
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 42, NO. 1, PP. 5-24 (199B)

TOWARDS MODELS OF REALISTIC COMPUTING
MACHINES IN COMPUTER SCIENCE

?v1onica ALDERIGHlx, Andrea BORDONl xx , Giovani A. MOJOLIxx,
Alessandro SALA xxx, Giacomo R. SECHlx and S. VINATl xX

• Istituto di Fisica Cosmica e Tecnologie Relative
Consiglio Nazionale delle Ricerche

Via Bassini 15, 1-20133 Milano, Italy
Tel: +39-2-23699332, Fax: +39-2-2362946,

Email:{monica.giacomo}@ifctr.mi.cnr.it
•• Dipartimento di Fisica

Universita' degli Studi di Milano
Via Celoria 21, 1-20133 Milano, Italy

••• Dipartimento di Matematica
Universita' degli Studi di Milano

Via Saldini 50, 1-20133 Milano, Italy

Received: September 30, 1997

Abstract

The paper presents an approach to system modelling in design of both hardware and
software systems. It is based on the definition of models of machines that can be directly
implemented. The paper shO\vs how to render less abstract and more realistic the ab
stract machines defined by theoreticians, so that they can capture implementation and
technological-oriented aspects, such as testability, and allow an easy transition to final
implementations. A realistic abstract machine for lambda-calculus is then presented and
the design of system for lambda-expressions evaluation is illustrated. The architecture
chosen for the system is based on a collection of finite state automata, evolving concur
rently and communicating via a broadcast system. Some conclusive remarks about the
use of realistic models arc finally drawn.

J(eywords: system models abstract machines, system design, functional languages imple
mentation.

1. Introduction

The central issue of computing system design is the definition of models.
Models are concepfual descriptions of systems, highlighting their most sig
nificant features and ignoring others, immaterial for the considered level of
abstraction. Design can be viewed as a process passing through different
levels of descriptions from requirement analysis to final implementations.
Regardless the specific design methodologies adopted, hardware and soft
ware design aims at filling the gap between two worlds, one highly abstract,
in which problems are formulated, the other more concrete, in which the
solutions to the problems are implemented by target technologies.

6 M. ,'.LDERIGHI et al.

The validation and verification of actual implementations are the ul
timate goals of design and also here models play a fundamental role. On
the basis of the agreement between the implementations and their specifica
tions (models), the implementations goodness can be assessed. Verification
involves checking that the built system, a program or an electronic device,
conforms to its specification, while validation involves checking that the
built system as implemented meets the expectations of the user.

Testing is an important part of validation and verification of implemen
tations, as these cannot be assumed to be error-free. Testing has been the
only post-implementation validation and verification technique for a long
time. Testing is a dynamic technique. It involves exercising the implemen
tation on a set of suitable test cases, observing its behaviour and looking
for unexpected behaviours. ~owadays testing is used together with static
techniques, such as system inspections, analysis and formal verifications.
Although the presence of static techniques, the role of testing remains fun
damental. as static technique can only check the correspondence between
an implementation and its specification. and cannot reveal non-functional
characteristics of an implementation.

Testing is to be understood as a mean to reveal the presence of errors in
implementations. It can never show its correctness and the absence of errors.
In this sense, a successful test can be considered one which establishes the
presence of one or more errors in the built system. The emphasis given to
design for testability techniques witnesses the importance of testing, as a
mean for observing and measure the behaviour of implemented systems.

The paper presents an approach that contributes to system modelling
in design. The approach deals \vith the design of machines, but it can be
extended to design of programs as \\·ell. \Ve are interested in the definition
of models of machines that can be directly implemented, and subject of the
paper is one of the possible ways to achieve this. It is shown how to render
less abstract and more realistic the abstract machines defined by theoreti
cians, so that they can capture implementation and technological-oriented
aspects, such as testability. and allow an easy transition to implementation.

Specifically we focus on lambda-machines as they constitute a very
interesting subject of study. Indeed lambda-calculus is the representative
of functional languages and in general of all context sensitive languages,
which are very important for the definition of new computational paradigms
(BACKUS, 1978). Moreover lambda-calculus is adopted in order to give the
oretical foundations of computation (GIRARD et aL 1989). For instance in
intuitionistic type theory lambda-calculus is used as theory of expression and
the reduction rules are defined as inference rules of the theory (I\ORDsTROM

et al., 1990).
Aim of the paper is the definition of a realistic abstract machine for

lambda-calculus and the design of a system for lambda-expression evalua
tion. The architecture chosen is based on collection of finite state automata,
evolving concurrently and communicating via a broadcast system.

TOWARDS MODELS OF REALISTIC COMPUTING MACHINES 7

At first glance the design and implementation of a machine for lambda
calculus may appear a mere academic exercise, a completely unuseful task
from a practical point of view. We think, instead, this study can be useful
to investigate and understand more general subjects, such as how to develop
high-level machines that employ alternative computational paradigms and
languages, and how technology features and specific design requisites, such
as testability and error detection, impact on the model of the system to be
built and on the formal definition of the language.

Section 2 overviews the main contributions to lambda-calculus and re
lated topics. The characteristics of digital system design are summarised
in Section 3. Section 4 presents an analysis of lambda-machines, as found
in literature and introduces the requisites for realistic machine models. A
suitable definition of lambda-calculus is given in Section 5, while the speci
fications of data for representing the corresponding lambda-expressions are
illustrated in Section 6. A realistic lambda-machine model is then shown
in Section 7, and finally the architecture of the a system implementing the
realistic model devised is sketched in Section 8.

