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Abstract 

The paper presents a unified term algebra for the complete description of every network 
of cooperating processing units no matter whether they are clocked or self-timed. The 
description is called complete because it covers the topology, the functions and the time 
behaviour of the network. Even storage can explicitly be described. A processing unit 
may be as small as a hardware gate or as large as any computer. The main purpose of 
the paper is a concise introduction of the basic elements, the operators, the sorts and the 
signature of the term algebra. Its expressive power is then demonstrated by the complete 
specification of a D-flipflop. 

Keywords: processing network description, digital hardware description, network pro­
gramming language, layout language. 

1. Introd uction 

:\ ature has found a way of coding all the features of an organism into a 
small set of chromosomes. The features include the building plan of the 
organism, the building schedule of when, where and what kind of cells are 
to be generated, the spatial distribution and the operations of the organs 
and limbs, and the immense variety of internal and external asynchronous 
interactions. Starting from a single celL the organism is generated by an 
increasing number of interacting cells. 

Regarding the set of chromosomes as a set of linear programs and 
the set of cells as a set of processing units executing the programs models 
the organism as a huge concurrent network of asynchronously cooperating 
processing units. If this is compared to our ability of describing, building 
and programming computer systems all our seemingly great achievements 
shrink to humble first steps. On the other hand, this tremendous difference 
gives confidence that great itnprovements can still be expected in computer 
SClence. 

The formalism presented in this paper may be regarded as a step to­
wards this goaL This formalism makes it possible to describe every network 
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of cooperating processing units, no matter if they are clocked or self-timed. 
Even storage can be represented. The description covers the properties 
which can be paraphrased by the questions \vhat'. '\\'hen' and 'where'. The 
formalism is therefore considered as complete. In this paper \ye only give a 
short introduction of the basic features. 

The language of the formalism is a term algebra. called acton algebra. 
The acton algebra specifies the topology of the actons in a biplanar space. 
An acton models a processing unit by specifying the functions, the opera­
tional behaviour and the physical properties. A least processing system is 
a hard\\'are gate. Every nonelementary acton is an abstraction of a pair of 
adjacent smaller actons. 

The functions and the time behaviour of the actons are defined by a 
novel temporal Boolean algebra derived from the physical model of a network 
of causally related binary events (vo:\ IssE:\ooRFF. 199.5,1997). Here \\"e 
\vill only give a brief introduction: 

A binary event. or a bent for short. is the least possible event. Its 
occurrence generates a bit and thereby marks a point of time. Thus a 
causal relation bet,,'een a pair of bents establishes a temporal as well as a 
functional dependency: A bent occurs only after its causally preceding bents 
have occurred. The bit is a function of the bits of the causally preceding 
bents. 

Considering time as a consequence of causality implies an elementary 
gap of time between ever~' pair of causally immediately related bents. Count­
ing the maximum number of elementary time gaps between any t\\"o causally 
related bents gives rise to a time measure. Allowing forward and backward 
counting this method can be extended to finite causally coherent posets of 
bents. This \,'ay it becomes possible to establish a unique time metric, that 
means a linear ordering of time . .\laking USE' of the time metric all bents 
can then be transformed onto the time of a selected bent. i.e. into a set of 
simultaneous bents. This set of simultaneous bents represents the proper 
base for defining a three-valued Boolean algebra. called bent algebra. The 
bE'nt algebra reduces to the classical Boolean algebra after all bents have 
occurred and thus have assumed their final ,·alues. 

This paper is based on the following notions and notations: 

® General equality is expressed by the symbol "="". 
® Equality between predicates or between binary events is called equiv­

alence but designated by special symbols. 
® The definitions are expressed by first order predicate logic, .'\egation. 

conjunction, implication and equivalence are designated by the sym­
bols rv. &, -t ~nd +-7, universal and existential quantifiers by V and 
3. and truth values by T and F. The uniwrsal quantifier is usually 
omitted to increase readability, 

& In bent algebra negation, cOlljunction, disjunction. implication and 
equivalence are designated by the symbols '. !\. V. =? and and 
truth values by 1. 0, and #. 
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l) The letters u, r. x, y, z will be used to denote acton terms. and the 
letters a, b, c to denote single actons. 

