
Ŕ periodica polytechnica

Electrical Engineering

55/3-4 (2011) 111–117

doi: 10.3311/pp.ee.2011-3-4.03

web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2011

RESEARCH ARTICLE

Small degree BitTorrent

Miklós Kasza / Vilmos Bilicki / Márk Jelasity

Received 2012-07-11

Abstract

It is well-known that the BitTorrent file sharing protocol is re-

sponsible for a significant portion of the Internet traffic. A large

amount of work has been devoted to reducing the footprint of the

protocol in terms of the amount of traffic, however, its flow level

footprint has not been studied in depth. We argue in this pa-

per that the large amount of flows that a BitTorrent client main-

tains will not scale over a certain point. To solve this problem,

we first examine the flow structure through realistic simulations.

We find that only a few TCP connections are used frequently for

data transfer, while most of the connections are used mostly for

signaling. This makes it possible to separate the data and sig-

naling paths. We propose that, as the signaling traffic provides

little overhead, it should be transferred on a separate dedicated

small degree overlay while the data traffic should utilize tempo-

ral TCP sockets active only during the data transfer. Through

simulation we show that this separation has no significant ef-

fect on the performance of the BitTorrent protocol while we can

drastically reduce the number of actual flows.

Keywords

component · BitTorrent · small degree overlay

Acknowledgement

M. Jelasity was supported by the Bolyai Scholarship of the

Hungarian Academy of Sciences.

Miklós Kasza

Vilmos Bilicki

University of Szeged, 6720 Szeged, Aradi vértanúk tere 1., Hungary

Márk Jelasity

University of Szeged, Hungarian Academy of Sciences, 6720 Szeged, Aradi vér-

tanúk tere 1., Hungary

1 Introduction

BitTorrent traffic is responsible for a large portion of the over-

all Internet traffic. Accordingly, a lot of attention has been de-

voted to optimizing BitTorrent clients, for example, to make

them ISP friendly, via localizing data traffic [1]. However, these

works have focused on traffic volume almost exclusively. At the

same time, with the advent of the intelligent network [2] we are

witnessing the development of network services where the load

is proportional to the number of flows and not traffic volume. In

addition, at lower layers of the network, we also see sensitivity

to the number of flows, for example, in the TCP layer of wireless

networks.

This work is devoted to the study of the flow level behav-

ior of BitTorrent, through realistic simulations. Based on the

observations of these simulations, we propose an approach to

drastically reduce the number of flows in a BitTorrent swarm.

We also demonstrate that our approach has an affordable perfor-

mance penalty.

1.1 Novelty and Contribution

1.1.1 The number of the flows is important from the point

of view of single nodes as well as the whole BitTorrent

ecosystem

We discuss possible scalability issues in the different layers

of the network infrastructure that are caused by the high number

of flows (as opposed to a high volume of traffic). We conclude

that the access, distribution and core layers are affected as well.

1.1.2 Stability of data transfer flows

We are not aware of any studies focusing on the stability and

the dynamics of the BitTorrent data transfer graph. Empirical

studies and mathematical models are known of the clustering

of clients based on bandwidth [3], however, we study the case

when the bandwidths can be equal, and we focus on the stability

and dynamical properties of flows. We show that, due to the Tit-

For-Tat algorithm (which takes into account the history of the

communication) and due to the efficiency of the random first al-

gorithm, flows are remarkably stable, which is a very important

property from the point of view of our approach to implement-

Small degree BitTorrent 1112011 55 3-4

http://www.pp.bme.hu/ee


ing a small degree BitTorrent swarm.

1.1.3 Extended model for the BitTorrent protocol

To perform realistic simulations, we reverse engineered the

most significant parts of the Vuse [4] BitTorrent implementa-

tion. There are several interesting findings we have not seen in

applied models (e.g.: the implementation of optimistic peer se-

lection which is not uniform random, but instead it is weighted

based on the history of the bilateral communication).

1.1.4 Separated data and signalling paths

We propose to apply a separate mechanism for signaling and

data transfer. With the help of realistic simulations we show that

this could be done without a serious performance penalty.

