
Ŕ periodica polytechnica

Electrical Engineering

55/3-4 (2011) 127–132

doi: 10.3311/pp.ee.2011-3-4.05

web: http://www.pp.bme.hu/ee

c© Periodica Polytechnica 2011

RESEARCH ARTICLE

4D Ariadne the Static Debugger of

Java Programs

Zalán Szűgyi / István Forgács / Zoltán Porkoláb

Received 2012-07-03

Abstract

Development environments support the programmer in nu-

merous ways from syntax highlighting to different refactoring

and code generating methods. However, there are cases where

these tools are limited or not usable, such as getting familiar

with large and complex source codes written by a third person;

finding the complexities of huge projects or finding semantic er-

rors.

In this paper we present our static analyzer tool, called 4D

Ariadne, which concentrates on these problems. 4D Ariadne

is a static debugger of Object Oriented applications written in

Java programming language It calculates data dependencies of

objects being able to compute them both forward and backward.

As 4D Ariadne provides only the direct influences to the user, it

can be considered as an alternative of traditional debuggers,

without executing the code. 4D Ariadne also provides dynamic

call graphs representing polymorphic properties of objects.

Keywords

4D Ariadne · static analysis · Java

Zalán Szűgyi

Department of Programming Languages and Compilers, Eötvös Loránd Univer-

sity, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary

István Forgács

4D SOFT Kft, H-1096 Budapest, Telepy u. 24., Hungary

Zoltán Porkoláb

Department of Programming Languages and Compilers, Eötvös Loránd Univer-

sity, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary

1 Introduction

During software development maintaining and refactoring

programs or fixing bugs are essential part of this process. Al-

though there are prevalent, good quality tools for the latter, there

are only a few really reliable tools to maintain huge projects:

finding the complexity of projects, finding the dependencies of

different modules, understanding large software codes written

by third party programmers or finding semantic errors.

In this paper we present 4D Ariadne [21] that helps the pro-

grammer or the software architect to deal with maintenance and

program comprehension. 4D Ariadne is a static debugger tool

of Object Oriented programs written in Java programming lan-

guage and it is based on data dependencies of the object. With

the aid of 4D Ariadne the programmer obtains the forward and

backward data dependencies of objects, browse the call graph,

extended with dynamic information at run time, or check the

complexity and the modification cost of one part of the program,

which can range from a single statement to a whole compilation

unit.

In this paper we focus on the background of 4D Ariadne. We

present the base data structures and methods used by the upper

layers of 4D Ariadne such as its Symbol Table, the 4D Ariadne

Syntax Tree, the Control Flow Graph, etc.

Our paper organizes the following way: Chapter 2 describes

the base structure of 4D Ariadne. The detailed presentation of

4D Ariadne comes in Chapter 3. Then the most important data

structures are described as the following: the 4D Ariadne Syn-

tax Tree in Chapter 4 , the Control Flow Graph in Chapter 5 ,

the way to handle arrays and collections in Chapter 6 , and the

connection between 4D Ariadne Syntax Tree and Control Flow

Graph in Chapter 7. The experimental results are presented in

Chapter 8. Chapter 9 shows the related work and Chapter 10 the

conclusion.

2 Background

The main task of the Parser module of 4D Ariadne is to

parse the Java project and build up the background data struc-

tures for the Points To Analysis (PTA) module. There

are four main data structures: the symbol table (ST), the 4D

4D Ariadne the Static Debugger of Java Programs 1272011 55 3-4

http://www.pp.bme.hu/ee

Ariadne Syntax Tree (DST), the Control Flow Graph

(CFG) and the Def Use Info (DUI).

The symbol table stores all the symbols discovered during the

parse phase of the source code. The algorithms of PTA calcu-

late both the aliases (reference variables referencing the same

objects) and the data dependencies of the variables, thus they

heavily read the symbol tables. Each compilation unit has an

own symbol table, which makes the search efficient. There is

an additional symbol table, called special symbol table, which

stores the symbols not related to compilation units (e.g. the class

variable of the built in type Object). We differentiate three

kinds of symbols: variables, methods and types. To enhance

the search the symbol table maintains three maps for these sym-

bol types. To provide fast access to the symbol tables, they are

always kept in the memory.