2. Related Works

The functional approach as response to the need of being liberated from
the von Neumann style, both in programming and in computer machines
is firstly presented by Backus in (BACKUS, 1978). He claims for machines
showing greater mathematical properties, in order to prove facts about pro
grams. He also intends to improve the foundation of denotational semantics,
because denotational semantics makes it possible to understand the domain
and spaces of functions, implicitly involved in the traditional programs and
computational models, such as Turing machine, finite state automata, etc.
At the same time with FP and FFP languages, he provides a theoretical
formulation of the operational semantics to its functional machines.

The fundamental dichotomy in logic between syntax, proofs and sense
on one hand, and denotation, semantics and algebra on the other is investi
gated by Girard in (GIRARD et al., 1989). In an attempt to reduce this gap,
he explains that the tradition of denotational semantics is more developed
than that of syntax or operational semantics. Operational semantics is very
important in computer science, for it is the common foundation for defining
both abstract and real machines. However, computer science posed very
important and partially unsolved theoretical problems, that caused, at least
partially, a disaster for an evolution of operational semantics parallel to that
of denotational semantics.

A basic theoretical support to operational semantics, putting in evi
dence the underlying logic and its symmetries, can be offered by the logistic
calculus of Gentzen (GE);TZEN, 1969).

8 M. ALDERIGHI et al.

On this basis, Hannan (HAl\'l\'Al\' et al., 1990, HAl\'l\'A:\, 1991) connects
demonstration theory and sequent calculus with abstract machines, provid
ing thus an operational semantics to the abstract machines. The abstract
machines are presented by theoreticians as framevlOrks for studying the op
erational semantics of programs; they are often introduced an intermediate
level for the machine description in order to implement the programming
languages. Hannan generalises the concept and presents systems of abstract
evaluations produced by means of correctness preserving transformations.

The prototype or archetype of abstract functional machine is the Stack,
Environment, Control and Dump machine (SECD) by Landin (LA:\D1:\,
1964), whose correctness proof is provided by Plot kin (PLOTK1:\, 1975).
Successive developments are mainly improvements of this machine, employ
ing more accurate models of functional languages, such as category theory,
instead of Landin's applicative structures.

The syntactic equivalence between lambda-calculus and category the
ory is illustrated by Cousineau in (COCS1='iEAC et al., 1987). According to
this equivalence, a Categorical Abstract Machine (CA.\I) is shown. It pro
cesses abstractions similarly to the SECD and makes it possible a simpler
proof of the semantics correctness.

One of the peculiar characteristics of the CAM and other abstract
machines, such as the reduction machine by Turner (TuR:\ER, 1979), is that
they need a compiler for translating the programs (lambda-expressions or
functional programs) into proper strings of machine instructions. Therefore
the correctness proof of the machine programs depends on both the compiler
and the machine.

Other interesting examples of abstract machines are the Three Instruc
tions Machine (TINl) (FAIRBAIRl\' et aL 1987) and the Linear Abstract
Machine (LAM) (LAFO!\T, 1988).

3. On Digital System Design

Design deals with models at different levels of abstractions. Also at the
lowest level, it deals with models of technology rather than with a specific
technology, either software or hardw·are. In order to satisfy requisites of
testability and error detection in implementation, models are to have some
characteristics. For instance, in the case of digital system design considered
in this paper, they possess the following features:

• They are discrete systems, i.e. entities whose behaviour and function
ing are described by discrete quantities, in time and resources;

Cl) They are structured in parts, sub-systems;
@l Sub-systems can be analysed independently from each other. A sub

system can be modified or replaced without altering the remaining sub-

TOWARDS MODELS OF REALISTIC CO::'IPUTING MACHINES 9

systems. This is a necessary condition to avoid that errors occurring
in a sub-system affect other sub-systems;

e Sub-systems should be directly implemented in the chosen target tech
noloO'v: 0" ,

• Sub-system implementations can be tested independently from each
others. This is a necessary precondition for design testability.

Systems communicate through defined input/output channels. These
are the only means to access the internal environment of a system. Also
sub-systems have their own environment, contained in that of the system of
\\"hich they are part of, and that can be accessed only through input/output
channels.

Communication among sub-systems is allO\yed by means of connection
links. The architecture of a system defines how the system is structured in
sub-systems and how these communicates.

Testing of systems requires establishing the environmental conditions
for carrying out the test experiment. the quantities to be measured and
the measurement apparatus. Locality of system's environment cannot be
violated during evaluation.

Decomposition of system in sub-systems improves testability allowing
to test separately each sub-system first. and then the entire system. Both at
system and sub-system level, the test set consists of the Cartesian product
of all the possible sequences of input data.

In case of unexpected behaviours. the system must provide information
making it possible to diagnose what happened.

4. Abstract Lambda-Machines

4.1. Defined Lambda-;11achines

In literature theoreticians define abstract lambda-machines as automatic
interpreters of lambda-expressions. Implementations are written in very
high level languages, such as ::VIL (!:\RIA, 1984) and ALF ()'IAG:\csso~' et
al.. 1994). These languages are based on assumptions that are theoretical
extensions of lambda-calculus and the implementations are, thus, very clean
and understandable. However, they are not suited to our purpose, that is to
design and implement a machine performing a formally specified calculus.
An attempt to implement either mentioned machines, by adopting a very
simple hardware technology (modelled by discrete systems), shows critical
aspects with respect to testability and correctness issues.