1.2 Outline

The outline of the paper is as follows. In Section 2 we dis-

cuss necessary background concepts along with the motivation

for the scalability problem that we tackle in this paper. Section

3 discusses our approach to model a BitTorrent swarm. This

is important as the implemented simulation (based on the Vuse

BitTorrent client) is itself a contribution of this work. Section 4

contains a recap of our previous work in the area of small degree

DHTs, and outlines the applicability of this concept for imple-

menting a small degree BitTorrent overlay. It also discusses our

approach to modeling this overlay. Section 5 presents experi-

mental results with our model. Finally, Section 6 concludes the

paper.

2 Backgroung and the scalability problem

2.1 The BitTorrent overlay

The strength of the BitTorrent protocol lies in its efficiency of

entropy maximization and preventing free riders from obtaining

significant resources. The latter goal is achieved with the help

of the Tit-For-Tat mechanism while the former goal is achieved

with the help of the rarest first chunk selection algorithm.

The peers participating in a swarm maintain TCP connections

with each other. These connections are used for data exchange

and signaling. The properties of the overlay defined by these

connections has been extensively studied. For example, the au-

thors of [5] found that the number of connections has a signif-

icant effect on the diameter of the overlay. The overall number

of connections a node can maintain determines the number of

its outgoing and incoming connections. The larger the number

of outgoing connections, the smaller the diameter of the overlay

becomes, which is desirable. Besides, if the number of incom-

ing connections is limited in practice, the nodes form clusters

based on the time they joined, which is undersirable. Overall,

from all points of view, an overlay of a large degree is desirable.

However, as the connections in BitTorrent are all real TCP

connections (while in eDonkey, for example, there are logical

connections based on UDP signaling) the upper bound on the

overall number of connections is based on the efficiency of TCP

sharing a given link with a given bandwidth [6]. Based on the

default settings 80 connections are allowed for each node: 40

connections initiated by the node and 40 connections initiated

by the peer nodes participating in the swarm [6].

2.1.1 The impact of the number of the concurent connec-

tions on the infrastructure

The impact of the number of the concurrent TCP or UDP con-

nections on the infrastructure before or after the POP (Point of

Presence) has not been widely studied. Here we briefly sum-

marize the scalability issues related to the number of flows, as

opposed to traffic volume (both for a single BitTorrent client and

for the whole BitTorrent ecosystem).

In related work the following issues are known regarding the

number of parallel connections:

• Most of the home routers or xDSL/Cable modems can provide

NAT. Many older or cheaper devices can only maintain up to

250 parallel connections [7, 8].

• The overhead (ACK) of the TCP protocol that consumes the

uplink capacity should also be considered. The best practice

is to limit the number of per torrent connections to a value of

25 to 100 connections (based on the upload speed), as sug-

gested in [9].

Another issue is related to intelligent networking. The inte-

grated network infrastructure where the crosscutting issues of

the QoS, Security, Mobility, Efficiency, etc, should be solved

are going to be more and more "Intelligent". In contrast to past

best practices where the core was dumb and the edge was intel-

ligent there are now numerous cases where even the core should

have some kind of intelligence [2].

In the following we would like to give an overview of lower

level services where the number of concurrent flows could yield

scalability issues. In the access layer the wireless connections

are gaining significant market share. It is not exceptional to run

a BitTorrent protocol over a 3G or WiFi connection. The follow-

ing solutions (now or in the future) may have scalability issues

according to the number of concurrent flows:

• The packet loss or the delayed packets are interpreted by TCP

as congestion, decreasing the sending window as a result, and

in this way decreasing the throughput as well. However, in

the case of wireless media, packet loss often happens due to

the medium and not because of a buffer overflow. In this

case TCP misinterprets packet loss or delay events. There

are techniques for overcoming this issue in different network

layers but most of these techniques should threat each TCP

flow separately. For example, TCP snooping at the NODE-B

(Base station) [10], the so called Ack-Regulator, maintains a

queue for each flow [11] at the RNC (3G - Radio Network

Controller).