The DST represents a Java compilation unit for the 4D Ari-

adne. It is built in parallel with the symbol table during the

parse phase of the source code. Each compilation unit has its

own DST. The reader can learn more about DST in Chapter 4.

Control Flow Graphs (CFGs) represent the control structure of

the methods in a program. Thus, each method has an own CFG

while every statement in a method refers to a subgraph of a CFG.

While in theory more statements in a basic block are collected

into one node, in 4D Ariadne this is not possible otherwise some

information could be lost. More information is to be found about

CFG in Chapter 5.

To calculate data dependencies PTA needs to know where and

which variables are read or written. The Def Use Info (DUI)

provides this information. The variables in def set are modi-

fied by the corresponding subexpression, while the variables in

use set are read. A variable can be placed both in def set

and use set. For example the value of the variable in the ex-

pression x++ is both read and written. If we do not know yet

which will happen to the variable we put it in the undef set.

The nodes of either DST or CFG hold the DUI information.

3 4D Ariadne

4D Ariadne is a static debugger tool of Object Oriented pro-

grams written in Java programming language. It is based on data

dependencies of the object. In contrast with traditional debug-

gers, 4D Ariadne does not need to execute the program to debug

it, instead it analysis the source code. The key advantage of

static debuggers is to start static debuging from a variable at any

location. 4D Ariadne provides only direct influences to the user,

who can explore the code step-by-step. The major difference

between static and traditional debuggers is that while traditional

debuggers explore only one execution path for a given input,

the static debugger reveals all the possible dependence context

starting from a selected program location and variable.

4D Ariadne has been developed as an Eclipse plugin and it is

connected to the build system of Eclipse. This means that, when

Eclipse builds a compilation unit, 4D Ariadne parses it as well.

The build system of Eclipse by default applies the incremental

build mechanism, i.e. it immediately builds a compilation unit

if it has changed during the coding phase. Thus, the project is

always ready to run. With this mechanism the building time of

a project is split into small parts, and the programmer does not

need to wait for the end of a building process before running

the project. While 4D Ariadne is connected to the build system

of Eclipse, the project is always parsed and ready to start static

debugging.

4D Ariadne special PTA method calculates direct depen-

dences just in time (JIT). Since incremental build is also JIT,

thus the whole process is very fast.

4D Ariadne is able to calculate both forward and backward

data dependencies. The result of a forward dependence calcu-

lation is a set of variables, which depend on the value of the

starting variable. The result of the backward dependence calcu-

lation is that set of variables, which affect the value of the start-

ing variable. In Fig. 1 a screenshot can be seen of the last step

of the forward debug. A forward debugging has been started

from variable input. Those statements are shown on the right

hand side, which are affected by the starting variable. On the

left hand side, in the editor, the variables which are affected by

input are marked with green. The dependence chain is finished

with variable data. If we start a backward debug from data, we

get the same result in reverse order.

4D Ariadne also presents the run time calling context without

actually executing the code even at a phase when the code has

not been executable. This is called dynamic call graph.

4D Ariadne provides a Magic Score feature which measures

the maintenance complexity of a module [7, 12]. The Magic

Score estimates how much work is needed to modify the module

including regression testing and bug fixing.

With the aid of 4D Ariadne the programmer can get familiar

with large third party source codes. It helps to measure and

discover the complexity of huge projects, and it is very useful in

finding errors, maintaining understanding source code.

4 4D Ariadne Syntax Tree

The 4D Ariadne Syntax Tree (DST) represents a Java compi-

lation unit for the 4D Ariadne. The basic structure of the DST is

similar to the Abstract Syntax Tree (AST) [10] built by the com-

piler, however we store different information on DST nodes. In

some cases the AST is too detailed for us, so we contract or skip

some AST nodes when creating the DST. In other cases we need

more detailed information of a piece of the source code, thus we

add extra nodes into the DST, which do not exist in the AST. For

example we handle all the literals in the same way, however we

need extra DST nodes for logical expressions to be able to treat

short-cut operators.

DST nodes can hold three different main information types:

the Def Use Info, the connection to Control Flow Graphs,

and the File Info.

Only the nodes representing an expression or subexpression

contain Def Use Info (DUI). The DUI is null for statements.

