
PERIODIC'. POLYTECH.'iICA SER. EL. ENG. VOL. ~2, NO. 1, PP. 49-70 (199B)

BROADCAST AUTOMATA: A COMPUTATIONAL
MODEL FOR MASSIVELY PARALLEL SYMBOLIC

PROCESSING

?vIonica ALDERIGHl x
, Fabio CASI:.il xx

, Riccardo Pietro Giovan battista
MAZZEl xX and Giacomo Renato SECHl x

• Istituto di Fisica Cosmica e Tecnologie Relative
Consiglio I\ azionale delle Ricerche

Via Bassini I·) 1-20133 Milano, Italy
Tel: +39 2 2369-9332, Fax: +39 2 236-2946

Email: {monica.giacomo}@ifctr.mi.cnr.it
•• Dipartimento di Fisica

l!niversita' degli Studi di l'.1ilano
Via Celoria 21

1-20133 l'.1ilano. Italy

Received: September 30, 1997

Abstract

This paper presents a suitable formalism for the Broadcast Automata System, a model
of massively parallel computation, introduced by the authors for prototyping of scientific
applications. The model consists of a collection of identical entities, modelled as finite
state automata, a global synchroniser providing coordination between the automata and
a hroadcast communication system. to which each automaton is connected, granting in­
formation exchange among the automata. The formalism is based on an extension of the
classical formalism for finite state automata. The application to a case study concerning
the recognition of first order propositional formulae is illustrated and the correctness proof
is sketched.

Keywords: system models. parallel systems, correctness, finite automata.

1. Introd uction

The Broadcast Automata based System (BAS) \vas defined as a model of
massively parallel computation based on broadcast agents (ALDERIGHI et
al., 1997). According to a reference architecture, it consists of a collection
of identical agents, modelled as finite state automata (SA), a global syn­
chroniser providing coordination between the agents and a broadcast com­
munication system, to which each agent is connected, granting information
exchange among the agents.

The number of automata simultaneously operating is not a priori fixed
but can be varied as the complexity of the application changes. The topol­
ogy is regular, and it is a fully connected graph in a more specifical way.

50 i'>I. ALDERIGHI et al.

Therefore each SA is a neighbour of every other SA and can observe its
state, yet it is not a\vare of its identity.

Computation in the BAS occurs as global evolution of all automata.
In analogy with dynamic systems, it can be viewed as passing from a highly
unstable state to more stable ones, until highly stable states (final states) are
reached. These may correspond to a legal termination of the computation
(the highest stability) or to an anomalous functioning condition.

Different formalisms and methodologies for distribute systems have
been proposed in last ~'ears. such as Petri nets (REISIG. 1985), CCS (?vlIL­
NER, 1980), CSP (HO,-'l.RE. 198.5). I/O-automata (JONSSON, 1989), State­
charts (HAREL, 1987). Ci\IT'{ (CH,.\:\DY et aL 1988), FOCeS (DEDERICHS
et aI, 1993) and many other variants and integrations. The BAS is distin­
guished from these approaches for its emphasis on the identical structure
of its components, which makes the BAS closer to the models of massive
parallelism than to models of parallelism in generaL Within this context,
broadcast automata may be regarded as cellular automata (GARZO:\, 1995),
yet they are distinguished from cellular automata. and classical finite state
automata, for t\\'o respects: a sequential aspect in the state transition dia­
gram a.nd the concept of eleetice ofjinitI} (A,LDERIGHI et aL 1997). This last
expresses a specialised dependence of a B:\ state transition function on the
state of other BAs and defines a relationship of state sensitivity among BAs:
a BA is sensitive to its affined only. Elective affinity allows to dynamically
define logical connections among BAs that are not physically connected.
thus providing a sort of pri,'ilegeJ communication among BAs.

The possible combinatorial slate explosion resulting from complex ap­
plications is a not minor dr,l\\'bac:k of the use of this model. It is possible
to rely upon absuact ion pre,n'SSf'S O\'er state compollents. for instance in·
troducing typfrl stales, .\loI'f.'oH'" thin in terms of feasible systems. it
may be argued tha l although i he concept of obsen'atioll is theoretically
expressive and po\\'erfuL it can hardly be implemented efficiently. This
drawback could be overcome by introducing e\'ents. \\'hich asynchronously
notify BAs about significant state changes only. The topology of the com­
munication subsystem possibly reduces the obsen'ability of the BAs and also
increases system's reconfigurability costs. in terms of extra communication
loads needed to properly rearrange connections among BAs. A deep discus­
sion on the communication system falls out the scope of the paper. but the
availability of high band-width fiber optics channels suggests that physical
high-speed broadcasting is going to become feasible.

The BAS model was successfully employed in different applications.
The application to signal processing problems is reported in (ALDERIGHI
et ai, 1997 and 1997a). An example of application involving pure symbolic
processing is shown in (ALDERIGHI et aL 1997b). These encouraging results
lead us to think the BAS could be a promising approach to a \\'ide category
of design problems.

This paper describes our attempt to provide a suitable formalism for

BROADCAST AUTOMATA 51

the BAS in order to be able to analyse its properties, as relevant to correct­
ness. Specifically it is shown hovv a correctness proof of the computation
accomplished can be developed. In Section 2 the main features of the BAS
are briefly revie\ved, while the formalism is presented in Section 3. An ex­
ample concerning the recognition of well-formed formulas in propositional
calculus and the correctness proof are given in Sections 4 and 5.

2. Basic Concepts

The BAS models a collection of identical reactive entities (BAs) evolving
concurrently and synchronously in response to a sequence of external stimuli
generated by its environment and broadcast to all of them by means of a
communication system.

Concurrence is meant as a co-operation between BAs for the accom­
plishment of a given computational task, that is the behaviour of a BA is
affected by the BAs that are logically related to it (this concept will be clear
in the sequel). In general this behaviour is also affected by the input data
coming from the external environment.

BAs co-operation is based on the ability of each BA to observe other
BAs. In the more general case, this visibility is globaL that is information
is broadcast to all BAs in the system.