From a design point of vie\Y, the definitions of the abstract machines
analysed (e.g. SECD, CAM and TIY!) are equivalent. Indeed they are rela
tively simple and are completely specified in terms of a set of instructions,

10 M. ALDERIGHI et al.

a computational environment, and the operational semantics of each in
struction, showing the effects of instruction execution on the computational
environment.

For example, let us consider the CAM. Instructions are listed in Table 1
together with associated operational semantics.

Table 1. CAM instructions definition

Pre-execution Post-execution
Term Code Stack Term I Code I Stack
(s,t) Fst;C S s C I S
(s,t) Snd;C S t C I S

s Quote(c);C S c C l S
s Cur; (C)Cl S I (C:s) Cl I S
s Push; C S s C I s.S
t Swap; C s.S s C I t.S
t Cons; C s.S (s,t) I C I S

(C:s,t) App;Cl S (s,t) C: Cl I S

A model of the CAM described as a discrete system would consist of:
three sub-systems corresponding to three data-structures term, code and
stack; some sub-systems, in charge of performing the eight instructions: a
control sub-system: connections among sub-systems.

The critical aspects are basically due to t\,"O quesT.ions. First. the
technological implementation adds details. other than those Iheoretically
specified and whose definition needs ingenuity. For instance. the t\\'o data
structures term and code are considered as simple stacks. However. they
are more complex than stacks, because each element is a string of varying
length with a marker as terminator. If stacks are well knO\\"Jl structures,
formally well defined and easy to implement, stacks of lists, as term and
code are, are functionally comparable to trees and need to be handled by
recursive mechanisms. not included in the theoretical specifications.

The second question is that at the system level the machine has to be
tested on sequences of lambda-expressions. But, as the machine interprets
the instruction strings produced by the compiler, testing needs to be carried
out on the outcomes of the compiling function.

Error detection, thus, requires detecting possible compiler errors, es
pecially because the machine interprets a domain of instruction sequences
larger than the range of the compiling function. If \\"e specify a correct
operation as the achievement of a finale state starting from an initial one.
for instance a final state with term full, and code and stack empty from an
initial state. consisting of a code full of instructions. then there exists an
arbitrary number of sequences of instructions, satisfying the requisites of

TOWARDS MODELS OF REALISTIC COMPUTING MACHINES 11

correct operation that are not lambda-expressions.
Let us consider the following initial state:

Code
((),a),b) push;swap;cons

After applying the necessary rules, the machine is in the following state:

I Term I Code I Stack I
{ ((),a),b),nil) 0 DJ· 0 0

The behaviour of the machine agrees with specifications at the level
of single instructions, but not at the level of sequences of instructions. The
sequence presented does not correspond to any lambda-term. The previ
ous situation might be a symptom of a compiler error, such as the partial
construction of a lambda-term.

\iVe are going to introduce new concepts in the abstract specification of
lambda-calculus that make it possible to define a realistic abstract machine.
vVe intend to build a simple system, whose functioning is described and
foreseeable according to the abstract model and can be tested in a limited
amount of time.

4.2. Realistic Machine Requisites

The design of a realistic machine implementing a symbolic calculus requires
both a suitable specification of the calculus and a description of the machine.
The dynamic evolution of the machine is to correspond to the operational
semantics of the calculus, formally specified. "

Assuming a model of real technology as given, design is now to face
\vith how to build a realistic description of the machine, and how far this
description is from the final implementation. or how well the implementation
is described by the chosen model.

Establishing correspondences between a real machine and the formal
specification (theory) of the calculus it performs is impossible, due to the
intrinsic infiniteness of theories. From now on, we will use expressions as
'a real system is modelled by a theory' or 'the description (model) of a real
system is consistent \vith a theory' in a \veaker meaning. \iVe mean that
machine outcomes are consistent \vith the predictions of the theory on the
finite subset of objects, on which the machine operations are defined. If such
subset were not closed with respect to the operations, it \\'ould be necessary
to 'close' it, possibly re-defining it or the operatins themselves. With this
restriction the validity of theory predicates may not be preserved and, then,
exploited.

l'v1athematical infinity is a concept unrelated to technological imple
mentation. Mathematical finiteness can be quite unrelated as well, although

12 :"1. ALDERIGHI et al.

it involves an arbitrary limited number of objects. Indeed the set can be so
large that no real machine is able to handle it.

Real machines deal with a stricter concept of finiteness. This refers
to having an upper bounded number of elements that can be treated by
means of enumeration. This number has to be compatible with the chosen
technology.

Our approach follows two directions, one is technology- and the other
is theory-oriented. As far as theories are concerned, we try to reduce the
need of induction and infinity in the multiplicity of the objects considered,
by adopting enumerative sets as basic ingredients. As far as technology is
concerned, we propose realistic models of machine.

The basis for the definition of a realistic machine model is the follo\\'ing
list of requirements. They represent a first step to\\'ards collecting the com
mon features of testable systems, modelled as discrete systems. In this way
they are not meant as definitive or exhaustive. At the higher level. theories
have to be consistent with these requisites and every time a specific feature
has to be included in the realistic modeL both the realistic model and the
corresponding theoretical apparatus are reviewed, in order to maintain the
consistency between them. The follo\ving requirements have been defined:

ID D.-finiteness III area: com pu ting resources m ust have fixed u pper
bounds:

Ell D.-finiteness III time: execution time must be finite and fixed: this
and the previous constitute the minimal requisites granting system
construction.