Per. Pol. Elec. Eng.128 Zalán Szűgyi / István Forgács / Zoltán Porkoláb

Fig. 1. Forward static debug

Fig. 2. Forward static debug

The root of the subtree is a Variable Declaration node. Its child node
is a Binary Operation which refers to the initializer of variable declaration.
The children of Binary Operation node are the Symbol References which are
the arguments of the addition operation. The two Symbol Reference nodes
just refer to the variables a and b. At the Symbol Reference we do not know
anything about the variables’ future, thus we put them into the undef set.
When we parse the parent of these nodes, we realize that the two variables are
an argument of an addition, hence we put them into the use set. In the root of
this subtree we find a Variable Declaration node, where the declared variable
is x, and the initializer is the sum of the variables a and b. Thus, the x is put
into the def set and a and b are still in the use set.

Every DST node belonging to a statement contains a reference to their corre-
sponding head and tail CFG node. We describe the CFG in detail in the next
chapter.

The File Info stores the position of the code snippet belonging to the DST
node in a source file. We use this information to keep the connection between
the CFG and the source file.

5 Control Flow Graph

DeepTest’s CFG representation has exactly one start node, called entry, and at
least one end node, called exit. If there are uncatched exceptions thrown in a
method, an extra end node is added to the graph. Almost all the nodes have one
incoming and one outgoing edge. The exception is the entry node, which has no
incoming edge, the exit node which has no outgoing edges, and the predicate

nodes (pnode for short), which represent a decision in the program, thus they
have two outgoing edges. The nodes of the CFG contain further information:

– def use info of the variables

Fig. 2. Forward static debug

The DUI contains three set of variables: the def set, the use

set and the undef set. Below we can see a code snippet and

its corresponding piece of DST in Fig. 2:

int x = a + b;

The root of the subtree is a Variable Declaration node.

Its child node is a Binary Operation which refers to the

initializer of variable declaration. The children of Binary

Operation node are the Symbol References which are

the arguments of the addition operation. The two Symbol

Reference nodes just refer to the variables a and b. At the

Symbol Reference we do not know anything about the vari-

ables’ future, thus we put them into the undef set. When we

parse the parent of these nodes, we realize that the two vari-

ables are an argument of an addition, hence we put them into

the use set. In the root of this subtree we find a Variable

Declaration node, where the declared variable is x, and the

initializer is the sum of the variables a and b. Thus, the x is put

into the def set and a and b are still in the use set.

Every DST node belonging to a statement contains a refer-

ence to their corresponding head and tail CFG node. We de-

scribe the CFG in detail in the next chapter.

The File Info stores the position of the code snippet be-

longing to the DST node in a source file. We use this infor-

mation to keep the connection between the CFG and the source

file.

5 Control Flow Graph

4D Ariadne’s CFG representation has exactly one start node,

called entry, and at least one end node, called exit. If there are

uncatched exceptions thrown in a method, an extra end node is

added to the graph. Almost all the nodes have one incoming and

one outgoing edge. The exception is the entry node, which has

no incoming edge, the exit node which has no outgoing edges,

and the predicate nodes (pnode for short), which represent a

decision in the program, thus they have two outgoing edges. The

nodes of the CFG contain further information:

• def use info of the variables

• name of the called method, the actual parameters, etc.

See the following method and its corresponding CFG in

Fig. 3.

The child node of the entry node is a declaration and

assignment node representing the first line of a method: vari-

4D Ariadne the Static Debugger of Java Programs 1292011 55 3-4

int f(int a) {

int x = 7;

if (a < x)

x = a + x;

else

x = g(a);

return x;

}

– name of the called method, the actual parameters, etc.

See the following method and its corresponding CFG in Fig 3.

int f(int a) {

int x = 7;

if (a < x)

x = a + x;

else

x = g(a);

return x;

}

Fig. 3. The CFG of method f

The child node of the entry node is a declaration and assignment node
representing the first line of a method: variable declaration and initialization.

Fig. 3. The CFG of method f

able declaration and initialization. Then the if statement is

represented by CFG nodes between nodes if and end_if. The

predicate node (pnode) represents the condition part of the if

statement where the variables a and x are read. In the then

branch, there is only one assignment node where the variable x

is written and the variables x and a are read. In the else branch

first the method g is invoked, then the return value of g is as-

signed to x. The call and the assignment nodes represent this

in Fig. 3.