2. Acton Definition 

Let E be a coherent finite poset of causally related bents. We will identify 
E as a process, that is as any finite system which changes with time. It may 
be the flight of a bird, the evolution of the weather. the production of a car. 
the evaluation of a computer program, or the operations of the computer 
\\'hile the program is evaluated. 

An acton is a physical processing unit which is able to perform one 
or several activities. Each activity simulates a convex cutting from E. The 
attribute convex means that the cutting must not both precede and suc­
ceed another cutting. This way two activities either exclusively precede or 
succeed each other or are independent. \Yith this definition a net\\'ork of 
activities is an order preserving subset of the poset E. 

A bent generates a bit of information thereby marking a point of time. 
It is represented by a three-valued variable which up to that point of time 
has the value '#'. and either' l' or '0' thereafter. A bent constant is a bent 
which has already occurred and is therefore restricted to the final values 
{1, O}. A signal is a bent with a prefixed final value. Since there are two 
final values there is a signal sE{ #, 1} and there is a complementary signal 
-E{ 11 0' s tt-, J. 

In t\vo-state systems a bent needs two variables in order to be repre­
sented. T\\'o-state systems can either be clocked or self-timed. The different 
codes are shown in Table 1 and Table 2. In clocked systems a bent is de­
fined by the conjunction of a bent constant and a signal. A bent constant 
is represented by a bit and a signal by the leading or trailing edge of a 
clock pulse. The actual states of a bit and a clock pulse are designated by 
{H. L}. In Table 1 the leading edge has been chose~. In self-timing systems 
a bent is represented by a pair of bits only one of which assumes the state 
H during the finite time of observation. 

TablE 1. Bent representation in clocked systems 

I bent clock pulse I bit J 
1 H H I 

0 H L 

.. L H,L 

An acton defines the operational relations between the outgoing lines 
and the ingoing lines of the cutting. that means their functional and tempo-
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Table 2. Bent representation in self-timed systems 

bent bit 1 bit 2 

1 H L 

0 L H 

# L L I 

ral relations. The outgoing lines are represented by an ordered set of output 
bents and the ingoing lines by an ordered set of input bents. A least acton 
relates either one or two input bents to a single output bent. 

An acton is represented by alp}, where a is the acton name and p 
is a bent term representing a control condition. The output bents of alp} 
assume a final value only if and after the control term p has assumed a final 
value. The output bents assume the value 0 if p becomes O. They assume 
an individual final value only if p becomes 1. If p is constantly 1 the control 
condition is omitted, that is instead of a[l} just a is written. 

Fig. 1. Schematic view of an acton 

Fig. 1 depicts the schematic view of an acton. Each output bent is 
an individual Boolean function over 'input bents. The set of input bents 
is the union of a set of actual input bents In and a set of internal bent 
constants Con. The internal bent constants may either be built-in and thus 
permanent, or a parameter, which is set prior to the occurrence of the input 
bents. The union In uCon splits up into the disjoint sets I and C where 
I serves to individually define each output bent. and C serves to define the 
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control condition. In contains at least a signal, and Con contains at least 
the value' 1'. The set of bents which may occur when the acton is active is 
called Gen. The output set Out is a subset of Gen, i.e., Out c;;. Gen. 

An important feature is that an acton need not be clocked. In general 
the output bents are not synchronized but may occur at any time. Some 
output bents of an acton may actually never occur. 