ID falsifiability: this is relevant to testability purposes.

We define a system as falsifiable if ilS rnoclel is falsifiable (POPPER,

1970). If the theory admits a realistic logical model and this is consistent.
then this requirement coincides with testability.

In case it is necessary to verify this feature by means of a system
described by the same quantities. a stronger formulation is required. A
system is then said 0-falsifiable. if it is falsifiable by means of a system of
lower complexity. By complexity we mean here a measure of some properties
of the system. significant for the level of abstraction concerned.

Although weaker requirements not including falsifiability can be em
ployed to build systems, they result in a loss of testability.

Lambda-calculus is well suited to our purposes. for it is theoretical
enough to be used in higher order theories and is described by means of a
limited and fixed set of rules.

5. Some Remarks on Lambda-Calculus

As previously mentioned we have chosen lambda-calculus to illustrate the
impact of realistic assumptions on the development of a real machine imple-

TOWARDS MODELS OF REALISTIC COMPUTING MACHINES 13

menting formally specified computations. In particular we chose 0:8-untyped
lambda-calculus because it has a high expressive power, nevertheless its for
mulation is rather simple. The evaluation of its expressions is generally
context dependent, and this can be seen as the most abstract and general
way of handling arbitrary complex expressions, yet only few definitions are
necessary to describe it completely.

The objective is the definition of a machine modelling manipulations
of lambda-terms by application of 0: and /3 formal rules. The machine is
to accomplish the automatic reduction of lambda-terms to possible normal
forms or some generic transformations of lambda-terms via 3-reductions.

Let us report two among the possible formulations of lambda-calculus.
respectively by Barendregt (BARENDREGT, 1984) and Revesz (REVESZ.
1988). In both formulations, terms are built from an infinite alphabet
VI ... Vn ... of variables, and two generators, A, which is the abstraction
and (), which is the application.

The set A of lambda-terms is inductively defined by a finite number of
rules:

:1: E L;
Ai EA=? (Ax.lvI) EA;
1''11, jV EA=? lHN E A (or (M)N EA);

\vhere x represents an arbitrary variable.
We have adopted a Gentzen like style of notation for term definition

(ASPERTI, 1991). This is well suited to express the bottom-up constructive
approach used in the proof of a lambda-term, once its sub-terms are proved.
The machine adopts this kind of rules to constructively pro\'e lambda-terms
to be well formed. This avoids the use of recursive application of inductive
terms definitions. The resulting rules for term definition are listed here
belo\'i:

xEvar var introduction xE.\

xEvarl\;vJE:\ A introduction
.\x.MEA

xE:~I\JyJE:\ app. introduction
(:v):\1 EA

1\ and E connectives belong to the proof's met a language.
An occurrence of variable Vn is said free if it is not in the scope of a

A.Vn .. it is said bound otherwise.
The introduction of conversion rules gives new quotient sets of the set

1\. The 0: and :3 rules described according to Barendregt notation are as
follows:

o:-rule:
T\\'o terms Ai and !V are o:-congruent iff 1\;1 is a change of bound
variables of !V.
Given .VI! ... Afn o:-congruent terms, if they occur in a certain context
then all bound variables are declared different.

14 M. ALDERIGHI et .1.

,8-rule:
• (Ax.M)N = 1\;1[x := NJ, (,8-conversion)

Axiomatic properties of equality:
49 M=N=}MZ=NZ;
49 1v1 = N =} ZM = Z N;
• M = N =} Ax.lv1 = Ax.N;

Substitution rule:
• x[x:=N]::::N;
• y[x := N] :::: y, if x :j: y;
• (Ay.Mt)[x:= N] :::: Ay.(ivh[x := N]);
• (M1M2)[x:= N]:::: (M1[x := N])(M2[X := !V]);

The n: and ,a rules described according to Revesz notation are instead:

n:-rule:
Def: renaming of a variable.

• {z/x}x:::: z;
• {z/x}y::::y;ifx:j:y;
El> {z/x}Ax.E::::AZ.{Z/x}EVEEA;
• {z/x}Ay.E:::: Ay.{z/x}E VE E A, if x:j: y;
• {z/x}(E1)E2 :::: {{z/x}Et){z/x}E2 V E1E2 E A.

n:-rule: Ax.E -+ Az.{z/x}E Vz which is neither free nor bound in E.
,a-rule: (AX.P)Q -+ [Q/x]P
note: n: and .8 rules are equivalence relations.

a-rule:
Def: the substitution of a term.

• [Q/x]x ~ Q:
@ [Q/x]y ~ y; if x:j: y:
@ [Q/x)Ax.E ~ Ax.E VE EA:
• [Q/x].\y.E ~ .\y.[Q(r]E VE E A, if x f- y and at least one condition

holds:
• x f/. Free(E), y f/. Free(Q):
• [Q/x].\y.E ~ .\z.[Q/x]{z/y}E VE E A and \jz with x :j: z:j: y which

is neither free nor bound in E(Q), if x :j: y and both x E Free(E) and
y EFree(Q) hold:

• (Er)E2 ~ ([Q/x]E1)[Q/x]E2

In this paper Barendregt's formulation has been adopted, as it re
quires that the meaning of variables is univocaily defined before applying .3
conversions. In Revesz's formulation, checks on the context dependency of
variables are performed as evaluation is taking place.