The synchroniser unit provides the system timing, ensuring the simul­
taneous activation of all BAs, while control and computing activities of the
entire system are spread over BAs.

The injector automaton represents the BAS interface to the external
environment: it distributes the information received from the environment to
all BAs. Data injection can be performed according to different modalities
and protocols, depending on the specific application requirements.

2.1. Static De!)cription

:'-.Iany of the concepts and definitions that will be presented hereon are not
novel and can be found in most literature concerning modelling of reactive
systems, distribute systems and so on. \Yhat we are trying is to re-formulate
these concepts in the context of systems based on a certain number of BAs.
Where necessary we will indicate explicitly the differences of the BAS and
cell ular automata.

Generally speaking, a BA is a state-based entity capable of performing
actions when some events trigger a transition of its state. There are external
and internal events. External events are data coming from the external
environment: internal events are the observable effects of the behaviour of
the other BAs in the system. A BA has local memory and is able to perform

52 .\1. ALDERIGHl et af.

basic operations (arithmetical, logicaL etc.). The state of a BA contains
information about control and computing activities, conditions, data-items
and related BAs. ?vIore specifically, three different parts can be identified:
controL data and affinity.

The control part is relevant to BA's behaviour and identifies four func­
tioning phases. In the first phase. the reset phase. BA is initialised: then, in
the second phase data from the external cm'ironment are sensed through the
injector: in the third phase, the activity phase, the R·\ performs the required
computation concurrently with other acti\'e BAs: finally. ill the fourth phase
either a correct termination of the computation or some exception conditions
are reached.

The data part contains information about the data-items used to per­
form the computation, namely values and their aqilability. The affinity
part contains information about the affinity links of the BA,

The concept of affinity is fundamental for understanding the BAS
model and hO\\' it differs from cellular automata. B:\s evolve according to a
set of state transition rules which are common to all BAs. State transition
of each BA is based, like in cellular automata. on a certain number of BAs.
but which BAs are involved is determined in a dynamic \\'ay. far from being
set a priori on a topological basis. It is. thus. necessary tLat each BA knoll's
the state of all the other BAs. though only a small part of this information
may be necessary for state transition. The specialise'l dependence of the
state transition function on the state of other BA:s defille:" a relation:ship of
state sensitivity among BAs. that we have defined clS elect in:' affinity, In
the time step in which a BA becomes active its slate trall"ition j" based on
its own state and is affected by the state of' ilI1Y or BA: it is 1 kret'ore
affined to all B.-\.s. or (\\'hich is the same) to HOHe' at all. As affi li,d,s
are established state sensitivity is more and morc :specialised. is in the'

end restricted to only a few BAs.
To better understand this mechanism, let us consider the very siIllple

case of a BAs class. the representatives of \\'hich are given the possibility
to establish only one single affinity link. that is Cl B:\ be affined with just
another one, Let P(i, j) indicate a predicate over the states of generic
BAs i and j. This predicate can act as a trigger for the establishment of
affinity links: if BA i finds P(i.j) to be true for a particular j. the i will
be affin~d to j starting from the time step next to the obsen'ation. This
means, in practice. that in a particular component of the state of BA i a
part (a component or more) of BA j is stored. This part represents a sort
of 'identification badge', by which BA i \\'ill recognise j from the others.
\\.'heni obser\'es the others. it will be interested only in the BA with this
badge. that is j. in most cases.

In this special case the identification badge must be a unique label in
order to grant uniqueness of affined BAs. This type of affinity link may be
called 'point-ta-point'. as it corresponds to a specialised communication of
BA j to BA i. \Iore interesting cases of affinity may be established: first. by

BROADCAST AUTO.\fATA 53

simply dropping the request of uniqueness for the badge, an arbitrary num­
ber of BAs can be affined to each other, sharing the same badge. This kind
of affinity link may be called 'open multicast'. Affinities may superimpose
and cross, as far as they are related to different aspects of computation.

2.2. Dynamic Description

The behayiour of the BAS in correspondence with a given sequence of ex­
ternal data consists of a series of snapshots of the system's situation: such a
snapshot is cailed global state. The first in the sequence is the initial global
state, and each subsequent one is obtained from its predecessor by executing
a step. This global state actually gathers the situations (state) of all BAs
present in the system.

The functioning of the BAS is determined by the functioning of all
BAs. At each step all BAs undergo three phases:

e Prologue: each BA observes the state of other BAs. This is the only
\yay for BAs to exchange information, and can be done in the prologue
only: the subsequent operation works on a consistent snapshot of the
system state. As the state information is received through the com­
munication system (the minimum requisite of \vhich is the gossiping
capability). it is stored in a local memory area.

® Eeha uiour: the current state, the observed state of other BAs. ,u:d 1 he
external datum (if any) trigger the state transition. As a result. The
BA moves to a ne\\' state. Values of data-items and affinities may be
modified.

® Epilogue: the new state is assigned and made visible. that is it is sent
to the communication system.

The sequence of state transitions is meant to be loop-free and converge
to one of the possible final states in a prefixed number of time steps. To this
end some attention must be paid to rule formulation and state definition in
order to avoid loops and also to grant deterministic behaviour. The general
form of a state transition is c(e) -+ a a \\. here e is (are) the event (s) that
triggers the transition: c is a condition that guards the transition from being
taken unless it is true when e occurs: a is the action that is performed when
the transition is taken.

Fundamental for understanding the BAS is also the concept of stability.
Indeed, it serves to characterise the correctness property of the system. In
analogy with dynamic systems. the evolution of the entire system can be
yiewed as passing from a highly unstable state to more stable ones. until a
highly stable state, the final state, is reached. This state may correspond
to a legal termination of the computation (the highest stability) or to an
anomalous functioning condition.

54 M. ALDERIGHI et af.

DEFINITION A BAS is said to be in a stable state (or similarly to be stable),
if and only if all BAs are in a stable state (or similarly are stable).

DEFI1\ITI01\ A BA is said to be in a stable state (or similarly to be stable),
if there are no external stimuli from the environment and no transition rules
can be applied.