• It is common that in the 3G the user equipment receives a pri-

vate IP address which is then NAT-ed mostly at the gateway

Per. Pol. Elec. Eng.112 Miklós Kasza / Vilmos Bilicki / Márk Jelasity



GPRS support node (GGSN) [12]. As one GGSN could ag-

gregate all the IP traffic, the high number of flows could cause

scalability problems.

Together with the integrated services the network infrastruc-

ture becomes an integral part of everyday life. Reliability and

security are becoming the main aspects of network management.

The classical view of a dumb core and a smart edge is now chal-

lenged by national and international regulations where the ISPs

are becoming responsible for the security of the their network.

Network monitoring and especially flow level monitoring are

the most important information sources for security and traffic

engineering.

However, the scalability of the current monitoring framework

has been studied only in a few articles [13, 14]. It is clear that

with the increasing number of flows the resource consumption

of these solutions is also increasing. One could argue that packet

sampling could help, but weaknesses of the packet sampling ap-

proach have been pointed out [15]. The scalability of the moni-

toring infrastructure of the ISP is one aspect which is not consid-

ered when talking about the number of concurrent flows a Bit-

Torrent client maintains, but it should also be considered when

someone is considering the whole BitTorrent ecosystem and ISP

friendly P2P solutions.

To sum up, we have seen that the number of paralell

TCP/UDP connections a node maintains has an important im-

pact and barriers not only in the access layer but also in the dis-

tribution and core layer too. We can conclude that the small

degree of the nodes is desirable both for the end users and the

ISPs.

2.1.2 Stability and Clustering

It is well known that due to the Tit-For-Tat algorithm the links

among the nodes are not utilized equally. The authors of [16]

and [17] studied the node centric behavior of the BitTorrent pro-

tocol with the help of measurements conducted on real torrents.

They found that each peer selects a small subset of peers for data

exchange. The remaining connections are mainly used only for

keep alive and signaling activity. In article [18] the authors con-

ducted measurements and also found that BitTorrent nodes form

clusters based on the common upload speed. We should remark

here that this clustering depends strongly on the so called peer

availability but in most cases peer availability is high [16–18].

3 Modeling the BitTorrent swarm

In order to gain useful insights into the flow level behavior of

BitTorrent, our main focus in this work, it is important to work

with a realistic model of a BitTorrent swarm.

As a result of the numerous system and node level measure-

ment projects there are several commonly accepted parameters

for the characterization of a swarm which could help the re-

searchers to build better models for simulation based studies.

These parameters are trying mainly to capture the aggregate end

user behavior at the system level. The node level model of the

BitTorrent protocol itself varies from study to study. Here we de-

scribe the model we constructed in order to simulate the swarm.

The details of the protocol are based on the reverse engineered

code of the Vuse BitTorrent client.

3.1 Peer arrival and session length

In the current study we applied the simplest model where all

the nodes start the download activity at the start of the simulation

and they remain active during the whole simulation.

3.2 Neighbor selection

For each swarm member the primary source of information

about other swarm members is the tracker of the torrent. Nodes

regularly communicate with the tracker to keep a number of peer

connections. In our model we used a widely accepted default of

the total of 80 simultaneous peer connections in downloading

mode out of which 40 connections are activated locally and 40

are initiated remotely.

3.3 Choking algorithm

For every BitTorrent implementation the choking algorithm is

a crucial point. In our model we followed the specification [6]

but refined it based on Vuze.

Initially, for each peer all the other peers are in choked state

and unchoking decisions are re-evaluated periodically (by de-

fault every 10 seconds both in the Omnet++ model and in Vuze),

but this period should not be too short in order to avoid fibrilla-

tion, the case when a peer gets quickly choked and unchoked

repeatedly.

Usually there is a hard limit for the number of simultaneously

unchoked channels. The Omnet++ model [9] and Vuze imple-

mentation [6] both use 5 as an upper limit, and one slot is re-

served for optimistic decisions.

Peers usually use historic information (upload and download

rates, number of downloaded bytes, etc.) for deciding which

peers to unchoke, but selecting the right set of such peers is a

challenging task. The decisions should reciprocate to peers who

let the node download. This is achieved by selecting interested

peers based on their upload rates (peers with best upload rates

get unchoked). Specification [2] enables the selection of non-

interested nodes to get unchoked, however, Vuze does not select

such nodes and neither our implementation does.