Fig. 1 shows three possible representations of the same lambda-term.
Even though equivalent with respect to the theory, they underline different
aspects. Strings highlight the fine structuring of terms as successions of

TOWARDS MODELS OF REALISTIC COMPUTING MACHINES

string representation
AZ . (AY' AX . x) Ay . AX . x

graph representation

A
tree representation

A

A A
z ~4.pp. z App.

A A
V

A

A A

AA
Y AY A

A A~
Y A x xx x

~
V

x

Fig. 1. Equivalent representations of lambda-terms

15

symbols. This characterisation is so simple and general to make it possi
ble to implement terms and transformations on them on any conventional
sequential machine. From a theoretical point of view, strings are the most
suitable representation for a Turing machine. Yet this representation does
not support direct visibility of sub-terms, i.e. a sub-string may not be a sub
term. Graph representations permit uniform treatments: each sub-term is a
graph itself. Graphs, by adopting referential transparency on terms, allow to
im plement context free operations on (su b-) terms efficiently. Trees, instead,
allow to distinguish among different occurrences of the same (su b-) term,
and are thus well suited to context dependent evaluations.

6. Data Specifications

Implementing lambda-terms transformations according to lambcla-calculus
operation semantics requires a richer description than those usually carried
out by strings. What we are claiming here is that this requires recogniz
ing the syntactical-semantic nature embedded in the terms, e.g. that they
are made by sub-terms. Intuitively speaking, \ve want the machine to vie\v
a lambda-expression not as a pure sequence of symbols, but with the same
'depth' theoreticians haw when treating them. Graphs are adopted as inter-

16 M. ALDERIGHI et a/.

nal machine representation. A string notation is used for external communi
cations in order to provide easy interface to the user. Automatic translation
from and to the user is performed by the machine.

For external representation, the following definition holds .

• lambda-term: k-finite string of characters from the alphabet, consist-
ing of:

a, b, ... , z variables identifiers
A. abstraction symbols
() application symbols

• (A)B: application of A to B (association to the left)

III AC' B: abstraction of B on C given A, B, c, lambda-terms, and C

variable .

.'\0 conventions on how distinguishing free and bound occurrences of vari
ables are required.

In internal representation. lambda-terms are represented and managed
inside the machine as binary acyclic directed graphs: vertexes correspond to
abstraction and application , leaves correspond to atomic terms (variables).
Each vertex is root of its sub-term graph, \vhich is thus univocally denoted.
The vertex is viewed as abstraction of the sub-term and contains the infor
mation of its outermost constructor.

7. Functionalities Specifications

Given the specified data representations used for input/output communi
cation and computation. we nO\\' proceed to the definition of a high-level
architecture via functional description of machine tasks. Realistic require
ments suggest to maintain different tasks, mapping them into different and
distinguished sub-machines.

During processing, the machine undergoes the following activities:

1. Acquisition of a string and construction of its inte:-nal graph represen
tation:

2. E\'aluation of lambda-term via Cl and ;3 conversions:

3. Output Droduction by means of graph-to-string conversions.

In order to accomplish these activities two different data areas are
used, named static and dynamic. Their characteristics are highlighted in
the following Sections.

TOWARDS MODELS OF REALISTIC COMPUTING MACHINES 17

7.1. Static and Dynamic Areas

Two kinds of operations on terms can be distinguished: the former, called
static or conservative, preserve terms arguments possibly making them part
of a supra-term; the latter, called dynamic, transform terms arguments into
new different terms. Examples of conservative operators are bottom-up term
constructors, while examples of dynamic operations are ex and ,8 reductions.
Occurrences of the same sub-term may have different meanings in the dy
namic world, while conservative operators can manage them as a single term
and are therefore compatible with referential transparency.

Static and dynamic operations are defined in the static and dynamic
area respectively. In the static area, data (terms) are represented by graphs,
while trees are used for representing data in the dynamic area.

7.2. Strings Acquisition

A string is read from left to right and the corresponding binary tree is built
top-down into the dynamic area. This operation also verifies string syntax.
If the procedure ends (and ends correctly) in a number k of steps, this
means the input string is syntactically correct and the tree represents it. A
positive outcome of the syntactic check proves that the string is an effective
representation of a lambda-term and the existence of a constructive proof
of the term itself by j applications of Gentzen-like rules, with j depending
on k only.

The syntactic check does not provide this proof, because during the
process intermediate structures are created that are not properly interpreted
as terms. The machine has to prove constructively the terms by means of
application of the bottom-up rules peculiar to the set A, in order to handle
them.

Indeed syntactic check operators are defined on strings and return
values belonging to a subset larger than the tree terms set, while constructors
are onto the set A.

Given a tree in the dynamic area, the corresponding graph term is then
built in the static area. The process starts from the leaves of the tree and
proceeds upwards until a root is reached. For every node encountered in the
traversal, a corresponding vertex is put in the graph. This de facto consti
tutes the proof of the lambda-term. Graph vertexes are operators defined
according to the three construction inference rules presented in Section 5.
The application of an operator to a term creates a new term. The order
of application of this operator is dictated by the bottom-up traversal of the
tree in the dynamic area. The following correspondences hold:

18 M. ALDERIGHI et al.

dynamic area static area
variable node atom operator
application node application operator
abstraction node abstraction operator.

Static area always contains '.vell formed terms, unless some static op
erator has been defined incorrectly, or some errors have occurred; this last
aspect falls beyond the scope of the paper. Possible erroneous applications
of operators in the dynamic area yield unexpected, yet well formed terms
without affecting static area. Creation and proof of a term implies creation
and proof of all its sub-terms. During all intermediate steps of the process
static area contains sub-terms as well formed terms. There is no difference
here between term and sub-terms. As a matter of fact static area is deputed
to context free operations.

