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Abstract

Program slicing is a well-known technique that utilizes de-

pendency graphs and static program analysis. Our goal is to

perform impact analysis of Erlang programs based on the re-

sulted program slices, that is we want to measure the impact

of any change made on the source code: especially we want to

select a subset of test cases which must be rerun after the modifi-

cation. However impact analyzer tools exist for object oriented

languages, the used dependency graphs heavily depend on the

syntax and semantics of the used programming language, thus

we introduce dependency graphs for a dynamically typed func-

tional programming language, Erlang.
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1 Introduction

Program slicing [14] is the most well-known method used to

perform impact analysis. Different methods are available to per-

form program slicing (e.g. dataflow equations, information flow

relations, dependency graphs), but the most popular techniques

are based on dependency graphs built form the program to be

sliced [7]. These graphs include both the data and the control

dependencies of the program.

There are many ways to use program slicing during the soft-

ware life-cycle. It can be used in debugging, optimization, pro-

gram analysis, testing or other software maintenance tasks. For

example, using program slicing to detect the impact of a change

on a certain point of the program could help to the developer to

select the subset of the test cases which could be affected by a

program code change.

Our goal is to adopt the existing methods and to develop new

algorithms for program slicing of programs written in a dy-

namically typed functional programming language, Erlang [2].

Therefore we use three kinds of dependencies: data, behaviour

and control dependency information. The first two kinds of de-

pendencies have been studied in previous papers [9, 13], so in

this paper we focus on control dependency. The control depen-

dency graph is based on the control-flow graph of the Erlang

programs.

The dependency graphs are useful to reach the mentioned

goal and transform the program slicing to a graph reachability

problem. We want to calculate the forward slices of the pro-

gram, especially for those program parts which are changed af-

ter a refactoring [3]. Calculating the forward slices could help

the programmers to reduce the number of test cases to be rerun

after the transformation.

Our project’s goal is to measure the impact of refactorings

made by Refactor-Erl. RefactorErl [5,6] is a refactoring tool for

Erlang. It was originally designed to be a framework for source

code transformation, but it is also a static analyzer tool. It has

24 implemented refactorings, features for module and function

clustering, a user defined semantic query language to support

code comprehension and a query language to query structural

complexity metrics of Erlang programs.
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The rest of this paper is structured as follows. Section 2

describes the Erlang syntax. Section 3 introduces the Erlang

control-flow and dependency graph. Section 4 presents related

work, and Sections 5 and 6 conclude the paper and discuss fu-

ture work.

2 A partial model for Erlang programs

In the following sections we introduce formal rules to define

the control flow graph for Erlang. In the presented rules we use

the Erlang syntax described in Figure 1. This syntax is a subset

of the Erlang syntax presented in [4]. The symbol P denotes the

Erlang patterns, E denotes the Erlang (guard)expressions and F

denotes the named functions.

The presented model is not complete and contains some sim-

plifications, these are:

• Some expression types (try, if) are left out form the table, be-

cause they can be handled similarly to the presented ones.

• The attributes of the Erlang modules do not carry relevant

information in the meaning of control and data dependencies,

thus they are also left out from the table.

• In fact the guards in Erlang are expressions with some restric-

tions, but we represent the guards as simple expressions. The

differences between them are that the guards can call just a

few functions ("guard" built in functions or type test), the in-

fix guard expressions are arithmetic or boolean expressions,

or term comparisons and guards can contain only bound vari-

ables.

• The receive expression has an optional "after" clause that is

not present in the formal description.

• ◦ denotes the infix expressions. "!" is a special infix expres-

sion: it denotes the message passing in Erlang.

3 Retrieving dependency information

3.1 A representation of the Erlang programs

For building the dependency graph we use the Semantic Pro-

gram Graph (SPG) of RefactorErl. The SPG is a three layered

graph, which stores lexical, syntactic and semantic information

about the Erlang programs. The base of the graph is an abstract

syntax tree and different static analyzers extend the AST with se-

mantic information, for example the call graph of the program,

the record usage, or the binding structure of the variables. In-

formation retrieval is available through a query language, which

is quicker and more efficient than traversing the abstract syntax

tree of the program.