Our implementation follows Vuze’s decision algorithm [6].

The algorithm used while downloading is different from the one

applied during seeding, however it is always a goal to maximize

the number of simultaneously unchoked peers up to the limit.

In downloading mode the algorithm is the following. First we

filter out very slow peers and sort the remaining ones by their

upload rates. Upload rates are computed by averaging the data

upload rate in last 20 seconds. Afterwards, we collect the best

of the interested peers in the sorted collection, as these peers are

the first candidates for unchoking. If the number of such peers

Small degree BitTorrent 1132011 55 3-4



is less than the desired 4 we collect some peers we have already

communicated with and uploaded a fair amount of data to us

(their download/upload ratio does not exceed 3). These peers

are sorted by the total amount of data they’ve sent. The remain-

ing slots, up to 5, are filled with optimistically selected peers.

This choking decision process is done in every 10 seconds. Dur-

ing these 10 second periods only optimistic peers can replace

disconnected peers. In every 30 seconds at least one optimisti-

cally selected peer gets choked and another peer gets unchoked

optimistically.

In seeding mode the algorithm uses other criteria for unchok-

ing. First, peers are ranked by their data receive rate averaged

in the last 5 seconds and the total amount of bytes uploaded to

them. Peers downloading faster but having downloaded smaller

amount of date are preferred. Optimistically selected peers are

unchoked similarly to downloading mode.

Optimistic peer selection means that random peers are se-

lected for unchoking even if they are not interesting or do not

have good upload/download characteristics. This mechanism in-

troduces the randomness into the system that is needed to give

peers a chance to catch up with the swarm. Note that in down-

loading mode Vuze and our model takes the reciprocation crite-

rion into consideration and thus random decision are weighted

by data upload/download history of the peers based on the fol-

lowing method:

• collect unchokable peers to a list L and rate them based on

the total number of bytes uploaded to (U[p]) and downloaded

from (D[p]) them, store the rate values to an array R:

for each choked peer p:

if unchokable(p):

add p to L

R[p] := U[p] - D[p]

• sort elements of L by their rate maintaining descending order

(thus the elements at the front of the list are those that down-

loaded the most and uploaded the least)

• generate a random integer x in the interval [0, size(L))

• in order to select at most N peers optimistically, repeat the

following steps at most minN, size(L) times:

– use the following formula to calculate index of each opti-

mistically selected peer (not that the formula prefers ele-

ments at the end of the list):

index := 0.8 + 0.2 * x−1

selectedPeer := L[index]

– remove the selected peer from L

3.4 Piece selection strategy

Nodes can freely choose which pieces they want to get from

a neighbor, however different piece selection strategies exist. In

the Omnet++ model rarest first and random first strategies are

implemented while Vuze applies a more sophisticated algorithm

and uses piece prioritization based on different factors. Our im-

plementation uses the rarest first method.

The algorithm does the following for any specific peer p that

unchoked the node. First it creates a list of pieces available from

p and for each available piece it counts how many of the neigh-

boring peers can provide the same piece. The available pieces

are sorted into buckets based on the number of peers that can

provide them. The algorithm randomly selects a piece from the

first non-empty bucket that has the smallest occurrence value.

4 Small degree BitTorrent

So far we have argued that for BitTorrent a large degree over-

lay is desirable for optimal performance, however, for the net-

work infrastructure a very small degree overlay is desirable.

These conflicting goals have to be resolved in a BitTorrent client.

In this section we briefly outline a solution for this problem.

4.1 Signalling and data channels

First of all, to reduce the effective communication partners of

BitTorrent clients, we need to understand the difference between

signaling traffic and data traffic. Signaling involves infrequent

communication of small packets, while data transfer involves

frequent transmissions of large volumes of data. From the point

of view of the number of network flows however, they are equal.

Our main insight here is that if we could compress signaling

traffic into a clever information dissemination layer, while keep-

ing the data traffic essentially unchanged, then if there were only

relatively few data flows, then the overall number of flows could

be reduced.