DEFINITI01\ A BA is said to be in an unstable state (or similarly to be
unstable), if transitions occur from this state, that are unconditional to the
external stimuli from the environment.

DEFI1\ITION A BAS is said to be in an unstable condition (or similarly
to be unstable), if at least one BA is in an unstable state (or similarly is
unstable).

There are two kinds of stable conditions: those corresponding to final
states and those corresponding to error conditions. Let us define the former
as successfully stable conditions, while the latter as unsuccessful ones.

DEFINITIO\" A BAS is said to be in a successful condition (more briefly, it
is successful) if all BAs are in a successfully stable state, or they are in the
reset state.

DEFINITION A BAS is said to be in an unsuccessful condition (more briefly.
it is unsuccessful) if at least one BA is not in a successfully stable state, nor
it is in the reset state.

DEFINITION A BAS system is said to be correct if and only if 1) for every
legal sequence of external stimuli the system is successful and 2) for any
illegal sequence of external stimuli some BA does not reach a successful
stability condition. nor it has left the reset state. that is the system IS

unsuccessful.

Thelssumptions we have adopted in defining the BAS are the
follov.;ing:

1. A BA in an unstable state will always reach a stable state.

2. Changes occurring in a BA during a step can be sensed only after the
completion of the step (in the prologue phase).

3. Changes occurring locally to a BA cannot be observed.
4. At each step BA's behaviour is determined on the basis of the situation

at the beginning of the step.
5. At each step, at most one transition per BA is taken.

BROADCAST AUTOM.~T.~ 55

3. Formalism

We formally denote a generic BAS consisting of N BAs by a (N + 1)-uple of
finite state BAs (kh, M2 , ... , J'vlN, ME',;]), where M 1 , ... j\{v, MINJ generally
denote l'vloore finite state BAs (HOPCROFT, 1979). An external synchroniser
exists that provides the correct timing of their operation. A1is are identical
and can be distinguished from each other.

A BA is described by a 7-uple (Q, 2:::,~, D, A, go, F). With respect to
the definition in (HOPCROFT, 1979), the function D (behaviour Description)
is introduced, replacing the classical state transition function S. Indeed
states are deeply structured, differently from the standard monolithic vie\v,
and this structuring affects BA's behaviour. A control is also defined for
the BA that applies D in order to produce the behaviour.

Q = Q""A:vIE x Q:vlAC x Q AFF X QOATA is the set of states consisting
of different components, called state components, defining respectively the
BA's identifier, the set of control macrostates, the set of affinity-related
microstates, and the set of data-related microstates. QNAME is the set of all
possi ble identifiers and allows to distinguish BAs from each other. Q:vIAC, as
mentioned in Section 2, denotes control states identifying the main phases
of BA's behaviour. QAFF = Q:VIIC_-I.FF x QVAL_WF describes affinity related
information and is given by QVAL_-\FF = F1(a) x \;.~(a) X ... x vt~), '\vhose

components specify the affinity badges (point to point or open multicast)

and Q:vlICAFF = "Hi
a
) x JIJa) x ... x "HX:/a)' which is the set of corresponding

control microstates. It is worth reminding that each QVAL_-I.FF component
do not identifies a single affined BA, as the SCime badge can be held by
different BA,s at the same time. QOXf.-\ Q:'lICOATA x QVALOATA is used

to describe transformations of data and is giveJl by QVALOATA = F/ d
) X

l;~(d) X ... x VJ~(~~l' whose components specify typed data. and Q:'IlCOATA =

:HId) x :11jd) x ... x :H):{d) describing their related control microstates. Let

us define QCTRL to be the set Q:'IAC x Q:'IIC ~.UA x Q:,IICAfF and let us
call its components pure control components.

2::: = (~ x 2>.: ... x ~) X ~[\J is the input alphabet, consisting of

1\ times

the Injector's output alphabet plus the output alphabets of all BAs. Except
the input from the external enyironmenL this is similar to what is defined
in cellular BAs (G:-\RZO:\, 199.5) but in our case all BAs are interconnected.

2> is the output alphabet.
D is the behaviour description function, which de facto corresponds to

a state transition function: D : I: X Q --t Q. The description is accomplished
by means of rules. Rules directly imply the B:-\'s state transition diagram:
this is associated to the pure control component QCTRL. Let us call this

56).[. ALDERIGHI et a1.

diagram STD (State Transition Diagram). Alternatively, given an STD,
rules can be associated thereto in straightforward vvay by specifying for
each rule (1) \vhich pair of nodes it refers to (they must be in an antecedent­
consequent direct relationship) and (2) which pre- and post-conditions hold
for the components other than QCTRL involved in the transition.

A : Q -+ 6. is the output function. It is a bi-jection between the state
and output states.

qo is the initial, or reset, state. It contains prefixed values for Q"'IAC,
QD.HA and QAFF that are common to all BAs, while for the component
QNA?vIE the value is univocally defined for each BA in order to distinguish
BAs from each other.

F is the set of final states. If the BA enters one of these states it does
not move to any next state (that is no transition rule is taken) as long as
no external inputs are sensed. Yet transition may occur in presence of an
external in put in D1T:\J.

Actually, the entire system can be vie\ved as a :VIoore state-based ma­
chine defined by the 7-uple (QSys. 2::SYS, 6.syS , Dsys, ASYS, qoSYS, Fsys).

QSYS (9 x Q.: ... x ~) X Q1NJ is the set of states of all BAs (or

iVtlmes

global state) and is built starting from the BAs state sets, 'which are iden­
tical.

2::SYS = (p- x 6..: ... x ~) X 6.1NJ x ::::ENV IS the input alphabet.
}\tlmes

Also 6. sets are identical.

Dsys = (p- x 6..~ .. , x ~) X 6.1NJ is the output alphabet.
Ntlmes

Dsys is the global transition function, or global dynamics according
to (GARZON, 199.5), defined as the (N + l)-tuple ((D1. D2.·· .. Ds). DINJ),
containing the transition functions of all BAs, whose domains and ranges
are contained in (2::SY 5 x QSys) and QSYS respectively.