Once the static term is built, the representation in the dynamic area
is now redundant and thus is removed. Further operations on terms will
construct the dynamic context dependent representation from the static
term, '.vill manage it and then build the static image of the obtained term.

The separation bet'ween static and dynamic areas obeys to the realistic
constraints of testability.

7.3. Terms Evaluations

By means of Q conversion the bound occurrences of every variable are re
named by unused name. According to Barendregt (BARE:\DREGT, 1984)
this operation is preliminary to every 3 reduction step. For the realistic
requisite, Barendregt's definition of 3 reduction via substitutions is adopted
having a more cOI1\'enient automatization with respect to usual definitions
(REVESZ. 1988: HI:\DLEY, 1986). This requires terms to be written accord
ing to Barendregt renaming convention, othenvise incorrect interpretations
of variables roles may occur; new names label bound variables. unused for
free variables. vVe choose a stricter convention adopting different names for
different bounds. formally identifying the scope of each lambda \\-ith their
labels.

/3 conversion is obtained in four steps.

1. The dynamic context dependent representation is built from the static
term.

2. The dynamic term obtained is et converted.
3. A 1 - 3 restricted reduction (defined only on a converted terms) IS

made.
4. The static image of the resulting term is built.

1-3 restricted reduction is the transformation ofa term via 3-rule onto
a single redex occurrence in the tree. This choice better agrees with realistic
requirements. Indeed there is no simple way to assure that a generic reduc
tion will not exceed machine k-bound resources and admissible j-limited

TOWARDS MODELS OF RE.4.LISTIC COMPUTING MACHINES 19

execution time. Time and resources necessary for 1-:3 application, instead,
can be foreseen by the actual term, independently from terms previously ob
tained by means of j3-conversions. Algorithmic complexity decreases if the
contextual dependency is reduced. Reduction generally involves the appli
cation of a given strategy to the whole term and requires a heavy additional
work to grant a limited and prefixed execution time. Unfortunately the
complexity of this work is comparable with that of reduction itself. More
over, the correctness proof of a generic ,3 red uction algorithm would require
to evaluate it with respect to all the reduction strategies on all the possi
ble terms. Instead, the correctness evaluation of 1 - :3 reduction is strategy
independent.

A generic :3 reduction may be split in some 1- /3 steps; our choice thus
involves no limitations of model expressiveness and supports every reduction
strategy.

In order to ensure the correctness of the entire process, the correctness
of :3 operator has to be proved. The problem may be simplified by dis
tinguishing among the proof that 3 operator is \\'ell defined on its domain
and the proof that it applies only to data belonging to its domain. The
result of a 1 - :3 reduction is not a proved well-formed term: then further
direct re-applications of the 3 operator may therefore be undefined and yield
un predictable results.

The static image of the term obtained by 1 - ,3 operator is built in step
4. This proves the result is a well-formed term, thus preventing successive
application of 1 - ,3 operator to incorrect data, and partially checks 1 :3
operators correctness. All intermediate terms obtained by 1 - ,,3 steps are
present in the static area. They provide successive snapshots of the term
evolution and allow simpler proof of the correct execution.

7.4. Output Production

At this step the static representation of a term is converted into string rep
resentation. It is worthwhile reminding the only proved well-formed terms
in the machine are static terms.

8. From Realistic Towards Real Machines

According to realistic guidelines, operations required by o3-untyped lamb
da-calculus ha\'e been partitioned, in order to reduce algorithmic complex
ity without loss of expressiveness. Activities have been realised by means
of a limited number of independent modules whose execution is bound in
resources and time. Operators have been distinguished on the basis of their
context dependency, and different representations have been chosen for their
corresponding domains.

20 1.1 .• 4LDERIGHI et al.

Realistic constraints defined in Section 4.2 (.6.-finiteness and falsifia
bility) are expressed at a higher abstraction level than that of the target
implementation. Due to the lack of any other constraint (e.g. real time con
straints), the realistic machine sketched above is rather independent from
technological and architectural choices and, therefore, it models a class of
real machines.

In order to identify and define a particular member of the class, some
real constraints have to be fixed. The introduction of real constraints in the
system description may cause mismatching between the resulting system
and the realistic model of the machine. These constraints may even impact
on the rules of the formal calculus, possibly yielding different or restricted
definition of its characteristics. Realistic requirements may be partially
disregarded, depending on the specifications and on the chosen technology
(e.g. when the correct execution of the real-system cannot be proved).

In the following Sections, the design of a system for lambda-expressions
evaluation will be briefly illustrated. A detailed. application independent.
description of the chosen architecture is out of the scope of this work. In
terested readers may refer to (BORDO:--il et al., 1997).

8.1. System A rchiiect ure

The system consists of three different su b-systerns (mod ules). Each mod ule
is viewed as a distributed system and described in terms of a collection
of communicating finite-state automata (ALDERICHI et al., 1997a). called
broadcast automata. The following modules are identified: illlerface, static
and dynamic units.

The interface unit is to manage commands acquisition, user addressed
information (e.g. state information) and Gata exchange (i.e. mapping be
tween internal and external representation).

The static unit is to perform constructive proof of acquired terms, and
serves as static typed memory of graph terms with referential transparency.
Dynamic context dependent tree terms have to be built up from data stored
in this unit. It, thus, requires a database structure containing information
about existing terms and it also has to map graph internal representation
into strings.

