 1000 total attribute values) the

size of the database can be less than that of first soltuion, but

this advantage can quickly disappear as the object count goes

up (with about 200 000 stored values it takes four times as

much space as the first relational solution), see Fig. 10.

5 Conclusion and future work

In the previous sections we have presented three solutions

to a database structure that implements class inheritance tax-

Various techniques for storing inhomogeneous descriptive data of digital maps 1092011 55 3-4



Fig. 9. Class altering time with fixed number of total attributes (50) and classes (5)

Fig. 10. Database size (in bytes) with respect to total attribute value count

onomy. We have developed a testing environment in .NET to

study the performance of these solutions using the MySQL and

MongoDB database engines. Our intention was not to generally

give an opinion on which solution is better on any software and

hardware platforms, but to gain results which we can work with

in our projects, and to have an idea how our solutions perform

against each other.

As expected we have not gained clear results in all fields, but

in terms of general usage, the document-oriented solution seems

to outperform relational solutions. This may be due to the rather

natural compliance with our object-oriented model. In terms of

the relational implementation, using on-the-fly generated tables

provides faster class queries, creation and removal time and less

disk space, while the distributed object model provides fast at-

tribute based filtering, class alternations. Still, in overall perfor-

mance one may favour the first solution, but in some situations

the advantage of the second implemants can also come handy.

Ultimately we can only say that much relies on the nature of the

project being worked on.

In the future we will work further on developing and perfect-

ing solutions for inheritance based database structuring to serve

us in our next projects.

References

1 Giachetta R., Elek. I., Developing an Advanced Document Based Map

Server, 8th International Conference on Applied Informatics (ICAI) (2010).

2 Ambler S. W., Process Patterns - Building Large-Scale Systems Using Ob-

ject Technology, 8th International Conference on Applied Informatics (ICAI)

(2010).

3 Máriás Zs., Design and Performance Analysis of Hierarchical Large-scale

Inhomogeneous Databases, 8th International Conference on Applied Infor-

matics (ICAI) (2010).

4 Nadkarni P. M., Organization of Heterogeneous Scientific Data Using the

EAV/CR Representation, The Journal of the American Medical Informatics

Association (JAMIA) 6 (1999), no. 6.

5 Chodorow C., Introduction to MongoDB, Free and Open Source Software

Developers’ European Meeting (FOSDEM) (2010).

6 Fekete I., Giachetta R., Kovács P., To Balance or to Rebuild? - An Ex-

perimental Study of Randomly Built Binary Search Trees, 8th International

Conference on Applied Informatics (ICAI) (2010).

Per. Pol. Elec. Eng.110 Roberto Giachetta / Zsigmond Máriás


	Introduction
	The database structure
	Map database of the EDIT system
	Generalization
	Other applications

	Implemented solutions
	Relational database
	Class hierarchy
	Storing classes in on-the-fly created tables
	Storing objects and attribute instances in separate tables

	Document-oriented database

	Performance measure
	Performance results

	Conclusion and future work