A is the output function. It is a bi-jection between the global state set
and the output alphabet 6.Sys.

qoSYS is the initial (or reset) state. It contains the initial state of all
BAs.

Fsys is the set of final states. Instead of a listing of final states criteria
will be provided specifying which configurations of the system are to be
considered as final.

Let us see more closely how to define each state transition rule. Ac­
cording to BA's observing activity during the prologue phase, let us name
observer the current BA and observed the remaining BAs, objects of the
actual observation. As mentioned in Section 2, each rule contains a guard.

BROADCAST AUTO:-'fATA 57

i.e. a predicate, that has to be satisfied for the rule to be applied. It also
contains a predicate expressing the condition that is to be held after taking
the action corresponding to that transition. The action corresponds to an
assignment of ne\Y values to some state components. The guarded predicate
constitutes the rule pre-condition and is generally expressed as conjunc­
tion (&-products) of possible disjunctions (v-sums) of elementary (equality)
predicates over single state components. The post-condition is expressed
in the same \Yay as conjunction of equalities over state components. The
language we have chosen for specifying transition rules is that of first-order
logic, naturally well suited to express Boolean conditions.

The pre-condition usually involves the state of both observer and ob­
served BAs. During observation, the states of all BAs in the system are
sensed by the observer. Possible optimisations can imply, for instance, that
only BAs that moved to a new state send this information, or, once that
affinity relationships are established, the observer senses its affined automata
only. The observer is not a·ware of the identity of observed BAs it senses;
in other \Yords. it cannot distinguish them from each other. This is to be
reflected in transition rules for \Yhich observed-related information is to be
different yet indistinguishable. A possible way to achieve this is to asso­
ciate an index (local to each BA) to the state information of observed BAs,
thus granting difference. and to require transition rules to be invariant with
respect to these indexes. Invariance can be obtained by means of the fol-
100\'ing.

1. Rules that for their very nature are invariant. This is the case when
universal or existential quantifiers are used in defining the rule:

2, Rules identical up to the index, This is the case \-.-hen the index is
a free \'ariable of the rule. If there are .Y BAs in the system. then a
same rule will be repeated .Y times.

:"ow \Ye can better define some concepts related to stability of states
and affinity. that v;ill be useful in the correctness proof.

DEFI:\ITIO:\ The STD of a B.-\S BA is a finite tree. called State Transition
Tree (STT).

This derives from the requisite that transitions from unstable to stable
states are loop-free state and uniquely defined. STT nodes are supposed to
be identified uniquely by pure control state components. In the following
we will therefore talk in the same \\'ay about nodes of the tree and control
states of the BAs.

DEFINITIO:\' A thin sub-tree of an STT, whose root and leaf are respectively
root and leaf of the STT, is called history of the STT. A history is uniquely
determined by its leaf. Leaf depth in the tree defines the history length.

58 M. ALDERIGHI et al.

Actually, different histories correspond to a single STT, corresponding
to the possible different root to leaf paths of the tree.

DEFINITION Given a history H, a state component is k-stable in H iff its
value remains unchanged in all nodes of H of depth greater than k.

DEFINITION At a given step in the system evolution, a state component of
a BA is steady iff:

1. the state component is k-stable in a history H;
2. the actual state of the BA is a node of H and its depth is greater

than k.

State components which are non-trivially k-stable in a history can be
used for establishing affinity links.

DEFINITION A state component is an affinity badge if it is a steady k-stable
(k is smaller than the history length) for some observed BAs.

DEFINITION BA a is said to be affined to BA b iff some steady component
of b is assigned the affinity badge of a. Affinity links define a digraph. Let
us call it the affinity graph.

DEFINITIO:\ : A transition rule is called affinity checking rule iff its pre­
condition contains an equality predicate (called affinity checking predicate)
involving both a state component of the observer BA and an affinity badge
of some observed BAs.

DEFE\ITIO:\ A. rule is an affinity establishing rule iff its post-condition con­
tains the assignment of the affinity badge value of some observed BAs to a
state component of the observer BA.

DEFI:\ITIO:\ A state component is an affinity pointer iff it is a k-stable
component stable (k is smaller than the history length), it is assigned the
value of an affinity badge by means of some affinity establishing rule, and
any other occurrence of the component is in the pre-condition of affinity
checking rules.

4. The Example

As an example \\'e present a BAS system which accepts first order propo­
sitional logic formulae, according to a specific grammar, given belo\v, and
builds the parse trees of the accepted \vords with a top-down strategy. The
system is required to reach a successful condition for all and only the words

BROADCAST AUTOMATA 59

of the language, while it must terminate in an unsuccessful state other­
wise. During word acquisition the parse tree is constructed in a distributed
manner and is constituted at the end by a certain number of stable BAs.
Therefore the system is to be viewed more like a memory that checks writing
attempts (it is strongly typed) than a simple(pure) language checker.

In the following we will show how a correctness proof in this case study
can be carried out; for the sake of brevity we shall not deal with the parse
tree construction process, but with the language checking problem.

The system is constituted, as said before, by an injector and a fixed
number of BAs. The injector receives a string of symbols from the envi­
ronment and injects them one at a time, according to the synchronisation
rules. The total number of BAs is related with the maximum complexity of
the formulae which can be correctly recognised, as each node of the parse
tree is assigned to a single BA. This means that the acquisition of a formula
can terminate in an unsuccessful condition even if the formula is correct.
A precise definition of the accepted language which takes into account this
limitation is given in the following.

4.1. Language Description

According to (GENTZEN, 193.5) the language of first order propositional
logic can be inductively constructed. A symbol which stands for an arbitrary
proposition is a propositional variable. In the following the term atom will be
used. An atom is a formula. If A is a formula then !A is a formula (negation).
If A and B are formulae then A & B, A vB, A :) B are formulae too.
Parentheses are used to avoid the definition of priority rules. Following these
definitions an arbitrary well formed formula can be constructed. Formulae
that may have arisen in the course of the construction, including the formula
itself. are called sub-formulae.