The dynamic unit is to perform the syntactic check of the acquired
strings and the execution of all the structural manipulations defined on
lam bda-terms.

The sharp separation among these units agrees with the realistic model
of the machine. However, functioning of the machine requires heavy and
continuous interactions among these units. These interactions are to be
carefully modelled.

Similarity between tree and graph representations suggests implement-

TOIVARDS MODELS OF REALISTIC COMPUTING MACHINES 21

ing static and dynamic units by means of homogeneous automata. Static
and dynamic units are then defined in terms of two different families of
homogeneous automata.

The automata in a given family are described by the same finite state
machine model, with the exception of the initial state. Each automaton
knows the state of every automaton of the family. Direct communication
between non homogeneous automata is not allowed. Each family describes,
from a geometrical point of view, a complete graph, \vhose vertexes are its
automata and edges are the connections among them.

Term representations are obtained by means of stable affinity relation
ships among automata (ALDERIGHI, 1997b). An automaton A is said affine
to automaton B if the actual evaluation of the transition function of A is
not degenerate on the state value of B. The relationship is k-stable if it
maintained for a prefixed number k of steps.

Communication among different families is allowed by means of a spe
cialised automaton. The transition function of an automaton depends on
its current state, the current state of the other automata in the family, and
on information coming from other automata families. Each transition up
dates the automaton state and produces information for non homogeneous
automata.

Broadcast automata exploit a control actIvIty which is spread over
all automata. An operation is the result of the combined effect of single
automata evaluations. So algorithms have to be split onto single automata
transition rules. This architecture, \vhile comporting a loss of efficiency
with respect to centralised architectures, enhances concurrence and allows
abstract management of (sub-)terms. If an operator handles a sub-set of
(sub-)terms in the same way, it is possible to re-define it by abstraction on
the particular representative of the proper class of equivalence.

Term representations are embedded in the graph structures of the cor
responding families. Each vertex of the representation is associated to a
vertex of the family graph. This allmvs implementation of abstract eval
uations and disregards fine characteristics of sub-terms by means of local
transitions, in the meaning of abstracting a sub-term by a node as explained
at the end of Section 6.

C nfortunately, some algorithms (e.g. algorithms implementing con
text-dependent operators. such as Cl' conversion) may require distributed
information everywhere in the tree, even though the information is split on
a few automata. Therefore the transition rules of an automaton have to be
defined on actual state of all family automata, independently of established
affinities.

22 M. ALDERIGHI et .1.

8.2. Dynamic Family

A tree is obtained by means of affinities established among automata in the
complete graph of the family. To each automaton, or vertex of the family
graph, corresponds a node of the tree, abstracting a sub-term as explained
at the end of Section 6. In this view, trees in the dynamic unit and graphs
in the static one are then active entities evolving autonomously and not
standard data structures.

Each operator defined in this family manipulates the structure of actual
term, modifying (creating or destroying) affinities among automata.

8.3. Static Family

As in dynamic unit, graph representation is realised by affinities among au
tomata established by state transitions. Operators defined in the static unit
preserve graphs structure, possibly adding ne\\' graphs into the unit. Adding
new structures (i.e. creating terms) establishes new affinities. preserving the
prevIOus ones.

8.4- Some Remarks

~iIachine functions are expressed by means of transition rules and synchro
nised communication of automata families.

Homogeneous automata have the same state transition rules. Complex
algorithms are therefore distributed onto single automata transitions (i.e.
split in area and time). This supports a concurrent design style and allows
the use of a single falsification strategy for all automata in a family.

We define automata behaviour for all possible input patterns. The
problem of achieving well defined algorithms (i.e. \\'hose behaviour is de
fined on the entire input domain) turns into the problem of achieving well
defined transition tables. This kind of context dependent calculus. man
aging local information with possibly 'global' scope, makes qualitatively
meaningless to realise communications inside a family by means of network
topologies different the complete one. Complete topology disregards reaiis
tic requirements, being realistically non-scalable. On the other hand, every
incomplete connection topology (i.e. \vith a number of arcs per vertex less
than the total number of vertexes -1) is not suited to one-step e\'aluation of
operators with context dependent scope. From a qualitative point of vie\v,
incomplete topologies are equivalent with respect to this calculus.

The complexity of context dependent computations may require a fine
characterisation of automaton state. thus exploding transition table dimen
sion. It is often possible, hmvever, to factorize the transition table (making

TOWARDS MODELS OF REALISTIC COMPUTING MACHINES 23

its dimension independent from family population) 1 splitting a single step
transition into multiple dummy transitions.

9. Conclusions

This work is a first attempt towards the solution to the problem of system
testability. To this aim we faced with the problem, in its maybe most difficult
formulation, of the testability of a machine implementing an abstract theory.

We pointed out that a theory cannot be completely implemented by
real machines because of their intrinsic finiteness. Thus the realistic assump
tion is made: the machine model is at most a finite restriction of the theory,
which however contains the essential and specific features of the theory.

We defined the necessary features to gain machine testability, assum
ing their validity can be extended to machines implementing less formal
specifications than a theory usually requires.

We focused on lambda-calculus to give an example of the way a theory
is analysed in order to identify one of its subsets. Though finite, this has
to be rich enough to preserve the essential features of calculus, such as con
text dependency, constructive definition of terms, etc .. This kind of analysis
naturally leads to the definition of a high level architecture. \Ve sketched a
realisation by means of a distributed automata architecture. showing how it
matches the specifications coming from realistic model of lambda-calculus
(abstraction on terms, locality, etc.).

