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Abstract 

In this paper a survey of various different theoretical models of test tube systems is given. 
In test tube systems specific operations are applied to the objects in their components 
(test tubes) in a distributed and parallel manner; the results of these computations are 
redistributed according to a given output/input relation using specific filters. A general 
theoretical framework for test tube systems is presented which is not only a theoretical 
basis of systems used for practical applications, but also covers the theoretical models of 
test tube systems based on the splicing operation as well as of test tube systems based 
on the operations of cutting and recombination. For test tube systems based on the 
operations of cutting and recombination we show that in one test tube from a finite set 
of axioms and with a finite set of cutting and recombination rules only regular languages 
can evolve. 

]( eywords: molecular computing, splicing. test tubes. 

1. Introduction 

Test tube systems \vere introduced as biological computer systems based 
on D:-JA molecules ([1], [2], [3], [11]), and the practical solution of various 
problems (e.g. even of .\P complete problems like the Hamiltonian path 
problem in [1]) with such systems was described. The theoretical features of 
test tube systems based on the splicing operation were investigated in [4]; in 
[7] test tube systems based on the operations of cutting and recombination 
were explored: in both cases, these test tube systems \\'ere shown to have the 
computational pO\ver of Turing machines. A general theoretical framework 
for test tube systems was described in [8]. 

In the second section we define the notions from formal language theory 
needed in this paper and we introduce the formal definitions for the general 
models of test tube systems described in [8] as well as the notions of test 
tube systems based on the splicing operation defined in [4] and the test tube 
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systems based on the operations of cutting and recombination described in 
[7]. In the third section we recall some resuIts obtained for test tube systems 
based on the splicing operation from [4] and for test tube systems based on 
the operations of cutting and recombination from [7]: moreover, we prove 
that extended cutting/recombination systems with a finite set of axioms and 
a finite set of rules exactly represent the regular languages, a question which 
was left open in [7] (in other words this shows that in one test tu be from a 
finite set of axioms and with a finite set of cutting and recombination rules 
only regular languages can evolve). A short overview of related research 
topics concludes the paper. 

2. Definitions 

In this section we define some notions from formal language theory and 
recall the definitions of splicing schemes (H-schemes: see [4], [5], [10], [12], 
[13]) and of cu tting/ recom bination schemes (eR-schemes: confer to [6]). 
Moreover, \ve introduce the definitions for the general theoretical model of 
test tube systems with prescribed output/input relations as well as for test 
tube systems based on the splicing operation from [4J and for test tube 
systems based on the operations of cutting and recombination from [7]. 

2.1. Formal Language Theory Prerequisites 

In this subsection we only define some notions from formal language theory 
that 'we shall need in this paper. 

The free monoid generated by the alphabet V is denoted by FX, its 
elements are called strings or u'ords over V: A is the empty string, V+ 
Fx \ {A}. 

A grammar scheme I is a triple (Vy, Vr, P) . where ~:y is a (finite) al
phabet of non-terminal symbols; VT is a (finite) alphabet of terminal symbols 
with ~\-nFT = 0; P is a (finite) set of productions of the form (0',8), \vhere 
0' E CVy U Vr)+ and ,6 E (Vy U VTf. For t\VO words x, yE (Vy U liT)+ ,the 
derivation relation f-~I is defined if and only if x = UO'V and y = u3v for some 
prod uction (G, ,6) E P and two stringsu, v E (Vy U Vy r ; \ve then also write 
x f--r y. The reflexive and transitive closure of the relation f-_, is denoted 
by f-:, . A grammar G is a quadruple (Vy, FT, PS), where -( = (Vy. Vr. P) 
is a grammar scheme and 5 E Vy. The A-free language generated by G 

is L (G) = {w E vi IS f-; w}. The grammar G is called regular, if every 

production in P is of the form (A, w) , where A E V~y and wE VTV1V U VT-
The family of (A-free) languages generated by arbitrary and regular 

grammars is denoted by EN U NI and REG, respectively, and the family of 
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finite (A-free) languages is denoted by FIN. By REG+ we denote the family 
of regular languages of the form }V+ for some finite set W. 