In order to distinguish the formula itself from proper sub-formulae we
refer to the concept of root node of a tree. The root of a formula plays a
very important role in the correctness proof. exposed in the next paragraph.
The root node of the parse tree of a formula is called root of the formula. If
a formula is constituted only by an atom, then the root coincides with the
only node of the parse tree.

A set of production rules which summarise all these concepts have been
formulated.
(atom root) -+ A# I B# I C#

\yhere "#" is the string terminator
(formula root) -+ ((atom) (connective) (atom » # I ((atom)

(connective) (proposition)) # I
I ((proposition) (connective) (atom)) # I ((proposition)
(connective) (proposition))# I

60),1. ALDERIGHI et al.

1 (!(proposition))# 1 (!(atom))#
(proposition) -+1 « atom) (connective) (atom)) 1 « atom)

connective) (proposition)) 1

((proposition)(connective) (atom)) 1 ((proposition)
connective) (proposition)) 1

(!(proposition)) 1 (!(atom))
(atom) -+ A 1 B 1 C

(connective) -+ & 1 v I)

For the sake of clarity we define the alphabet of the language 5 =
{ "(", ")", "A", "B", "e", "!", "&", "v", "::::>", "#" }. The context-free
language defined in this \vay is not the real language the system accepts.
Indeed the system as a whole is a finite state BA and is obviously restricted
to regular grammars. This limitation is de facto true for all finite systems
(w'hich covers the totality of real systems): we only want to remark it for
our system.

A solution to this is the following language construction, which uses the
application of a finite number of production rules. \Ve use the formalism of
regular expression (HOPCROFT, 1979): A "A" + "B" + ·'C". F'A = CA),
c = "&" + "v" + "::::>", FAcA = (AcA).

Let us define the language Pk of propositions of fixed degree k.

Po A,

PI h4 + F.4cA .
P2 (AcF'A) + (Fr.4cA) + (F'ACF'A) + (Fr.4cF.4cA.) +

+(FAcAcF.A) + (F.4cAcFAcA) + (AcF4cA) + (Fk4 CA) +

+(!F'A) + (!FAcA) .

Elements in Pk can be indexed \yith integers in {L ... , nA:}:

nk

Pk L u7.
!=1

i=O .. k
[J=I .. nk
[2=I·n,

i=O .. 1:
=l..n!

-nk

\Ye can now giYe the expression for the language Lk of the formulae with
degree at most k

k

Lk = LP!.
[=0

BROADCAST AUTOMATA 61

4.2. BA State Vector: Notation and Structure

Here we give some remarks about rule notation and the description of the
state vector structure of a BA of the system, referring to the general outline
given in Sections 2 and 3. As far as rule notation is concerned, we indicate
with State.xxx the state components of observer BA, and adding a subscript
Statej .xxx for observed BAs state. Examples of defined production rules are
given in the Appendix. State parts and sub-parts, dmvn to components, are
denoted as dotted paths, in a C-like style. For example .mic.rgt denotes
component rgt in the microstate part.

State vector is composed by four parts: name, that coincides with
Q:,\A~IE: mac macrostate, that coincides with Q~IAC; mic microstate, that
contains both Q~nc_wF and QMIC-DATA: val, a value that contains both
QVAL_-\FF and QVAL.J)ATA·

Macrostate possible values have been labelled: INActive, REAdy,
Formula Root BA, Formula BA, Atom Root BA, Atom BA,
EX REAdy, ERRor.

REA corresponds to the phase of sensitivity to injected stimuli;
EX_REA macrostate is related to the successful state of a BA with REA
macrostate, once the termination symbol is injected. FRA, FAC, ARA,
AAU macrostates correspond to the activity phase and are related to the
specific role the BA plays during the acquisition. Once a BA is assigned one
of these values, it will not change the value, unless an exception condition
is \-erified and a transition to the error macrostate occurs.

::Vlicrostate and value parts are sub-divided into five components each:

@ id: identity: components of QevIIC.J)ATA and QVAL.J)ATA

@ lft: left: components of QivIIC_-\FF and QVAL_-\FF

@ rgt: right: components of QevIIC_-\FF and QVAL_AFF

@ con: connective: components of QivIIC_DATA and QVAL-DATA

ill atom: components of QevlIC_DATA and QVAL.J)ATA

:Vlicrostate legal values for each component are enumerated in the Ap­
pendix, while value components are described here.

Identity component is dynamically acquired and is a 2-stable compo­
nent in any history of the system: it is employed as affinity badge. Left
and right components are affinity pointers corresponding to the two pos­
sible sons of a parse tree node. Connective component contains principal
(same degree) connective of the (sub-) formula the node is root of. These
last three components are used only by BAs with FRA or FAC macrostate .
. -\tom component is. on the contrary. used only- by BAs with ARA or AAC
macrostate, and it contains information of the particular propositional vari­
able (atom symbol) the node is assigned.

There are basically two types of nodes: formula nodes and atom nodes.
Formula nodes have sons. atom nodes have not (they are leaves). The sons

62 M. ALDERIGHI et a1.

of a formula node stand for the operands of the principal logical connective
of the formula.

4.3. Affinities in the Example

Affinities are introduced in quite natural way, according to the syntactic
structure of the language.

On the "base of the production rules given previously, the parse tree of
sentences of the language has two possible forms, as shown in the Fig. 1.

Atom root Formula root

Fig. 1. Parse trees

The parse tree is constructed starting from the root in a depth-first fashion.
The idea is to assign each node to a single BAS BA, which is in charge
to verify the local consistency of tree construction. The edges of the tree
are represented by references in the BAs state vector of (dynamical) names
of other active BAs. The tree is represented in the system by the affinity
digraph. Each active BA constitutes a node of the parse tree, and has to
establish local links to possible son nodes. ?vloreover, its activity cannot
end until the entire sub-tree has been built. A father formula node must
therefore have some notion of his sons, in order to evaluate the state of
completion of the sub-formula it is root of. This also implies that it cannot
reach a success (end) state before all its sons do. All these concepts are
implemented by making every formula node affined to its direct sons, with
the additional request that a BA cannot reach a successful state before all
affined BAs do.