The analyzer framework of RefactorErl is asynchronous and

incremental. The SPG is stored in Mnesia (built in database

for Erlang), and after each syntactic transformation the analyzer

framework restores the necessary semantic information in the

graph and in the database, so we do not need to reanalyze the

V ::= variables (including _, the underscore pattern)

A ::= atoms

I ::= integers

K ::= A | I | other constants (e.g. strings, floats)

P ::= K | V | {P, . . . , P} | [P, . . . , P|P]

E ::= K | V | {E, . . . , E} | [E, . . . , E|E] |

[E|P<-E] | P = E| E ◦ E |

E!E | (E) | E(E, . . . , E)|

case E of

P when E -> E, . . . , E;

.

.

.

P when E -> E, . . . , E

end |

receive

P when E -> E, . . . , E;

.

.

.

P when E -> E, . . . , E

end

F ::= A(P, . . . , P) when E -> E, . . . , E;

.

.

.

A(P, . . . , P) when E -> E, . . . , E

Fig. 1. The used Erlang syntax subset

programs before each transformation, just an initial load is nec-

essary. The analyzer framework guarantees the semantic con-

sistency of the graph using efficient incremental analysis, when

a subexpression is transformed (insert/remove/update/replace)

only the affected expression and its necessary context will be re-

analyzed. Since we do not want to rebuild the whole dependency

graph after each refactoring step, we should make the used flow

analysis as incremental as possible.

3.2 Dependency information

We have to consider different kinds of dependency informa-

tion to perform program slicing. The following dependencies

must be taken in account: data, be haviour and control depen-

dency. In this paper our focus is on control dependency. The

Dependency Graph (DG), that is used to perform program slic-

ing, contains each kinds of dependencies. The DG contains

the Control Dependency Graph (CDG) and additional data and

behaviour dependency edges. The CDG is built based on the

Control-Flow Graph (CFG) of the Erlang program.

The steps in creating the DG are:

• Create the CFG of the needed Erlang functions separately

• Create the intrafunctional CDG from the CFG

• Interconnect the CDG-s of the functions

• Add data and behaviour dependency edges to the resulted in-

terfunctional control dependency graph.

The data, behaviour and control flow edges could be calcu-

lated in an incre- mental way (based on the compositional rules:

Section 3.3 and [9, 13]. After a refactoring we should rebuild

the intrafunctional CDG-s only for the changed functions and

replace the old version in the interfunctional CDG.
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3.3 Control-Flow Graph

We build the control flow graph of the Erlang program based

on the formal rules defined in Figures 3 and 2 and 4. The rules

correspond to the semantics of Erlang presented in [4].

The notation on the figures are: e ∈ E is an expression, g ∈ E

is a guard expression, p ∈ P is a pattern and f ∈ F is a function.

e′ ∈ E is a dummy node in the controlflow graph, its role is to

avoid unnecessary loops in the CFG. There are summary nodes

(ret) to represent return value in case of branching evaluation.

The relation −→ represents a direct control flow relation between

two nodes. The relations
call
−−→,

rec
−−→,

send
−−−→ represent an auxiliary

relation which indicate dependency between the nodes of dif-

ferent functions (for details, see Section 3.4). In the rest of this

section we want to describe some of the control flow rules.

Functions The control flow model of an Erlang function is

shown on Figure 2:Function. When a function is called the first

matching pattern should be selected at first. If the pattern on the

first function clause does not match (p1
1
, . . . , p1

n

no
−−→ p2

1
, . . . , p2

n),

then the second clause follows. Otherwise (p1
1
, . . . , p1

n

yes
−−→ g1)

the guard expression is evaluated, and if it holds, then the con-

trol flows to the body of the function (g1

yes
−−→ e1

1
). Otherwise the

control flows to the second clause, etc. The control flow among

the expressions in the body of the function and the last expres-

sion returns (ei
li
−→ ret f /n).

Match expressions. On Figure 3:Match exp. the rule e′
0
−→ e1

means that when the match expression gets the control the e1 is

evaluated at first, and then the control flows to e0.

Infix expressions Figure 3:Infix exp. shows that before eval-

uating an infix expression the left and then the right hand side

subexpression is evaluated.

Compound data structures. In the evaluation of compound

data structures (Figures 3: Tuple exp. and List exp) the control

flows from left to right direction.

List comprehensions. List comprehensions (Figures 3: List

gen.) are like loops in the imperative languages. At first we

take one element of the list e2(e2 −→ p) and then we evaluate the

expression e1. After it the control flows back to e2(e1 −→ e2).

When e2 becomes empty then the control flows back to e0(e1 −→

e0).