We will prove in the next sections that there are indeed only

a few data flows. Compressing the signaling traffic can be im-

plemented, for example, through a small constant degree dis-

tributed hash table, that routes this traffic through a small num-

ber of connections [19]. This DHT can even perform optimiza-

tions such as implementing an efficient multicast service [20],

providing further savings in traffic.

It is important to emphasize that the number of virtual con-

nections remains the same: the DHT acts as a middleware that

can even hide the fact that the actual neighbors the client com-

municates with are from a small constant set. In fact, the DHT

based signaling approach makes it possible to increase the num-

ber of virtual neighbors well beyond current limits.

4.2 Modelling the tunnels

In the following, instead of implementing a full-blown DHT

layer below our simulated BitTorrent client, we opted for a rel-

atively simple solution that nevertheless offers a worst case ap-

proximation of the realistic scenario: we model the DHT layer

via adding a large delay, in the order of 3 seconds, to signal-

ing traffic, to capture the overhead of the indirection through the

routing layer of the DHT.

Per. Pol. Elec. Eng.114 Miklós Kasza / Vilmos Bilicki / Márk Jelasity



5 Experimental Evaluation

In order to model large swarms we implemented a BitTorrent

client in the cycle based model of Peersim [21]. As was shown

in [22], flow level models could provide an acceptable approx-

imation of the real protocol. The protocol itself was based on

the codebase of the Vuse implementation. We selected the Vuse

implementation because it is one of the most popular BitTorrent

implementations (it has about 25% market share) and it is Java

based as well, so the transformation of its logic for Peersim (a

Java based simulator) was relatively simple.

Fig. 1. Distribution of the number of neighbours

The important parts of the code (peer selection, peer main-

tenance, piece selection, piece maintenance, etc) were reverse

engineered with all the details (magic numbers, etc) trans-

formed/adopted to our simplified data structure. In this aspect

the model is unique as the implementation and the behavior is

the same as that of the real Vuse client.

Network traffic was modeled as the solution of a linear con-

strained optimization problem. The communication flows were

based on the modeled piece message exchanges. We defined two

groups of inequalities:

• The amount of the uploaded and the downloaded data should

not exceed the available upload and download bandwidth

• The size of the piece should not be exceeded. In other words

only the remaining data should be transferred on a given con-

nection.

We defined the cost function of the constrained optimization

problem as follows:

• The data transformed in a given interval should be maximal

• The flows should share the available resources equally if pos-

sible.

After each cycle the BitTorrent piece messages to be trans-

ferred were determined, and the size of the data actually trans-

ferred in these messages was estimated with the help of the so-

lution to the constrained optimization problem.

5.1 Simulation setup

In our setup one cycle corresponds to one second. The up-

load bandwidth of the nodes was set to 1024 MBit/s while the

download bandwidth was set to 4048 MBit/s. The size of a piece

was set to 1024 KBytes while the file to be downloaded was set

to 100 MBytes. The number of nodes taking part in the swarm

was set to 1000 during the lifetime of the simulation. One of

the nodes was the seeder operating in seeding mode from the

start. The tracker gave 20 random nodes for each request. The

timing of the choke/unchoke was taken from Vuse as described

previously. The effect of the churn on the dedicated Kademina

based signaling overlay channels was modeled as delays with

linear random distribution up to 3 seconds. In other words each

signaling message was randomly delayed to model the routing

time through the DHT. All the simulations were run for 2000

cycles (2000 seconds)

Fig. 2. Data exchange stability without delay

5.2 Results: properties of the overlay

The first simulations were conducted in order to study the

properties of the download graph of the BitTorrent ecosystem.

We performed the simulations with and without delays, where

delays model the underlying DHT layer for handling the sig-

naling traffic, as described previously. The results are shown in

Figure 1. Figure 2. and Figure 3.

During the simulation we collected the node pairs involved in

data upload/download in each cycle. For each node, we calcu-

lated the amount of traffic that was transferred through each of

these pairwise connections.

Figure 1. shows the distribution of the number of data ex-

change neighbors with and without delay. We can see that most

of the nodes had less than 30 data exchange partners (that is,

peers with a non-zero volume of exchanged data) during the ex-

periment. The effect of the delay is visible but it is not signifi-

cant.

