
PERlODICA POLYTECHNICA SER. EL. ENG. VOL. 42, NO. 1, PP. 25-32 (1998) 

LOGICAL COMBINATORS FOR SYSTEM 
CONFIGURATION 

Gillian HILL 

Department of Computer Science, City University 
and 

Department of Computing, Imperial College, 
of Science, Technology and Medicine 

London, Great Britain 

Received: September 30, 1997 

Abstract 

System configuration describes the construction of complex engineering systems from their 
component parts. The configuration language is at a meta-Ievel to a specification language 
and expresses the horizontal structuring of specifications and modules by extension and 
parameterization; it also expresses the implementation, of both specifications and modules 
during the development of a software system. 

The logic chosen for system configuration is many-sorted first-order logic which 
possesses the Craig interpolation property. Configuration is expressed precisely within 
the logical framework by the operation of combinators on recursively defined configured 
objects of sorts in the set {specification, module}: each configured object is a named theory 
presentation. Properties of commutativity between the combinators are illustrated by 
equivalent paths in the three-dimensional development space for configuration. The actual 
building of configured objects is expressed by constructing diagrams within a categorical 
workspace that is based on the structure of a KZ-doctrine. 

J{eywords: system. specification. modules. 

1. Introduction 

\Ve have presented our logical approach to system construction in [1,3] and 
[4]. In particular we have contrasted our proof-theoretic approach \vith the 
model-theoretic to systems theory. Our own approach is simple and natural 
for software engineers to use because it does not rely on building a model 
of a system during the configuration of that system. A further advantage 
of systems configuration is that it involves keeping the history of system 
construction in the textual specifications of configured objects: this history 
is expressed in the formal diagrams that represent the specifications in the 
configuration workspace. The details of the construction of the categorical 
workspace for configuration are given in [2] and [5]. 

The aim of this paper is to demonstrate the flexibility of the system 
configuration by presenting the properties of commutativity between the 



26 G_ HILL 

combinators of the configuration language. Initially the properties are il
lustrated by forming equivalent paths in the three-dimensional workspace. 
Examples are then given of textual specifications that express the differ
ent ways of configuring configured objects that have the same underlying 
structure. Finally we give the formal diagrams for these specifications and 
explain why these diagrams are equivalent in the categorical \\-orkspace. 

The paper is arranged as follows. In Section 2. an intuitive view of 
system configuration is presented and the combinators in the configura
tion language are identified. Commutativity between the combinators that 
operate on the recursively defined system components is illustrated in the 
three-dimensional workspace. The formal diagrams are constructed within 
a categorical workspace in Section 3 and equivalent diagrams are shown 
to represent the commutativity bet\veen the combinators. Conclusions are 
dra\yn in Section 4. 

2. The Development Space for Configuration 

The deuelopment space for each system configuration allows the history of 
the configuration to be expressed diagrammatically. 

2.1. The Three-Dimensional Deuelopment Space 

The set of configured objects that describe a particular final configured 
system object are represented in a three-dimensional development space for 
that configuration. Objects ,,-ithin the development space are connected to 
other objects by arrows that lie along the three dimensions of the space, as 
shown in Fig. 1. 

The arrO\\"s form a series of connected steps from the top left hewd 
corner of the back face of the development space to the bottom right hand 
corner of the front face. Because each system configuration can be made 
in several different \\-ays, with the history of each configuration recorded 
by different specifications. there will be several different series of connected 
steps within the development space for each system. The arrows that form 
the steps represent operations to configure objects by the single application 
of one of the high-level combinators, \\·hich are part of the configuration 
language. 

Structure is added to a configured object within the space by hori
zontal development steps: configured objects are implemented by vertical 
development steps. The specification of each configured object that repre
sents a component part of a system is configured on the back face of the 
development space: the module is created from a specification by a step in 
the third dimension to the front face of the space. 