Conditional expressions. The rule of a conditional expres-

sion (Figure 3: Case exp.) is similar to the rule of the function

(Figure 2: Function.), but before matching the patterns e is eval-

uated.

Function calls. In case of the parameters of a function call

(Figure 4: Fun. call.) the control flows from left to right. Then

the evaluation should pass to the called function. Therefore the
call
−−→ edge indicate an interfunctional dependency, which should

be considered during building the control dependency graph.

Receive and send expressions. Similarly to the function calls

the rules of the receive and the send expressions (Figure 4: Re-

ceive. and Send.) also contain auxiliary edges (
rec
−−→,

send
−−−→) indi-

cating that the evaluation depend on the sent/received messages.

3.4 Compositional CDG

As we want to define a dependency graph that can be main-

tained we follow the compositional approach described in [11].

First we build the CFG based on the formal rules described in

Section 3.3. For every function in the program the CFG is built

separately, thus we obtain so called intrafunctional CFG for ev-

ery function. This CFG does not follow the call function calls,

but denotes the fact of the function call
call
−−→ and this informa-

tion will be used while building the post-dominator tree and the

control dependency graph (CDG). This edge is called potential

control-flow edge.

The next step in building the CDG is to construct the post-

dominator tree (PDT). We use the algorithm presented in [8].

There are two types of edges in the postdominator tree, these

are: immediate postdominator and potential postdominator. The

post-dominator tree is extended with the potential postdomina-

tor arcs, that the next expression after the function call poten-

tially postdominates the function call. If it turns out at compos-

ing the CDGs that it is not the case, the edge will be replaced

corresponding to the context, or can be deleted.

We now have the CFGs and PDTs of the functions built in-

trafunctionally. Using the CFG and the corresponding PDT we

build the intrafunctional CDG that contains the direct control

dependencies and the potential control dependencies inherited

from the potential post-dominators. The potential control de-

pendency edges will be resolved at the time of composing the

intrafunctional CDGs.

The next level in building the CDG for the entire program is

to compose the intrafunctional CDG of the functions. In this

process we change the potential control dependence edges to

real control dependencies or indirect control dependence edges

corresponding to the calling context of the functions.

calc_dg(SPG)->

FlowGraph_List = calc_cfg(SPG),

CDG_List =

lists:map(fun calc_cdg/1,

FlowGraph_List),

Comp_CDG = compose_cdg(CDG_List),

Intrafunc_CDG =

resolve_potential_dep(Comp_CDG),

_DG = add_behav_dep(add_data_dep(CDG)).

Fig. 5. Draft algorithm for creating the dependency graph

When we build the intrafunctional CDG we also have to re-

solve the potential dependency indicated by the edges
rec
−−→ and

send
−−−→ . The received message influences the control, thus adds

dependency edges to the graph. We have to extend our data- and

behaviour-flow model with message passing analysis.

3.5 Slicing

Our main goal is to select a subset of Erlang test cases which

has to be rerun after some kinds of change on the source code,

therefore we want to perform static froward slicing. A forward
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Expressions CFG edge

f /n→ p1
1

{p1
1
, . . . , p1

n}
yes
−−→ g1

{p1
1
, . . . , p1

n}
no
−−→ {p2

1
, . . . , p2

n}

.

.

.

{pm−1
1
, . . . , pm−1

n }
yes
−−→ gm−1

{pm−1
1
, . . . , pm−1

n }
no
−−→ {pm

1
, . . . , pm

n }

{pm
1
, . . . , pm

n }
yes
−−→ gm

{pm
1
, . . . , pm

n }
no
−−→ error

f /n : g1
yes
−−→ e1

1

f (p1
1
, . . . , p1

n) when g1 → e1
1
, . . . , e1

l1
;

.

.

.

(Function)
.
.
. gm−1

yes
−−→ em−1

1
,

f (pm
1
, . . . , pm

n ) when gm → em
1
, . . . , em

lm
gm−1 no

−−→ {pm
1
, . . . , pm

n },

gm
yes
−−→ em

1

gm no
−−→ error

e1
1
→ e1

1
, . . . , e1

l1−1
→ e1

l1
,

.

.

.

em
1
→ em

2
, . . . , em

lm−1
→ em

lm
,

e1
l1
→ ret f /n

.

.

.

em
lm
→ ret f /n,

Fig. 2. Control-flow edges

slice contains from those expressions of the program that are

dependent on the value of the modified expression.