According to (VON IssENDoRFF, 1995,1997) a coherent partial order­
ing of bents E can be mapped into a sequence of discrete time slices each 
of \vhich is represented by a set of simultaneous bent mappings. The set of 
simultaneity sets forms a class which represents the linear time ordering. In 
general there are several linear time orderings which can be derived from E. 
Enumerating them by i the ith linear time ordering of E is designated by 
E/a;. Linear time orderings of subsets of E are accordingly designated, e.g. 
Cia;) CcE. We are now ready to precisely define an acton by expressing 
each output bent as a function of terms over the information set I/ ai and 
the control set Cia;: 

::Jp E F(C/ai). VI E Out/ai.::Jq E F(I/ai). 

if p = # then I<=># else I {:? p/\ q. (1) 

An acton is called neutral if the input information Ic;;.In is directly trans­
ferred to the output, i.e., if there exists a one-to-one mapping between I and 
Out. A neutral acton will be designated by a S-symbol. The cardinality 
of its input and output depends on the preceding or succeeding actons and 
need not explicitly be specified for this reason. Several neutral actons will 
be distinguished by indexing. A neutral acton Sip} is formally defined by 

::Jp E F(C/a;). VI E Out/ai.::Jq E F(I/ai). 

if p = # then I<=># else r {:? p /\ q. (2) 

If a neutral acton is unconditional, i.e., if p=1, each output bent is a 1-
function of an individual input bent. Both sets have the same order and the 
same cardinality. Unconditional neutral actons represent the wiring between 
actons \vhich are not directly connected. They can also be regarded as a 
bypass modelling the flow of data. 

In synchronized systems as for instance in clocked systems one needs 
to know \vhen an acton terminates, that means when all output bents have 
assumed their final states. This can be achieved by generating an extra 
termination signal so from the conjunction of the signals of the individ ual 
output bents, i.e., by 

so = Vr E Out.r.(r V ...,r) . (3) 

0iote that the generation of so takes time, meaning that so is only available 
one time step after the occurrence of the last output bent. In the same 
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way ,ve may introduce an activation signal si as the signal immediately 
succeeding the occurrence of all input bents. i.e., 

si = Vq E In.,,(q V -.q) . (4) 

The evaluation time of an acton can be determined by means of a time 
function fJ. \vhich \vas introduced by definition (ll) in (vo:\ IssE:\ooRFF, 
1995) 

(5) 

The evaluation time of an acton a is defined as the number na of an elemen­
tary time step to. Note, that na may only be available after termination. 

An elementary acton represents a hardware gate. For each Boolean 
function denoted by }\'OT, AND, OR, NAND, ,YOR there is a correspond­
ing elementary acton denoted by .Y. A, 0, O. Actually. since every 
computable function can be expressed by either SASD- or lYOR-functions 
it would suffice to admit only actons of type if or of type O. 

3. Acton Term Operators 

An acton network is a t\\'o-dimensional representation of a coherent poset of 
actons. An acton network with a single input and a single output is called 
an acton term. A single acton is an elementary acton term. 

In order to formally describe an acton network three binary connec­
tives, a unary operator and two sorts of delimiters need to be introduced. 
That will be the topic of this section. 

The connectives together with their topological as well as functional 
properties are shown in Table J. 

Two different aeton terms x, y where .r exclusively precedes y and where 
y exclusively succeeds ;r form a sequential term which has the same input as 
.r and the same output as y. This relation is expressed by a binary connec­
tive designated by a 'greater' symbol. A term (l'>y) is functionally defined 
by In(.r>y)=Inx, Out(.r>y)=Outy • and Outx=Iny In addition. (.r>y) de­
fines a direction of propagation from term .r to term y. The activities. i.e .. 
the occurrences of bents, propagate from the acton net\';ork .r to the acton 
network y. )'lore precisely, each elementary acton of term y has at least one 
elementary acton of term .r as a predecessor. Since the acton networks are 
assumed to be different each is necessarily located at a different place. Thus 
the propagation of activities means a change in time and space. 

Two different acton terms x, y which commonly precede or succeed 
another term represent a concurrent term. The first case is called a join term 
and designated by a dou ble slash. The second case is called a fork term and 
designated by a single slash. A join term (c/ /y) is functionally defined by 
In(.r//y)=I7lxUln y • Out(1/ /y)=OutxuOut y ' and Outx=/= o. Outy =/= o. The 
terms ;r and y need not have a common predecessor. Therefore. the input 



Sequence: 

(X>Y) 

Join: 

(xlly) 

Fork: 

(xly) 

Reflection: 

('x) 
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Table 3. Properties of the operators 

,~ .... ::",. 