The assumption of the realistic model, abstracting on technologies or
particular design choices, forces to contemplate requirements of testable
machines from the very first design stages. This may lead to re-define speci
fications themselves. :\loreover, this design process supports machine arch i
tectures reflecting calculus semantics. It is thus possible to build machines.
\\-hose internal evolution is directly interpretable and foreseeable by the re
alistic calculus model,

By abstracting as much as possible on low level architectural choices,
the \\"ork has shown the implementation limits of lambda-calculus and sug
gested the possibility to apply the obtained results to other expression
theories.

The choice of broadcast automata as 10\\- level architecture allmved us
to investigate their expressiveness. This analysis resulted in the definition
of a BA-family architecture as an extension (BORDOI\! et al.. 1997).

A simulator of the lambda-machine has been developed in C language
and a first prototype of the system has been implemented by using FPGA
technology.

24 M. ALDERIGHI et al.

References

[IJ ALDERIGHI, M. MAZZEI, R. P.G. - SECHI, d. R. TISATO, F. (1997a): Broadcast
Automata: a Parallel Scalable Architecture for Prototypal Embedded Processors for
Space Applications, Proc. of the Thirtieth Annual Hawai'i International Conference
on System Sciences, (Maui, Hawaii, January 7-10,1997), Vol. V, IEEE Press, pp. 208-
217.

[2] ALDERIGHI, M. - CASINI, F. - MAZZEI, R. P. G. SECHI, G. (1997b): Broadcast
Automata: a Computational Model for Massively Parallel Symbolic Processing, in
this volume, 1997.

[3] ASPERTI, A. LOl'Go, G. (1991): Categories, Types, and Structures, The YIIT
Press, Cambridge, MA, 1001.

[4] BAcKus, J. (1978): Can Programming be Liberated from the Von Neumann Style? A
Functional Style and its Algebra of Programs, Communication of the A CM, Vol. 21,
N. 8, 1978, pp. 613-641,

[5] BARE:\DREGT, H. P. (1984): The Lambda Calculus, its Syntax and Semantics, North
Holland, revised edition 1984.

[6] BORDONI, A. - YIOJOLI, G. A. (1997): YIacchine ad automi cellulari plurifamiglia su
topologie generiche: una estensione del modello broadcast automata, IFCTR Internal
Report, June 1997.

[7] COUSINEAU, G. - COURIE:\, P. L. - MAur\Y, M. (1987): The Categorical Abstract
Machine, Science of Computer Programming, Vol. 8, 1987, pp. 173-202.

[8] FAIRBAIR:\. J. - WRAY, S. (1987): Tim: a Simple Lazy Abstract :VIachine to Execute
Supercombinators. Proc. of the International Conference on Functional Programming
Languages and Computer Architecture, (FPLCA '87), L;\CS N. 274, (G. Kan Ed.),
(Portland, Oregon, USA, September 1987), Springer-Verlag, pp. 34-45.

[9] GEr\TZEN, G. (1969): Investigation into Logical Deduction, The Collected Papers of
Gerhard Gentzen, :VI. E. Szabo, 1969.

[10] GIRARD. J. Y. - L.-\FO:\T, Y. T.WLOR, P. (1989): Proofs and Types, Cambridge
Tracts in Theoretical Computer Science, Vol. 7, Cambridge Cniversity Press. 1989.

[ll] HA:\:\AN. J. - :YIrLLER. D. (1990): From Operational Semantics to Abstract :'Ia
chines . . Vath. Struct. in Comp. Science, Vol. 2. 1992. Cambridge Cniversity Press,
pp. 415-459.

[l2] H.n:\AN; J. (1991): :'Iaking Abstract :'Iachines Less Abstract. Proc. of the Fifth
A CM Conference on Functional Programming Langugaes and Computer Architec
tures, 1991, pp. 618-635.

[l3] HI:\DLEY. J. R. (1986): Introduction to Combinators and Lambda-Calculus, Cam-
bridge Cni\'ersity Press, 1986.

f
14J The :'lL Handbook, Inria Technical Report. 1984.
)5 L.WONT, Y. (1988): The Linear Abstract :'Iachine. Theoretical Computer Science,

Vol. .59. 1988. pp. 1.57-180.
[16] L.-\NDI:\. P. J. (1964): The YIechanical Evaluation of Expressions, Computer Journal.

Vol. 6, 1964, pp. 308-320.
[17] :vIAGr\CSSOl', L. - NORDSTRO:'I, B. (1994): The ALF Proof Editor and its Proof

Engine, Report of the University of GiiteborgjChalmers, Sweden, 1994.
[18] NORDSTRO:v1. B. - PETERSSO:\. K. S:VUTH, J. :'1. (1990): Programming in YIartin

Liif's Type Theory. An Introduction, Oxford Science Publications, 1990.
[19] PLOTKIN, G. (197.5): Call-by-Name, Call-by-Value and the Lambda-Calculus. Theo

retical Computer Science, Vol. 1, N. 2, 197.5, pp. 12.5-1·59.
[201 POPPER, P. R. (1970): Logica dell a scoperta scientifica, Einaudi, 1970.
[21J REVESZ, G. E. (1988): Lambda-Calculus, Combinators, and Functional Program

ming, Cambridge University Press, 1988.
[22] TURNER, D. A. (1979): A :New Implementation Technique for Applicative Languages,

Softu'are Practice and Experience, Vol. 9, 1979, pp. 31-49.