Though 4D Ariadne does not use constant propagation, we

need to handle short-cut logical operation. The following code

snippet shows the problem:

if(x != null && x.isValid())

Then the if statement is represented by CFG nodes between nodes if and
end if. The predicate node (pnode) represents the condition part of the if

statement where the variables a and x are read. In the then branch, there is
only one assignment node where the variable x is written and the variables x

and a are read. In the else branch first the method g is invoked, then the return
value of g is assigned to x. The call and the assignment nodes represent this in
Fig. 3.

Though DeepTest does not use constant propagation, we need to handle
short-cut logical operation. The following code snippet shows the problem:

if(x != null && x.isValid())

We should statically simulate all the possible cases at run time, therefore the
related CFG contains the case whether x is not null, and also the compound
case whether x is not null and x.isValid is true. To simulate this behavior we
need as many predicate nodes in the CFG, as many arguments we have in a
short-cut logical expression. Fig. 4 illustrates the CFG part of the code snippet
above.

Fig. 4. The CFG of a compound short-cut logical expression

6 Handling Arrays and Containers

DeepTest handles arrays and containers through a common interface. This in-
terface has three logical methods: set, get and update. The set method writes
the arrays and containers, the get reads them and the update reads and writes
them. DeepTest uses the update method for compound assignments (like: +=)
and prefix, postfix operations that can be either increment or decrement. These
methods appear only in the internal representation of the project, which do not
affect the source code.

Fig. 4. The CFG of a compound short-cut logical expression

We should statically simulate all the possible cases at run

time, therefore the related CFG contains the case whether x is

not null, and also the compound case whether x is not null and

x.isValid is true. To simulate this behavior we need as many

predicate nodes in the CFG, as many arguments we have in

a short-cut logical expression. Fig. 4 illustrates the CFG part of

the code snippet above.

6 Handling Arrays and Containers

4D Ariadne handles arrays and containers through a common

interface. This interface has three logical methods: set, get

and update. The set method writes the arrays and contain-

ers, the get reads them and the update reads and writes them.

4D Ariadne uses the update method for compound assignments

(like: +=) and prefix, postfix operations that can be either in-

crement or decrement. These methods appear only in the inter-

nal representation of the project, which do not affect the source

code.

For arrays Table 1 shows the usage of the logical interface,

where t denotes an array of int and x is a variable of int.

Tab. 1. Array handling

source internal representation

x=t[1]; x = get(t,1);

t[1] = x; set(t,1,x);

t[1] += x update(t,1,x);

For containers of the standard library of Java the parser puts

get and set flags to those methods of a container, which reads

Per. Pol. Elec. Eng.130 Zalán Szűgyi / István Forgács / Zoltán Porkoláb

or writes the elements. Then the corresponding logical methods

are used instead of the flagged methods. In contrast with arrays,

in case of containers the update logical method is not used.

Table 2 shows how the parser flags the method of LinkedList

container.

Tab. 2. Handling linked list

method flag

get get

getfirst get

getlast get

set set

7 Connection Between DSTs and CFGs

DST is an internal representation of the Java project and

each compilation unit has an own DST. The nodes of a DST

refer to the corresponding part of the CFG. Node method

declaration refers to the whole CFG while its children re-

fer to the proper part of the CFG. The ancestors of node method

declaration, however, refers to class-level entities. See the

following example and Fig. 5, which shows the connection be-

tween DST and CFG.

int f() {

int x = 7;

return g(x);

}

On the left hand side of the figure there is the subtree

of DST. On the right hand side there is the CFG. Node

MethodDeclaration refers to the whole CFG (from the

entry node to the exit node). Node Block refers only

to the statements in the method (from the declaration

and assignment to the function return). The subgraph

of CFG from node call to node function return be-

longs to the ReturnStatement DST node, and DST node

MethodInvocation refers only to the call node in the CFG.

8 Experimental Results

In this chapter we present our experimental result about ef-

fectiveness of 4D Ariadne. 4D Ariadne has two main modules,

the parser and the analyzer. The effectiveness depends on this

two modules. The analyzer works as a Just In Time analyzer

returning prompt answer to any static debug query. The parser

module feeds the analyzer module, thus for the first time the

whole project has to be parsed before the analysis starts.