':"'~ .. ' 

":,::, y 

I1I(:o)} = Illx 
Out(O}j = Outy 
Outx=Iny 

In (x fly) = Il1x"..J/ lly 
Out(x/~v)= Out}-JOuty 
Out? 4>, Outy * 4> 

In (.-.:/y) = InxuIny 
I1Ix * 4>, Iny* 4> 
Out('C!y) = Ollt~Outy 
Outx = 4> 

In"x= Afnx 
Out"x ="Dutx 
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of either one of them or both may as well be empty. The fork term (r/yj 
is functionally defined by 112 (x/yj=112xU112y , Out(x/yj=OutxuOuty. 112x# 0, 

112y# 0. At most one of the terms .r, y may have a successor and therefore 
may have a nonempty output. 

Since the terms :r and y in (.1/ /y) as well as in (x/y) are functionally 
independent they are temporally independent, too. There is nothing by 
\vhich a temporal ordering could be defined. .\evertheless they do have 
Cl. spatial ordering orthogonal to the direction of propagation. In a two­
dimensional space this ordering can be defined by a left/right relation. Here 
\\'e stipulate that the first term of a join or a fork is at the left side of the 
other. 

Finally \\'e introduce a unary operator which reflects an acton term at 
the direction of propagation. This reflection operator is designated by the 
prefix symbol -. The reflection reverses the order of the input and output 
of a term. For convenience the reversed order of a set is also expressed by 
the --symboL e.g .. - 112x=112- x' 

As a result we get a description of acton networks in a two-dimensional 
space. where one dimension is distinguished by the direction of propagation. 
This topology can be turned into metric if the real width and length of the 
actons are taken into account. It is thus possible to calculate the physi­
cal area of any planar processing system. A particular important area of 
application is the layout of digital circuits. 

The inclusion of time into the metric is not quite that simple. Every 
elementary acton has a time delay that IS gIven by technology. HO\vever, 
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the time delay of an acton network can only be determined if the number of 
loop cycles is known. Thus in general a time metric can only be introduced 
if there are no loops at all like in combinational digital circuits or if the 
number of loop cycles is predetermined. 

Table 4. Properties of the general delimiters 

*i[P): p=i *j[q): 
In*r=tP 
Out*i=read(*i) 

i=j ~ Out*i=In*; 

q=i 
In*;=write(*j) 
Out*,=cj> 

J 

A finite partial ordering has at least one minimal and at least one maxi­
mal element. In acton networks these elements are represented by delimiters. 
The delimiters are special actons which serve as links to the environment. A 
delimiter for the representation of minimal elements is designated by a star, 
and a delimiter for the representation of maximal elements is designated 
by a primed star. Both delimiters are assumed to be unconditional. In an 
abstract semantical interpretion, a *-acton comprises the complete causal 
pre-world of its output bents and a *'-acton the complete causal post-world 
of its input bents. In a more concrete semantical interpretation, a *-acton 
serves as an entry which activates the subsequent acton network and sup­
plies it with input parameters by importing a set of bents from the outside 
\vorld . The least import of a *-acton is an activation signal. Likewise, a 
*'-acton serves as an exit which exports a set of bent to the outside world. 
The least export of a *'-acton is a termination signal. A *-acton can there­
fore be regarded as a reading or message receiving device and a *'-acton as a 
writing or message sending device. The formal definitions of the delimiters 
are listed in Table 4- A *-acton is characterized by an empty input and a 
nonempty output. and a *'-acton by a nonempty input and an empty out­
put. For comparison. the input and the output of internal actons are never 
empty. Both types of actons are always indexed. Identical indices denote 
that the output of the *-acton and the input of the *'-acton are identical. 
Such a pair is called matching. Note that a *-acton and a *'-acton which 
occur at different points of time can never match, although the output of 
the first and the input of the second may of course assume the same final 
values. 