2.2. Splicing Schemes and Cutting/Recombination Schemes 

We now recall the definitions of splicing schemes (H-schemes; see [4], [5], 
[10], [12], [13]) and of cutting/recombination schemes (CR-schemes; confer 
to [6]). 

As the empty word has no meaningful representation in nature, A is 
not considered to be an object we have to deal with; as for grammars above, 
also in the following only mechanisms for generating A-free languages will be 
considered (all the definitions we shall give have been adapted in a suitable 
manner). 

A splicing scheme (H-scheme) is a pair a, a = (V, R), where V is 
an alphabet and R <;;:; vx#vxSVx#vx; #, S are special symbols not in V. 
R is the set of splicing rules. For x, y, z E V+ and r =Ul #U2SU3#U4 in 
R we define CT,y) f-,. z if and only if x = XIUIU2X2, Y = YIU3U4Y2, and 
z = XIUI U4Y2 for some Xl, x2, Yl, Y2 E Vx. 

For any language L <;;:; V+, we write 

a (L) = {z E V+ I (x,y) f-,. z for some x,y E L,r ER}, 

and we define a~ (L) = Ui>O a i (L) , where 
aO (L) L, a i+l (L) = a (:;'i (L)) for i ~ O. 

An extended H-system (or extended splicing system) is a quadruple 7, 
~f = (V. VT, A, R), where VT <;;:; V is the set of terminal symbols and A is 
the set of axioms. The language generated by the extended H-system 7 is 
defined by Lh) = a X (A) n vt. 

A cutting/recombination scheme (or a CR-scheme) is a quadruple 
a = (V. "'I, C, R), where y' is a finite alphabet; 1H is a finite set of markings; 
y' and 1''11 are disjoint sets; C is a set of cutting rules of the form u-ft.ISm#1:, 
whereu E VX U ivlVx, u E v'x U Vx .1.1. and m, I E M, and #, S are special 
symbols not in V U M: R <;;:; Al x M is the recombination relation represent
ing the recombination rules. Cutting and recombination rules are applied to 
objects from 0 (1.1, JH) , \vhere we define 

o W, lv!) = V+ U ;vlV x U \!"x 1\;1 U ivlV x M. 

For x, y, z E 0 (V, Iv!) and a cutting rule c = u#ISm#1: we define x f-c (y, z) 
if and only if for some a E FX U ;vlVx and i3 E VX U 'Vx M we have x = auu,3 
and Y = QUI, Z = mU,3. For x, y, z E 0 (V, 1H) and a recombination rule 
r = (I, m) from R we define (x, y) f-,. z if and only if for some a E Vx U MVx 
and ,S E Vx U Vx JH we have x = aI, y = m,S, and z = a,S. For a CR-scheme 
a = (V, M, C, R) and any language L <;;:; 0 W, M) we write 
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{y I x f-c (y, Z) orx f-c (z, y) f~rsomex E L, c E C} U 

{z I (:r, y) f-r zforsomex, yE L, rE R}; 

a~ (L) and a i (L) for i 2 0 are defi ned in a similar way as for splicing 
schemes. 

An extended eR-system is a sextuple I, I = (V, 1\11, VT, A, C, R) , wh~re 
VT ~ V is the set of terminal symbols, A ~ 0 (V, 1\11) is the set of axioms, 
and (V, Ai, C, R) is the underlying eR-scheme. The language generated by 
the extended eR-system ~f is defined by L b) = a~ (A) n vi. 

Thus a(L) contains all objects obtained by applying .one cutting or 
one recombination rule to objects from L: a~(L) is the smallest subset of 
o (V, M) that contains L and is closed under the cutting and recombination 
rules of a. L (~() is the set of all terminal words that can be obtained from 
the axioms by an arbitrary number of cuttings and recombinations. 