The number of neighbors that were used for data exchange

does not completely reflect the stability of the network. In fact,

the number of neighbors that were used for a significant amount

of data exchange is much less.

In order to be able to study the swarm level stability of

Small degree BitTorrent 1152011 55 3-4



Fig. 3. Data exchange stability with delay

the connections we aggregated node level traffic statistics into

swarm level statistics in the following way: we took the list of

data exchange peers ordered by the percentage of the number

of active communication cycles vs. total communication cycles

in descending order and calculated the swarm level minimum,

maximum, and average for each rank. These statistics are shown

on the Figure 2. and Figure 3.

On the horizontal axis the rank of the neighbor is shown or-

dered by the percentage of the data exchange cycles in decaying

order. On the vertical axis percentage values are shown. The

minimum, maximum and average values are shown with the

help of error bars. For example, in Figure 2. , the error bar

in position 2 indicates that for the nodes the second most stable

peer accounted for 17% of the data traffic on average, while for

the whole swarm the biggest amount for this position was 21%

and the smallest was 5%.

Fig. 4. Performance with and without delay

We can conclude that during the simulation the neighbors

were quite stable as the average activity of the first 6 partners

took more than 69% of the total communication on average.

There is no significant difference between the results of the sim-

ulations with delay and without delay.

5.3 Results: performance effects of the separated sig-

nalling channel

One important question is the effect of the delay on the per-

formance of the torrent. We have measured the average num-

ber of the pieces on the nodes, shown in Figure 4. The figure

presents the number of pieces as a function of time. We can con-

clude that there is a performance penalty is not significant the

difference is in the order of several percentages. On the other

hand, we note that routing signaling traffic through a small de-

gree DHT (the case modeled by the delay) makes it possible to

increase the number of signaling connections very significantly.

This higher number of potential connections could help to de-

crease this penalty; although we have not examined this scenario

in this paper.

6 Conclusions

In this paper we have formulated and motivated a prob-

lem that is related to potential scalability issues of BitTorrent

swarms: we argued that the large number of flows, irrespective

of traffic volume, represents a scalability bottleneck, because the

last generation of intelligent network monitoring and filtering

applications are sensitive to the number of flows, as well as the

lower level TCP implementations, especially in wireless media.

To solve this problem, we have implemented a realistic Bit-

Torrent simulation in PeerSim, and used the simulations to

demonstrate two results. The first result is that only very few

connections are used to transfer large amounts of data, most of

the connections are used for signaling. This makes it possible to

route signaling traffic through a small degree DHT, which dras-

tically reduces the number of flows.

The second result was that this solution does not spoil the

stability of the connections that are used for data transfer, while

it does not significantly reduce download the throughput either.

References

1 Slot M, Costa P, Pierre G, Rai V, Zero-Day Reconciliation of BitTorrent

Users with Their ISPs, Euro-Par 2009 Parallel Processing (2009).

2 Kephart J., Chess D, The vision of autonomic computing, Computer 36

(2003), 41–50.

3 Meulpolder M, Pouwelse J A, Epema D H J, Sips H J, Modeling and

analysis of bandwidth-inhomogeneous swarms in BitTorrent, Ninth IEEE

International Conference on Peer-to-Peer Computing (P2P’09), posted on

2009, 232–241, DOI 10.1109/P2P.2009.5284523, (to appear in print).

4 Vuze: The most powerful bittorrent client in the world, http://www.vuze.

com/.

5 Al-Hamra A, Liogkas N, Legout A, Barakat C, Swarming Overlay Con-

struction Strategies, Proceedings of 18th International Conference on Com-

puter Communications and Networks, posted on 2009, 1–6, DOI 10.1109/IC-

CCN.2009.5235297, (to appear in print).

6 BitTorrentSpecification, TheoryOrg, http://wiki.theory.org/

BitTorrentSpecification#Tracker_HTTP.2FHTTPS_Protocol.

7 Vuze FAQ / What do I do if my network connection keeps dying?, http:

//faq.vuze.com/?View=entry&EntryID=137.

8 How Many Connections Can A Wireless Router Han-

dle? | PCMech, http://www.pcmech.com/article/

how-many-connections-can-a-wireless-router-handle/.