4. A Language for Acyclic Acton Networks 

The acton networks which can be represented by the operators introduced 
so far are acyclic, i.e., each acton can only perform an individual activity. 
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The network of actons is therefore isomorphic to the network of activities. 
A common acyclic network is a combinational hard\vare circuit. In the 
next section the language will be extended to represent every processing 
structure. 

The acton and the two delimiters serve as terminals of three sorts of 
acton terms which are called head, body and tail and are symbolized by the 
bold abbrevations h, b, and t. A head term has an empty input and a 
nonempty output. It ahvays begins with a *- acton. A tail term has a 
nonempty input and an empty output. It always ends with a *'-acton. A 
body term has a nonempty input and a nonempty output. Finally, there is 
the sort of complete acton networks designated by as which is characterized 
by a nonempty input and a nonempty ouput. Terms with a nonempty 
output, i.e., of sort h or b, are always succeeded by a term with a nonempty 
input. i.e., of sort b or t. Terms of sort h or b can therefore be designated 
as predecessors, and those of sort b or t as successors. The join-connective 
only applies to predecessors, the fork-connective only applies to successors, 
and the sequential connective only combines a predecessor and a successor. 

Round brackets are used in order to delimit the terms. As usual, their 
number is diminished by introducing a precedence A, j j, j, >, where Abinds 
most. 

Table 5 shows the signature of the basic network language. 

Table 5. Signature of the basic lan?;ua?;e 

>: bxb~b If: bxb~b f: txt~t /\. b~b afpj: ~b 
hxb~h hxb~b txb~b h~h * . ~h 
bxt~t bxh~b bxt-+b t-+t 

, 
*: -+t 

hxt~as hxh~h asxas-+as 

The language definition does not include the usual laws of commuta­
tivity. associativity, distributivity or idem potency, by which different but 
functionally identical terms are equated. This is because each acton expres­
sion is a unique description of a processing system. For instance substituting 
the join-term x/ /y by the join-term y/ /x generates a topologic ally different 
system. Equating both terms means a loss of topological information,. and 
hence an abstraction. Thus instead of providing a set of term equations 
here we can only offer a set of term replacement rules which preserve the 
functions but change the topology. They are listed in Table 6. The rules are 
described by a term above and a term below a horizontal line and by vertical 
arrows indicating the direction of the replacement. If there are particular 
restrictions apart from those given by the connectives this is expressed by 
conditions which are put in square brackets beside the arrow. For instance, 
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the rules a and b are only defined for b-terms. the rule h for h-terms. and 
the rule i for t-terms. 

Table 6. Topological term replacement rules 

Identity: a. (,;~)t[.<EbJ 

Commutativity: c. 
(xl/y) 
(yl/x) 

Associativity: ((x>y»Z)! e. 
(x>(y>z)) 

b. (S~X)i[XEbJ 
d (.'(/y)t 

. 6'lx) 

((xll))//Z) f. 
(xii Cvl/Z)) 

((.'(ly)lz) 
g. 

(.</(ylz)) 

((x>y)llz) 
h. -'-'-(,'(->-"-'(y'-// z-'-) )+[z Eh} 

L (zl(xlly)) [ZEtj 
((zlx)lly) 

Reflexivity: J. ~ "t\x}l.-

Distributivity: k. 'yx:y) $ L 
"(xlly) 

ill. 
(".<)/)) (ryll">:) 

The language defined by the operators is recursively reducible. This 
means that every valid acton expression can be reduced to a single term by 
repeatedly subsTituting binary terms by single terms. At first glance. this 
property seems to severely restrict the types of net\\'ork structures which 
can be described by the language. And indeed just a simple network like 
that at the left side of Fig. 2 cannot be reduced recursively and therefore 
does not have a language representation. 