The slicing criteria is a vertex in the graph, that represents the

modified expression in the DG. It is also possible that the slicing

criteria is a set of vertices, if the change affects more than one

expression.

Program slicing is a graph reachability problem on the re-

sulted Dependency Graph. We have to traverse the DG starting

from the slicing criteria, and the resulted slice contains all the

vertices from the DG that are reachable from the source. The

resulted slice will be a non executable slices of the program.

Designing the graph reaching and traversing algorithms are in

progress.

4 Related work

There are some projects that work with test case selection in

case of object-oriented languages. For example, the paper [1]

gives a formal mapping between design changes and a classi-

fication of regression test cases (reusable, retestable, obsolete)

using the Unified Modeling Language.

Using program slicing to measure the impact of a change in

case of functional languages is not really widespread, but some

publications are dealing with flow analysis of functional lan-

guages. Shivers’ thesis [10] presented the theory of flow analy-

sis of higher order languages, and that is applied for optimiza-

tion in compilers. Different flow analysis was applied for im-

proving the testing process in Erlang [15].

In the thesis [11] a language independent control dependency

analysis was studied and applied for example to software archi-

tecture descriptions [12].

5 Conclusions

Our goal is to perform impact analysis through program slic-

ing. Specially we want to measure the impact of a change on

a set of test cases, and select a subset from it which should be

retested after the source code modification.

There are many forms of program slicing, we choose the de-

pendency graph based analysis. The Dependency Graph of the

program depends on the syntax and semantics of the used lan-

guage. In this paper we focused on the dynamically typed func-

tional programming language, Erlang.

The Dependency Graph contains control, data and behaviour

dependency information about the Erlang programs. In this pa-

per we presented the controlflow graphs of Erlang programs and

a method to build the interfunctional control dependency graph

from it. The dependency graph contains the interfunctional con-
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Expressions CFG edges

(Match exp.) e0 : p = e1 e′
0
→ e1, e1 → e0

(Infix exp.) e0 : e1 ◦ e2 e′
0
→ e1, e1 → e2, e2 → e0

(Parenthesis) e0 : (e1) e′
0
→ e1, e1 → e0

e0 : e′
0
→ e1

(Tuple exp.) {e1, . . . , en} e1 → e2, . . . , en−1 → en

en → e0

e0 : e′
0
→ e1

(List exp.) [e1, . . . , en |en+1] e1 → e2, . . . , en → en+1

en+1 → e0

(List gen.) e0 : e′
0
→ e2, e2 → p, p→ e1

[e1 ||p← e2] e1 → e2, e1 → e0

e′
0

e
−→, e→ p1,

p1

yes
−−→ g1, p1

no
−−→ p2,

.

.

.

pn1

yes
−−→ gn−1, pn−1

no
−−→ pn,

pn

yes
−−→ gn, pn

no
−−→ error,

e0 : g1

yes
−−→ e1

1
, g1

no
−−→ p2,

case e of
.
.
.

p1 when g1 → e1
1
, . . . , e1

l1
; gn−1

yes
−−→ en−1

1
, gn−1

no
−−→ pn,

(Case exp.)
.
.
. gn

yes
−−→ en

1
, gn

no
−−→ error,

pn when gn → en
1
, . . . , en

ln
e1

1
→ e1

2
, . . . , e1

l1−1
→ e1

l1
,

end
.
.
.

en
1
→ en

2
, . . . , en

ln−1
→ en

ln
,

e1
l1
→ ret case

.

.

.

en
ln
→ ret case,

ret case→ e0

Fig. 3. Control-flow edges

trol dependency graph extended with data and behaviour depen-

dency edges. The program slice could be calculated by travers-

ing the dependency graph. The resulted slice is a non executable

static forward slice of the program.

6 Future work

The presented DG could be improved and refined in differ-

ent ways. One of them is the usage of n-th order flow analysis.

The presented model based on a 0-th order data flow graph. One

of the disadvantage of that graph is that we can not distinguish

the different function calls and that make the graph imprecise.

An other improvement on the data flow graph is an accurate

message passing analysis which can also improve the control

dependency graph.

Regarding the dynamic nature of the language the static anal-

ysis is not straightforward, but some kinds of extra knowledge

about the library functions could help to improve the accuracy

of the graph. An example could be the usage of generic servers

(gen_servers) to implement client-server applications [2]. In

this case the library functions hide a lot of information about

the control flow, but we know that each gen server call indicate

a calback function call which can be analyzed instead of the

gen_server call.
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