The affinity establishing rules are A3.2, A4.2, A6.2, A7.2. State com­
ponent val.id is used as affinity badge. In all affinity establishing rule pre­
conditions it is checked whether the affinity badge of affine candidate is
steady; this is realised easily, since val.id is a 2-stable component and it
would be sufficient to verify that the macrostate is not INA. The affinity
checking rules are A14.l, A15.l, A25.

BROADCAST AUTOMATA 63

4·4· Definition of Successful Condition

DEFINITION A single BA of a BAS is said to be inactive iff its macrostate
is INA.

DEFINITION A single BA of a BAS is said to be successful iff its pure control
components match with one of the patterns given in the following table.

Table 1. Termination successful conditions of a BA

Mac Mic.lft Mic.con Mic.rgt Mic.atom
FRA/FAU NA OK--L\1 OK.A NA
FRA/FAU NA OK_M OK_F NA
FRA/FAU OK.A OK]) OK.A NA
FRA/FAU OK.A OK-.D OK_F NA
FRA/FAU OK.E OK-.D OK~;\' NA
FRA/FAU OK.E OK-.D OK_F NA
ARA/AAU NA NA NA OK
EX~EADY NA NA NA NA

DEFINITION A N automata BAS is in a successful condition (or, briefly, it
is successful) iff all BAs are either successful or inactive.

DEFINITION A N automata BAS is in an unsuccessful condition iff it is not
successful.

DEFINITION A N automata BAS is in an error condition iff at least one
BA has ERR macrostate.

A consequence of the identicalness of all BAs in a BAS is that if a
N automata BAS reaches a successful condition on a given input from the
environment, then a (N + I() automata BAS reaches a successful condition
on the same input.

In the specific case, the definition of successful condition will be shown
to be equivalent to:

DEFI:\ITION A N automata BAS is in a successful condition iff there is one
and only one BA with macrostate FRA or ARA which is successful.

DEFE'iITION A N automata BAS is said to accept language L if, for any
word w in L, it reaches a condition in which there exists one and only BA
in a successful state corresponding to the root of the parse tree of w, with
FRA or ARA macrostate.

64 M. ALDERIGHI et al.

DEFINITION A N automata BAS is said to accept language L as a sub­
formula if, for any word w in L, it reaches a condition in \vhich there exists
a BA in a successful state corresponding to the root of the parse tree of w,
'with FAD or AAD macrostate.

By a simple analysis of the possible histories of a BA and related transition
rules it is therefore possible to formulate the following.

LE?vI?vIA A BA with FRA or FA U macrostate cannot reach a successful
state before its affined BAs do. Equivalently, if a BA with FRA or FA U
macrostate has reached a successful state, then its affined BAs are also
successful.

5. The Correctness Proof

THEORE?vl 1 If s E LJ; is injected, a N automata BAS, starting from reset
state, reaches a successful condition.

THEORE:.I 2 If a word s is injected into a .Y automata BAS and the system
reaches a successful condition then sE LJ;.

We will prove theorem 1 by ind uction over k. The basis is A.. 2. and
corresponds to theorem 1.1 .The inductive step is constituted by theorem
1.2. Theorem 2 will be proved by negation: if s rf. LJ; then the system
reaches an error condition, and is not successful.

Therefore. \\'e will prove that the system is correct, according to the
definition given in Section 2.2.

THEORE:.I 1.1 If s E L2 is injected, a .Y automata BAS starts from reset
state, if.Y is great enough, it accepts L 2 .

An exhaustive proof could easily be performed by means of a step by
step simulation of a 7 automata BAS. on the basis of given rules. As re­
marked in the previous section. this is sufficient to prove it for a::\ automata
BAS, with an arbitrary ::\. For the sake of brevity we do not report it here.

THEORE?v1 1.2 (Induction Step) If a .Y automata BAS, starting from reset
state, accepts LJ;, then, if.Y is great enough, it accepts LJ;+l.

In order to demonstrate this theorem we need to prove an additional
lemma.

LE:VI?vlA If a N automata BAS, starting from reset state. accepts LJ;,
then, if 1Y is great enough, it accepts LJ; as a subformula.

BROADCAST AUTOMATA 65

Proof of Lemma
The demonstration in the case of atoms (elements of Po) is implicit in

the proof of theorem 1.2.
Let w be a non-atom element of Lk. Let us suppose that at a given

time step BA a changes its macrostate from READY to FAU, becoming
the formula BA corresponding to the root of w (a has READY macrostate
when the first open parenthesis of w is injected). According to the rules,
the evolution of the system is the same as in the case in which a has FRA
macrostate, until the application of rules A13. Having a FAD macrostate, a
applies one of rules A13.x instead of A13.xbis, changing its right microstate
to CREATED_a.. or CREATED-.F. In the next time step, according to rules
A16.x right microstate of a changes to OK~a.. or OK_F, and the BA is
therefore successful.

Proof of Theorem 1.2 Since Lk+l = L.~~~ PI, then is sufficient to
demonstrate that the system accepts Pk+l' Let then a word in Pk+l be
injected. Let us consider the evolution of the system, starting from reset
state. 0Jumbering indicates global time steps.

1. A BA, let us 'call it a, changes its macrostate from 10JACTIVE to
READY (rule A1).

2. Symbol "(" is injected.
3. Possible rules for a are nO\\' A2 and A2bis. A2 is not applicable because

there is no BA with FRA (Formula Root BA) macrostate. Hence, a­
State.mac=FRA (Formula Root BA) and a-State.mic.sin=SCAN on
the base of rule A2bis.

4. Another BA, let us call it b, changes its macrostate from I0JACTIVE
to READY (rule A1).
At time step ·S either "!", (atom) or ''C' symbols can be injected. We
shall include the demonstration for the first case only: the other two
can be treated in a similar way. According to the language description,
these cases cover all possible situations, and therefore theorem 1.2 is
proved .

. J. Symbol "!" is injected.
After five time steps (we omit details here), the system reaches a
condition in which: BA a is formula root. BA b is formula and is
preparing to acquire a Lk word, and BA c has REA macrostate. BA
b is affined to a, and hence is related to a son node of a.