~Z~' *J~ ~*2 
Y v 

*J 

Fig. 2 . .\onreducible and reducible net\\'orks 

Fortunately this problem can be solved by introducing an implicit rep­
resentation of the unconditional neutral acton, i.e., by replacing S, by a 
pair of matching delimiters (*i ,*i), where i E N and I n~1 = Ins. and 
Out.;" = Ins,. This makes it possible to transform every no~reducibie ex-
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pression into a reducible expression by turning some of the sequential con­
nections of a nonreducible acton network into a pair of delimiters. 

The join-connection does not only serve for the description of \\'hat is 
generally conceived as concurrency but also for the description of alterna­
tives. In ordinary programming languages the alternatives are represented 
as If- or if-then-else-statements. Actually, every alternative consists of two 
independent branches. which could concurrently be evaluated. In an acton 
network an alternative is just a join-connection of t\\·o acton terms w'ith com­
plementary conditions followed by a special acton 0+ acting as a multiple 
OR. The output of 0+ is defined as a pairwise disjunction over the output 
bents of the upper and the lower preceding terms, where card (Outa)=card 
(Outb). The pairwise evaluation can be formally captured by a scalar prod­
uct over the outputs. 0+ can thus completely be defined by ;:(Outo+ 
V (Outa' Outo). wherep describes the delay. 

Fig. 3. If-then-else network 

Fig. J depicts the familiar if-then-else-statement of a conventional pro­
gramming language. A simple if-statement is described if b is a neutral 
acton. 

5. A General Language for Acton Networks 

In this section we are imroducing another pair of delimiters by \\'hich two 
sequentially connected acton terms can be wound up into a topological loop. 
The delimiters are called loop head and loop tail and are designated by a 
circle and a primed circle symbol. Both are presumed to not depend on 
external conditions. The o'-acton returns its input to the o-acton, and the 
o-acton joins the input of the o'-acton with its O\yn input. The joining of 
both inputs is done by concatenation. Since there are two choices how the 
concatenation can be done \\'e specify that the returned input is located at 
the right side of the o-input. A left hand location of the returned input is 
achieved by reflecting the o-acton. 

The return of data from the o'-acton to the o-acton cannot explicitly 
be expressed by t he language. Physically. it can be realized by means of 
a second plane. The formal definitions of the o-acton and the o'-acton are 
listed in Table 7. 
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Table 7. Properties of the loop delimiters 

olp}: p=J 
Ino;t:<jJ 
10= (1l1o,/no) 
Outo;t:<jJ 

o'[P}: p=J 
Ino,;t:<jJ 
0Ilto'=<jJ 

The introduction of the loop delimiters gives rise to three more sorts 
of acton terms. First there are the two term sorts 1h and It, called loop 
head and loop tail, which are created by the delimiters. In addition there is 
a term sort le, called loop exit. The domain and range of the loop induced 
sorts and their relation to the basic sorts are shown in Table 8. 

Table 8. Signature extensions for the general network language 

>: Ihxb~lh 11: Ihxh~lh /: ltxb~le 1\: Ih~lh 0: ~Ih 

bxlt~1t hxlh~lh bxlt~le It~1t 0': ~lt 

Ibxle~b Ibxb~lh txlt~lt le~le 

bxlh~lh Itxt~lt 

Ihxlh~lh ihxt~lh 

Itxlt~lt txlh~lh 

There are two options ho\\· the loop construct can be used. The first 
option is using it for the topological arrangement of acton networks. For 
instance, a sequential acton network described by * > y > :: > *' can be 
turned into a functional equivalent acton network * > 0> (y > 0')/:: > *', 
where the acton terms y and:: are placed side-by-side. Fig. 4 shO\vs the 
expressions and the structure of both networks. The dotted line in the loop 
structure indicates the hidden return of data. 

~
o' 

*~o , , 
z * 

*~*' 

F1g. 4. Topological loop and functional equivalent sequence 



PROCESSlSG SYSTEMS 45 

2vIore important, the loop construct can also be used to describe a 
feedback. A feedback means the joint processing of the input data and the 
returned data. It can be realized by an extra term immediately following 
the o-acton. The feedback netviork is depicted in Fig. 5. The extra term is 
designated by x. 