Table 3 shows the time consumed to parse projects of different

size.

To parse a half a million line project takes about quarter an

hour. It might be a bit slow, but the parser module is relying on

the incremental build system of Eclipse, which means that the

whole project needs to be parsed only once. Later it is already

Tab. 3. Elapsed time to parse projects

Lines of code time

10000 10 sec

100000 2 min

500000 15 min

enough to re-parse the modified compilation units only, which

is significantly faster.

Overall, with the incremental build and the on demand ana-

lyzer we get a useful and effective static analyzer tool for Java

projects.

9 Related Work

In Eötvös Loránd University a refactoring tool is being de-

veloped for Erlang programming language, called RefactorErl

[8, 11]. They build control flow graphs from program slicing

module and they detect parallelizable source code with it [13].

Coverity [17] is developed to find defects in code during the

early phase of development. It is able to analyze codes written

in C, C++, C# and Java languages. Coverity has both static and

dynamic analyzers.

Klocwork [19] developed a source code analysis product suite

that is used to mitigate critical issues in code early in the devel-

opment process. Relying static analysis techniques on C, C++,

Java, and C# source code, it provides accurate detection of qual-

ity and security issues prior to code check-in.

Parasoft [20] provides a fully-integrated suite for automating

a broad range of practices proven to improve software devel-

opment team productivity and software quality. It covers tools

from static analysis, to peer code review, to unit/component test-

ing, to runtime error detection at the unit and application level.

It supports Java, C, C++ and .NET languages.

FindBugs [18] is an open source program developed in Uni-

versity of Maryland which looks for bugs in Java code. It uses

static analysis to identify hundreds of different potential types

of errors in Java programs. FindBugs operates on Java byte-

code rather than source code. The software is distributed as a

stand-alone GUI application. There are also plug-ins available

for Eclipse, Netbeans, IntelliJ IDEA, and Hudson.

Lint [3, 9] is a program to detect suspicious and non-portable

constructs in C language source and it is perform static analysis

of source code.

Columbus developed by University of Szeged establishes

source code quality assurance solutions such as static and dy-

namic source code analysis [4, 5], measurement and auditing,

reverse engineering and re-documentation [2, 14], support for

change management [6], assessment and optimization of soft-

ware testing and continuous measurement [1].

Neither of these tools, however, support static debugging

based on just in time data dependence analysis of object oriented

code, therefore their usage is different from 4D Ariadne.

4D Ariadne the Static Debugger of Java Programs 1312011 55 3-4

Fig. 5. Connection between DST and CFG

return). The subgraph of CFG from node call to node function return be-
longs to the ReturnStatement DST node, and DST node MethodInvocation

refers only to the call node in the CFG.

8 Experimental Results

In this chapter we present our experimental result about effectiveness of DeepTest.
DeepTest has two main modules, the parser and the analyzer. The effectiveness
depends on this two modules. The analyzer works as a Just In Time analyzer
returning prompt answer to any static debug query. The parser module feeds
the analyzer module, thus for the first time the whole project has to be parsed
before the analysis starts.

Table 3 shows the time consumed to parse projects of different size.

Lines of code time

10 000 10 sec

100 000 2 min

500 000 15 min
Table 3. Elapsed time to parse projects

To parse a half a million line project takes about quarter an hour. It might
be a bit slow, but the parser module is relying on the incremental build system
of Eclipse, which means that the whole project needs to be parsed only once.
Later it is already enough to re-parse the modified compilation units only, which
is significantly faster.

Fig. 5. Connection between DST and CFG

10 Conclusion

In this paper we presented our tool called 4D Ariadne, which

is a static debugger based on static analysis and data dependen-

cies of Object Oriented programs written in Java programming

language. With the aid of this tool, programmers can easily un-

derstand the source code written by a third party programmer,

even if it is huge and complex. The tool helps the programmer

discover the maintenance complexity of the code. Finding com-

plex semantic errors is also efficient with 4D Ariadne.

In this paper we focused on the compilation part of 4D Ari-

adne. We detailed the methods and data structures which parse

the source code and feed the upper layers that compute the data

dependencies and process static analysis.