Since by hypothesis the system accepts Lk . as a consequence of the
lemma it accepts words in Lk as sub-formulae. This means that BA b,
which is root of a word in Lk is proved to reach a successful condition.
In particular, at a given time step t, it will change its right microstate to
E0JD_a.. or END-.F (depending on right operand was an atom or a formula).
After five time steps (we omit details here)' the system reaches a condition
in which: BA a is successful, BA b and m other BAs corresponding to the

66 M. ALDERIGHI et al.

parse tree b is root of are successful, and at most one additional BA has
EX-READY macrostate, which is a successful state. The other BAs are
inactive.

We have shown that if the system contains at least m+3 BAs it reaches
a successful condition.

Proof. We prove that if a word s rf Lk is injected in aN BAs BAS system,
it reaches an error condition.

Vile can assume that s E S~ - Lk , where S~ indicates the Kleene closure
of the alphabet S. Moreover, the last symbol of the word is always the
terminator, since this property is granted by the injector.

On the base of the production rules given in Section 4.1 such string
must verify at least one of the following conditions:

1) It starts with other symbols than "(" or "A" or "B" or "C"
2) It contains one of the following couples of symbols

"(", one of "&", "v", ":::>", ")", "#"
3) It contains a su b-string of the form:

"(1", one of "!", "&", "v", ":::>", ")", "#"
"((proposition)(connective)", one of "!", "&", "v", ":::>", ")", "#"

4) It contains a sub-string of the form:
"((atonl)", one of "A.", "B", "C", "1", "(", ")", ;'#"
"((proposition)", one of "A", "B". "C", "1", "(", ")", "#"

.5) It contains a sub-string of the form:
"(1(atolTI)". one of ":,\". "B". "C", "!", "&", "v", ":::>", "(", "#"
;.((atom)(connectiye) (atom)". one of "A". "B". "C", "!", "&",
"v", ":J", "(". "//"
"((atom) (connecti\'e) proposition)", one of '·A". ·'B". "C". "I"
"&", "v", ":::>", "(", ",';'''
"((proposition)(connective)(atom)", one of '·A". "B", "C", "I"
~~&~'. ~~\"~~ :;-- ~ -·C~: ~~#~.

"((proposition (connective) (proposition)". one of "A", "B", "C",
"1". "&". ·'v". , "(", "#"
"((proposition)", one of "A". "B", "C'·. "1". "&", "v", ":J", ''C'.

6) It starts with:
(atom), one of "A.", "B", "C". "!". "&". "v". ":::>", "(". ")"

7) It starts \vith:
(proposition), one of '·A·'. "B". "C". "!", "&". "v", ":J". "(", ..)

\\'e shali pfOve that in each case the system contains at least a BA for
\\"hich it is applicable a rule which changes BA macrostate to ERR. In all
cases except case 1 this is accomplished by means of proofs similar to the
demonstration of theorem 1. where it was necessary to demonstrate that
the system contained one BA with certain state components. Case 1 is very

BROADCAST AUTOMATA 67

simple: the first BA in the system which acquires a REA macrostate verifies
rule 18 pre-condition, which causes the BA to change its macrostate to ERR.

As far as the remaining cases are concerned, in Table 2 we give here
only the state values of interest and the rules which bring the system into
an error condition.

Table 2. States in which syntactical errors are detected and related rules

Case Mac Mic.1ft Mic.con Mic.rgt Mic.atom Rule
2 FRAjFAU SCAN NA I NA NA A19
3 FRAjFAU OK_-\jOK...F OK..D SCAN NA A20

" :-lA OK...lvI
~,

" "
4 FRA/FAU OK_-\jOK...F SCAN NA NA A21
5 FRAjFAli OK_-\jOK...F OK..D E:-lD_A.jEND...F :-lA A22

il NA OK_M " " "
6 ARA I NA I NA I NA OK A23
7 FRA OK_-\jOK...F OK..D OK_A.jOK...F NA A24

il NA OK...lvI 11 ~,

"

6. Conclusions

The adoption of the BAS and the simple formalism introduced has allowed
to verify the goodness of the solution to our language recognition problem.
The correctness proof has been derived in a straigthforward way from the
transition rules defined for the BAs and carried out without employing any
automatic proof development system. The correctness proof has been done
for a BAS consisting of arbitrary number of BAs.

Due to identicalness of BAs, in general it is ah\iays possible to prove
properties about a system constituted by an arbitrary number of BAs, if the
properties hold for the system with a lower number of BAs.

From the design point of view, the BAS approach is interesting be­
cause the description of the global system can be obtained starting from
the description of a single BA. Indeed, system's behavioural specification is
provided by the set of rules defined for a single BA. By means of specific
requisites of stability dependencies among automata, the analysis of system
behaviour can be accomplished by analysing the behaviour of a prefixed
number of automata, playing a particular role in the system.

Finally, the BAS is well suited to model solutions that present strong
inter-dependence relationships among data. Elective affinity is an effective
\vay to achieve this. Relationships among data are naturally mapped into
relationships among automata.

68 M. ALDERIGHI et al.

References

[1) ALDERIGHI, M. - IvIAZZEI, R. P. G. - SEeHI, G. R. - TISATO, F. (1997): Broadcast
Automata: a Parallel Scalable Architecture for Prototypal Embedded Processors for
Space Applications, Proc. of the Thirtieth Annual Hawai'i International Conference
on System Sciences, (Maui, Hawaii, January 7-10), Vo!. V, IEEE Press, pp. 208-217.

[2] ALDERIGHI, M. - MAzzEI, R. P. G. SALA, A. - SEeHI, G. R. (1997a): Ivlor-
phological Classification of CCD Frames in a Photon Counting Intensified CCD,
Proc. of the 1997 IEEE Instrumentation and :vfeasurement Technology Conference
(IMTC'97), (Ottawa, Canada, 11ay 19-21, 1997). IEEE Press, pp. 118-123.