0' 

Fig. 5. Feedback loop 

The feedback operation is a basic requirement for storage and rep­
etition, which are the corner stones of computing. A feedback combines 
causally dependent data. Roughly, if the returned data are changed this 
leads to a repetition and if not this leads to a steady state, i.e., to storage. 
As an example we demonstrate the representation of a D-flipflop as shown 
in Fig. 6. The D-flipflop gets a bit D and a clock pulse CK for input and 
generates the complementary bits Rand R for output. In bent algebra a 
bit specifies a final bent value {O, 1} and the leading edge of a clock pulse a 
signal {#,1}. 

D 

CK -+--.--1 

R 

Fig. 6. D-f1ipflop 

Table. 9 summarizes the states of the flipflop. The flipflop is in a stable state 
as long as there is no clock pulse, i.e., as long as CK=#. and it only changes 
its state if C=l and if D differs from R. The D-flipflop in Fig. 6 is realized 
by three functionally identical hold-circuits. They are encircled by dotted 
lines and designated by HJ , A HI and H2 . Each of them is built up by two 
lVAND-gates. They are interconnected by an AND-gate. \Vhile H2 has a 
clearly different structure HI and A HI are just reflections of each other. 

The NAND-gates of the hold-circuits form a noninverted feedback. 
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Table 9. States of the D-flipflop 

D CK I R R 

0 ~ R R 

1 I R R 

0 1 0 1 

1 1 1 0 

The state of each hold-circuit therefore remains unchanged until a change 
is enforced by the input. 

The hold-circuits can be transformed step-by-step into an acton term. 
Fig. 7 shows the graphical and formal representation of H j . Two bents p 
and q are entered by *pq' Bent q is immediately sent to the second .or along 
the bridge *'0' *q. The two output bents rand .3 are returned by *'rs' It 
should be enlphasized that each of the body actons has a unique topological 
position. The position can therefore be used as an implicit identifier. The 
first A acts as the extra term which distinguishes a feedback loop from a 
topological loop. 

············0' 

, 
*rs 

.' *q 

*pq> o 11($1* 'q) >A >($II*q>A>( 0'15))1/ S>*~s 

Fig. 7. Graphical and algebraical representation of Hi 

The acton terms of 'HI and He; can be set up in the same way. \Ye 
lea\'e this to the reader. The three abstractions are then used for the acton 
representation of the complete D-f1ipflop. Fig. 8 shows the result. 

, 
*R 

*CK 
, 

o *R 

*DII(*CK>$/I(o>/\H]>S/* 1 »A»H]> (S/o')/hJ >H2> *'7[/* R 
Fig. 8. Graphical and algebraical representation of the D-flipflop 
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6. Conclusion 

This paper gi\'es an introduction to the acton algebra and demonstrates 
its applicability to digital hard\vare circuits, :\ unique feature of the acton 
language is the explicit representation of storage, This makes it possible for 
the first timE: to completely define every digital circuit by a single formula. 
The formal representation can also be applied to every computing system, 
The topology can easily be turned into a metric if the actons are supplied 
\vith their planar dimensions, The space of the wiring is expressed by neu­
tral actons, The acton algebra can therefore also be used for specifying the 
la:'out of digital circuits, A most important feature is that every layout 
can be realized on at most t\\'O planes, This is because the second plane is 
only used for point-to-point \\'iring, Every \\'ire can thus be circumvented so 
that crossings are totally avoidable. The acton algebra can be abstracted to 
specific features of hard\\'are or software systems. For instance. abstracting 
from the acton operations turns it into a layout language, Vice versa, ab­
stracting from the topology turns it into a programming language, which can 
be related to cOIl\'entional programming languages by means of conversion 
rules, :\Iorem'er there are term replacement rules which change the degree 
of parallelism of an acton network, Total parallelization or sequentialization 
can even be achie\'ed automatically, 

:\Ieall\\'hile a parser has been built up for applications in C, C++. 
Delphi and Basic. It is freely a\'ailable for scientific investigations, 
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