Finally, we presented our benchmark results, which proved

that our tool – with the aid of the incremental build technique

and JIT dependence calculation – is efficiently usable with huge

industrial projects.

References

1 Bakota T., Beszédes A, Ferenc R, Gyimóthy T, Continuous Soft-

ware Quality Supervision Using SourceInventory and Columbus, Compan-

ion Material of the 30th International Conference on Software Engineering

(ICSE’08), Informal Research Demonstrations (May 2008), 931–932.

2 Beszédes A, Ferenc R, Gyimóthy T, Columbus: A Reverse Engineering

Approach, Pre-Proceedings of IEEE Workshop on Software Technology and

Engineering Practice (STEP’05) (September 2005), 93–96.

3 Darwin I F, Checking C Programs with Lint, O’Reilly, 1991.

4 Ferenc R, Beszédes A, Gyimóthy T., Fact Extraction and Code Audit-

ing with Columbus and SourceAudit, Proceedings of the 20th International

Conference on Software Maintenance (ICSM’04) (September, 2004), 513.

5 Ferenc R, Beszédes A, Gyimóthy T., Extracting Facts with Columbus

from C++ Code, Tool Demonstrations of the 8th European Conference on

Software Maintenance and Reengineering (CSMR’04) (March, 2004), 4–8.

6 Ferenc R, Gustafsson J, Müller L., Paakki J, Recognizing Design Pat-

terns in C++ programs with the integration of Columbus and Maisa, Acta

Cybernetica 15 (2002), 669–682.

7 Hericko M, Zivkovic A, Porkoláb Z, A Method for Calculating Acknowl-

edged Project Effort Using a Quality Index, Informatica (Slovenia) 31 (2007),

431-436.

8 Horváth Z, Lövei L, Kozsik T, Kitlei R, Vig A., Nagy T, Tóth M., Király

R., Modeling semantic knowledge in Erlang for refactoring In Knowledge

Engineering: Principles and Techniques, Proceedings of the International

Conference on Knowledge Engineering, Principles and Techniques, KEPT

2009 54 (Jul 2009), 7–16.

9 Johnson S, Lint, a C program checker, Computer Science Technical Report

65 (December 1977).

10 Jones J, Abstract Syntax Tree Implementation Idioms, Proceedings of the

10th Conference on Pattern Languages of Programs (PLoP2003).

11 Kozsik T, Csörnyei Z, Horváth Z, Király R, Kitlei R., Lövei L, Nagy

T, Tóth M, Vig A., Use cases for refactoring in Erlang, Central European

Functional Programming School 5161/2008 (2008), 250–285.

12 Sipos A, Pataki N, Porkoláb Z, On multiparadigm software complexity

metrics, Pu.M.A 17 (2006), no. 3-4, 469-482.

13 Tóth M, Bozo I., Horváth Z, Tejfel M, nth order flow analysis for Erlang,

8th Joint Conference on Mathematics and Computer Science, MACS 2010

(2010).

14 Vidács L, Beszédes A, Ferenc R, Columbus Schema for C/C++ Prepro-

cessing, Proceedings of the 8th European Conference on Software Mainte-

nance and Reengineering (CSMR’04) (March 2004), 75–84.

15 Weiser M., Program slicing, Proceedings of the 5th International Conference

on Software Engineering (March 1981), 439–449.

16 Weiser M., Program slicing, IEEE Transactions on Software Engineering 10

(July 1984), no. 4, 352–357.

17 http://www.coverity.com/.

18 http://findbugs.sourceforge.net.

19 http://www.klocwork.com/.

20 http://www.parasoft.com/.

21 http://www.deeptest.com/.

Per. Pol. Elec. Eng.132 Zalán Szűgyi / István Forgács / Zoltán Porkoláb

http://www.coverity.com/
http://findbugs.sourceforge.net
http://www.klocwork.com/
http://www.parasoft.com/
http://www.deeptest.com/

	Introduction
	Background
	4D Ariadne
	4D Ariadne Syntax Tree
	Control Flow Graph
	Handling Arrays and Containers
	Connection Between DSTs and CFGs
	Experimental Results
	Related Work
	Conclusion