9 Good settings - VuzeWiki, http://wiki.vuze.com/w/Good_settings.

10 Balakrishnan H, Seshan S, Katz R. H, Improving reliable transport and

handoff performance in cellular wireless networks, Wireless Networks 1

(1995), 469–481, DOI 10.1007/BF01985757.

Per. Pol. Elec. Eng.116 Miklós Kasza / Vilmos Bilicki / Márk Jelasity

http://www.vuze.com/
http://www.vuze.com/
http://wiki.theory.org/BitTorrentSpecification#Tracker_HTTP.2FHTTPS_Protocol
http://wiki.theory.org/BitTorrentSpecification#Tracker_HTTP.2FHTTPS_Protocol
http://faq.vuze.com/?View=entry&EntryID=137
http://faq.vuze.com/?View=entry&EntryID=137
http://www.pcmech.com/article/how-many-connections-can-a-wireless-router-handle/
http://www.pcmech.com/article/how-many-connections-can-a-wireless-router-handle/
http://wiki.vuze.com/w/Good_settings


11 Chan M C, Ramjee R, TCP/IP Performance over 3G Wireless Links with

Rate and Delay Variation, Wireless Networks 11 (Jan. 2005), 81-97, DOI

10.1007/s11276-004-4748-7.

12 Bannister J, Mather P. M, Coope S, Convergence technologies for 3G

networks: IP, UMTS, EGPRS and ATM, John Wiley & Sons Inc, 2004.

13 Cisco Systems, NetFlow Performance Analysis, 2007.

14 Kadlicsek J., Pásztor G., Netfilter Performance Testing.

15 Haddadi H., Landa R, Moore A.W., Bhatti S, Rio M, Che X, Revisiting

the issues on netflow sample and export performance, Third International

Conference on Communications and Networking in China (2008), 442-446.

16 Legout A, Urvoy-Keller G, Michiardi P, Understanding BitTorrent: An

Experimental Perspective (2005).

17 Legout A, Liogkas N, Kohler E, Zhang L, Clustering and sharing in-

centives in bittorrent systems, Proceedings of the 2007 ACM SIGMETRICS

international conference on Measurement and modeling of computer systems

(2007), 312-.

18 Legout A, Urvoy-Keller G, Michiardi P, Rarest first and choke algorithms

are enough, Proceedings of the 6th ACM SIGCOMM conference on Internet

measurement (2006), 203–216.

19 Jelasity M, Bilicki V, Scalable P2P Overlays of Very Small Constant De-

gree: An Emerging Security Threat, Stabilization, Safety, and Security of

Distributed Systems, 399–412.

20 Castro M, Druschel P, Kermarrec A, Nandi A, Rowstron A, Singh A.,

SplitStream, Proceedings of the nineteenth ACM symposium on Operating

systems principles - SOSP ’03 (2003), 298-.

21 Montresor A, Jelasity M, PeerSim: A scalable P2P simulator, IEEE Ninth

International Conference on Peer-to-Peer Computing (2009), 99-100.

22 Eger K, Hossfeld K, Binzenhöfer A, Kunzmann G, Efficient simulation

of large-scale p2p networks, Proceedings of the second workshop on Use of

P2P, GRID and agents for the development of content networks - UPGRADE

’07 (2007), 9-.

Small degree BitTorrent 1172011 55 3-4


	Introduction
	Novelty and Contribution
	The number of the flows is important from the point of view of single nodes as well as the whole BitTorrent ecosystem
	Stability of data transfer flows
	Extended model for the BitTorrent protocol
	Separated data and signalling paths

	Outline

	Backgroung and the scalability problem
	The BitTorrent overlay
	The impact of the number of the concurent connections on the infrastructure
	Stability and Clustering


	Modeling the BitTorrent swarm
	Peer arrival and session length
	Neighbor selection
	Choking algorithm
	Piece selection strategy

	Small degree BitTorrent
	Signalling and data channels
	Modelling the tunnels

	Experimental Evaluation
	Simulation setup
	Results: properties of the overlay
	Results: performance effects of the separated signalling channel

	Conclusions