[3] ALDERIGHI, M. - BORDOC'lI, A. - :VlOJOLI, G. SALA. A. SEeHI, G. R. -
VINATI, S. (1997b): Towards ?vlodels of Realistic Ivlachines in Theoretical Computer
Science, 2nd Workshop on Trends in Theoretical Informatics. (Budapest. Hungary,
March 9-14, 1997), in this volume.

[4] CHANDY, K. M. - MISRA, J. (1988): Parallel Program Design, A Foundation.
Addison-Wesley, 1988.

[5] DEDERICHS, F. - DENDORFER, C. \-VEBER, R. (1993): FOCuS: A Formal Design
Method for Distributed Systems, LNCS 732, Springer, 1993.

[6] GARZON, M. (1995): !Vlodels of Massive Parallelism, EATCS, Springer, 1995.
[7] GENTZEK, G. (1935): untersuchungen uber das logische Scliessen. :vfathematische

Zeitschrift, VoL 39, (1935), pp. 176-210, 405-43l.
[8] HAREL, D. (1987): Statecharts: A Visual Formalism for Complex Systems. Science

of Computer Programming, VoL 8, 1987, pp. 231-274.
[9] HOARE, C. A. R. (1985): Communicating Sequential Processes, Prentice-Hall, 198·5.

[10] JONSSON, B. (1989): A Fully Abstract Trace ?vlodel for Dataflow I\etworks. Proc. 16th
Annual A Clvf Symposium on Principles of Programming Languages. 1989. pp. 155-
165

[n] MILNER (1980): A Calculus of Communicating Systems. L\C.) 92. Springer.
[12] REISIG (1985): Petri I\ets. A.n Introduction, EATCS :"lonograph ·L Springer.

Appendix

mic.id = { Not Available I OK }

mic.lft = { Not Available I SCAN I ID I vVait I NEST I Wait for NEST
I OK_F I OK_A}

mic.con = { Not Available I SCAN I OK_M I OK_D }

mic.rgt = { Not Available I SCAN I ID I WAIT I NEST I Wait for
NEST I END_A I END_F I CREATED_A I CREATED_F i OK_F I
OK_A}

mic.atom = { Not Available I CREATED I OK }

Only the most significant state transition rules are reported.

BROADCAST AUTOMATA 69

AI) INACTIVE -7 READY
(State.mac = INA) & (!3j((Statej.mac = INA) & (Statej.name < State.na­
me))) & !3j(Statej.mac = REA) :::} (State.mac = REA) & (State.val.id =
maxj
(Statej.val.id) + 1);

A2) formula BA creation
(State.mac = REA) & (StateInjector.sym = "(") & 3j(Statej.mac = FRA)
& !3j(Statej.mac = ARA) :::} (State.mac = FAU) & (State.mic.lft = SCAN):

A2bis) formula root BA creation
(State.mac = REA) & (StateInjector.sym = "(") & !3j(Statej.mac = FRA)
& !3j(Statej .mac = ARA) :::} (State.mac = FRA) & (State.mic.lft = SCAN);

A13) formula termination
AI3.1) (State.mac = FAD) & (State.mic.rgt = END~':\)) & (StateInjec­
tor.sym = ")") :::} (State.mic.rgt = CREATED_.:\);
AI3.1bis) (State.mac = FRA) & (State.mic.rgt = END~A..)) & (StateInjec­
tor.sym = ")") :::} (State.mic.rgt = OK~A..);
AI3.2) (State. mac = FAD) & (State.mic.rgt = END.E) :::} (State.mic.rgt =
CREATED.E) ;
AI3.2bis) (State.mac = FRA)) & (State.mic.rgt = END.E) :::} (State.mic.rgt
= OK.E):

A16) formula final transition
AI6.1) ((State.mac = FAD) v (State.mac = FRA)) & (State.mic.rgt = CRE­
ATED~A..) :::} (State.mic.rgt = OK~':\);
A16.2) ((State.mac = FAU) v (State.mac = FRA)) &, (State.mic.rgt CRE­
ATED.E) :::} (State.mic.rgt = OK.E):

A18) first symbol is unacceptable
(State.mac = REA) & (State.mic.lft = SCAN) &, (StateInjector.sym = { "!"
I "&''' I "v" I ">" I ")" I "#" }) & !3j(Statej.mac = FRA) &, !3j(Statej.mac
= ARA) :::} (State.mac = ERR)

A19) Left symbol is unacceptable
((State.mac = FAD) v (State.mac = FRA)) & (State.mic.lft = SCAN) &
(Statelnjector.sym = { "&" I "v" I ">" I ")" I "#" }) :::} (State. mac =
ERR)

A20) Right symbol is unacceptable
((State.mac = FAU) v (State.mac = FRA)) & (State.mic.rgt = SCA\,) &,
(StateInjector.sym = { "!" I "&" I "v" I ">" I ")" I "#" }) :::} (State.mac=
ERR)

70 M. ALDERIGHl et al.

A21) Connective symbol is unacceptable
((State.mac = FAU) v (State.mac = FRA)) & (State.mic.con = SCAN)
& (StatelnjectoLsym = { "A" I "B" I "c" I "!" I "(" I ")" I "#" }) =?
(State.mac = ERR)

A22) formula end symbol is unacceptable
((State.mac = FAU) v (State.mac = FRA)) & ((State.mic.rgt = END~!\') v
(State.mic.rgt = ENDY)) & (Statelnjector.sym = { "A" I "B" I "C" I"!"
I "&" I "v" I ">" I "(" I "#" }) =? (State.mac = ERR)

A23) Input after atom root end
(State.mac = ARA) & (State.mic.atom = OK) & (StatelnjectoLsym =
{ "A" I "B" I "C" I "!" I "&" I "v" I ">" I "(" I ")" }) =} (State.mac
= ERR)

A24) Input after formula root end (State.mac = FRA) &: ((State.mic.rgt =
OK_!\.) v (State.mic.rgt = OKY)) & (StatelnjectoLsym = { "A" I "B" I
"C" I "!" I "&" I "v" I ">" I "(" I ")" }) =} (State.mac = ERR)