LOGICAL CO:VfBI:-:ATORS FOR SYSTEM CO:-:FIGURATJO:-: 27 

add structure 
specificat ion ---------->-. specification 

~ ~ 
implement module 

, I 
specification ---------, specification 

~ ~. 
final configur'ed object 

Fig, 1, A three-dimensional development space 

The development space for each con figured system has a recursive 
structure that reflects the recursive definition of the final configured ob
ject that represents the system. Each configured object that represents a 
component part of the system has a development space that is nested in
side the space for the configuration of the final system. '\lodules, created in 
the third dimension of a development space, may themselves be structured 
and implemented within specifications on the back \\'all of the 'larger' space 
\\'ithin which a more complex specification is configured, Each development 
space is shaped as a cube, therefore, which is without a front face, 

2.2. The Cornmutatiuity of the Combirwtors 

The rules for commutativity are presented informally and illustrated 
informal diagrams in the three-dimensional development space. Finally an 
example is given of the commutativity between the high-level combinators 
for extension and the creation of mod ules. 

The following properties of commutativity lead to flexibility \\'ithin the 
configuration development space 
create e:rtend = el'tend : create 
create 
create 
extend 

parameterize = parameterize ,. create 
implement = implement .: create 
parameterize = parameterize : e,rtend 



28 G. HILL 

extend ; implement = implement ; extend 

parameterize ; implement = implement ; parameterize 

These commutative properties are expressed as equalities in Fig. i2 
by forming commutative diagrams along the appropriate axes in our three
dimensional development space. 

~eate 

implement 
extend 

implement 
~eate ~eate 

crea~ extend 

extend 

implement implement implement 

parameterize . 
~ate ~eate 

parameterize , 

pa. Ta meterize 

parameterize 

implement 

extend parQ1neterize extend , 

Fig. 2. Commutative properties of the high-level combinators 

Only the create combinator is not defined on both sorts of object, and 
only the combinators for extension and parameterization are defined along 
the same axis of the development space. CommutatiYity between extension 
and parameterization is expressed as equality betw-een horizontal paths in 
the development space. 

Example 2.2.1 

We extend a door by a window and then create the module instance of 
the extended object. A module with the same structure is then configured 
by first creating modules from the included specification and then extending 
the door module by the \yindow module. 

First the sequence create : extend giyes 



LOGICAL COMBINATORS FOR SYSTEM CONFIGURATION 

spec doorLwi thwindow1 is 
create (spec door, A) = module door1 ; 
create (spec window, A) = module window1 
module door1 ext. by module window1 to 
mod ule doorLwi th_one_window1 
end spec 

29 

Then the alternative configuration extend; create gives a module with 
the same structure 

spec dOOLwi th_window.1l1odule is 
spec door _wi th_window is 
spec door ext. by spec window to spec door _wi th_window 
endspec 
create (spec dooLwith_window, A) = module dooLwith_window1 
endspec 

The difference between the two configurations is shown by the different 
histories that are recorded in the two specifications. In each specification, 
however, the door is extended by including the window in the door. Infor
mation about fitting the window in the door is contained in the object that 
is the extension. 

Example 2.2.2 

Commutativity can also be shown in the configurations of a module instance 
of a door extended by two windows. The configuration create ,. extend gives 

spec door _wi th_two_windows is 
create (spec dooLwith_window, A) = module dooLwith_window1: 
create (spec window, A) = module window1 : 
module dOOLwi th_window1 ext. by module window1 to 
mod ule door l_w i th_w indow l_w indow 1 
endspec 

Alternatively extend ; create gives 

spec dooLwith_two_windows.1l1odule is 
spec door _wi th_two_windows is 
spec door _wi th_window ext. by spec window to 
spec door _wi th_two_windows 
endspec 
create (spec dOOLwith_two_windows, A) = module 
door _wi th_two_windows 
endspec 

The module window1 is uniquely named in spec 
dOOLwith_two_windows and is used to structure a more complex module, 



30 G. HILL 

in that same specification, within which it is in scope. Clearly each of the 
two specifications above expresses the structuring of a module instance of a 
door extended by two windows. The expression of the creation of uniquely 
named module instances of these specifications could be given in some more 
structured specification. 

As a final alternative the sequence create .: extend will configure a 
door with two windows directly from the specifications for a door and a 
window. 

spec doorLwi th_two_windows is 
create (spec door, .>-) = module doorl : 
create (spec window, .>-) = module windowl 
create (spec window, module windowl) = module window2 : 
((module doorl ext. by module windowl to 
module doorLwi th_windowl) 
ext. by mod ule window2 to module 
doorl_with_windowl_and_window2) 
endspec 

The module instance of this specification would be configured in some 
outer specification by the expression. 

create (spec doorLwi th_two_windows. A) = 
module doorLwith_two_windowsl 

3. Formal Diagrams Represent Configuration 

The specification and the module instances of each configured object are 
represented in a categorical workspace of forma! diagrams. The specifica
tion and the module instances of primitive objects are represented in this 
workspace by a diagram \\"ith a single node. The specification of a config
ured object is represented b)' a diagram that expresses the entire history of 
the configuration of the object. Each module instance of a configured object 
is represented by a diagram with a single node that has lost the history of 
the configuration of the object. In this \\"ay the semantics of configuration. 
expressed by formal diagrams. mirrors the syntax of the configuration lan
guage expressed by textual specifications. We illustrate the commutativity 
of the combinators by constructing the categorical diagrams of the specifi
cations in our examples. There is no need to explain the structure of the 
\\'orkspace as a KZ-doctrine. 

Example 3.0.1 (from Example 2.2.1) 

doorl Tn ---7 doorLwith_oncwindOl.L'l Tn 



LOGICAL CO.\fBISATORS FOR SYSTE~I COSFlGURATlOS 31 

is the diagram that represents spec doorLwi thwindow1. 

is the diagram that represents spec door _wi th_window. A module instance 
of this specification is then created and is represented by the singleton di
agram door_with_windowl m . The specification diagrams are defined to be 
equivalent in the categorical workspace because they have the same colimit 
objects. 

Example 3.0.2 (from Example 2.2.2) 

door _with_Uo'i ndow 1 m ---+ door _w ith_w indow Lwind01L'l m 

is the diagram that represents spec door _wi th_two_windows. 

is the diagram that represents spec door _wi th_two_windows. A module 
instance of this specification is then created and is represented by the sin
gleton diagram door_with_two_windowsl m . The specification diagrams are 
defined to be equivalent in the categorical workspace. 

4. Conclusions 

\\-e haye focused on the properties of the combinators for our language for 
system configuration. and haye illustrated the property of commutativity 
bet\yeen the high-level combinators of create and utend. The commutativ
ity can be sho~~'n in the three-dimensional development space. and in the 
categorical diagrams that are equivalent in the categorical workspace. 

Acknmvledgments 

Torn :\Iaibaum. of Imperial College. has made many helpful and constructive comments 
on this work. Steve Vickers. also at Imperial College. made the valuable suggestion that 
the categorical workspace could be structured as a KZ-doctrine. 

References 

[1] HILL. G.: Category Theory for the Configuration of Complex Systems. In: T. Rus. 
M. :\ivat. C. Rattray and G. Scollo. editors. Algebraic Methodology and Software 



32 G. HILL 

Technology, Entschede, 1993, pages 193-'200. Proceedings of the Third International 
Conference on Algebraic lvfethodology and Software Technology, University of Tv.;ente, 
The N"etherlands, 21-25 June 1993, Springer-Verlag, 1994. Workshops in Computing 
senes. 

[2] HILL, G.: Constructing Specifications and Modules in a KZ-Doctrine. In: C.L. Hankin, 
I. ivIackie and R. ~agarajan, editors, Theory and Formal lvfethods '94, pp. 219-236. 
Proceedings of the Second Imperial College, Department of Computing, Workshop on 
Theory and Formal Methods, Imperial College Press, distributed by World Scientific 
Publishing Co. ISBI\ 1-86094-003-X, September 1995. 

[3] HILL, G.: The Configuration of Complex Systems. In: Tuncer I. bren and George J. 
Klir, editors, Computer Aided Systems Theory-CAST '94 Selected Papers, pp. 46-64. 
Fourth International 'Workshop, Ottawa, Ontario, Canada, May 1994, Springer-Verlag 
ISB\' 3-540-61478-8, :VIay 1996. 

[4J HILL, G.: A Logical Approach to Systems Construction. In: Rudolph Albrecht and 
Franz Pichler, editors, Proceedings of E[iROCAST '95 LiVCS 1030, pp. 30-47. Fifth 
International vVorkshop on Computer Aided Systems Theory. Innsbruck. :VIay 1995, 
Springer-Verlag, January 1996. 

[5] HILL. G.: A Categorical Workspace for System Configuration. In: S. Jourdan. A. 
Edalat and C. yIcCusker, editors, Advances in Theory and Formal Methods of Com
puting. Proceedings of the Third Imperial College vVorkshop, Christchuch, Oxford 
1-3 April 1996, published by Imperial" College Press, distributed by World Scientific 
Publishing Co., 1997. 