In [12] it was shown that H-systems with a finite set of axioms and a 
finite set of splicing rules characterize REG, whereas with a regular set of 
splicing rules \ve obtain E;\T~ j\;I. In [5] it was proved that by adding specific 
control mechanisms like multisets or context conditions (permitting and 
forbidden contexts, respectively) to extended H-systems with a finite number 
of axioms and a finite number of splicing rules again the computational 
power of Turing machines or arbitrary grammars can be obtained. Similar 
results for eR-systems were pro\'ed in [6]: yet the question concerning the 
computa.tional power of extended eR-systems with a finite number of axioms 
and a finite number of clltting and recombination rules was not proved there 
and \yil1 shown in The following section. 

:.!,.3, Test Tube Systems 

In this subsection we recall the definitions for several models of test tube 
systems defined in as \yell as [4] and [7l, 

A test tube system u;ith prescribed output/input relations (a TTSPOI 
for short) a is a quintuple (B, n. A, P, D) : where 

1. B is a set of objects: 
2. n. n > 1. is the number of test tubes in a: 
3. A = -(AI: .. "A n ) is a sequence of sets ofaxzoms, where Ai ~ B, 

1 < i < 72: 

4. P IS a-sequence (PI. ,." Pn) of sets of test tube operations, where Pi 
contains specific operations for the test tube Ti, 1 :::; i:::; 72; 

,5. D is a (finite) set of prescribed output/input relations bet\veen the test 
tubes in a of the form (i, F.j), where 1 :::; i :::; 72, 1 :::; j :::; 72 and F is 
a (recursive) subset of B: F is called a filter bet\\'een the test tubes T, 
and Tj' 
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In order to indicate the number of test tubes, we also say that a is a 
TTSPOln . 

The computations in the system a run as follows: At the beginning of 
the computation the axioms are distributed over the n test tubes according 
to A, i.e. test tube Ti starts with .4;. Now let Li be the contents of test tube 
Ti at the beginning of a derivation step. Then in each test tube the rules of Pi 
operate on Li, i.e. we obtain pi (Li) . The next substep is the redistribution 
of the pi (Li) over all test tubes according to the corresponding output/input 
relations from D, i.e. if (i, F, j) E D, then the test tube TJ from pi (Li) gets 
pi (Ld n F, whereas the rest of pi (Li) that cannot be distributed to other 
test tubes remains in Ti. The final result of the computations in a, L (a) , 
consists of all objects from B that can be extracted from the final test tube 
T1 ; hence usually we shall assume F = 0 for all (1, F, j) E D, as well as 
PI = 0. Moreover, \\le say that a is of type (Fl' F7" F3 ) , if Ai EFl, Pi E F2 
for all i with 1 :S i :S n, and FEF3 for all F with (i, Pj) E D for somei,j 
with 1 :S i :S n, 1 :S j :S n. 

Special variants of this general model have already been formalized for 
the splicing operation in [4] and for the operations of cutting and recombi
nation in [7]. 

A CR-TTSPOI a is a TTSPOI (0 (V, lvI), n, A, P, D), where P = 
(PI,· .. ,Pn) , Pi = (C"Ri) , 1:S i:S n, and a, = (V,lvl,C.;, Ri) is a CR
scheme; L (a) usually is taken to be a subset of V+. An H-TTSPOI a is a 
TTSPOI (V+. n,.4, p, D) where ai = (V, Pi) , 1 :Si :S n, is an H-scheme. 

Whereas in an H-TTSPOI usually filters from REG or even REG+ 
only are needed, in a CR-TTSPOI usually the following kinds of filters are 
used: 

A subset of 0 (1'. 1v1) is called a simple CV, Mh-filter if it equals 

1. V+ or 
2. {m} 1/x for some m E ,VI or 
3. 1/x {m} for some m E M or 
4. {m} \/x {n} for some m. nE M. 

A simple (1/,lv1)2-filter is called a simple (V, M)l-filter, if it is not of 
the form {m} 1/x {n}. Any finite union of simple (1/, M),-filters, i E {l, 2}, 
is called a (1/, M)i-filter; the families of CV, M)i-filters and simple (1/, Al);
filters for arbitrary V, M are denoted by CRFi and CRSFi , respectively. 

3. Results 

The following results were established in [4], [7], and [8]: 

THEOREM 1 For every L E ENU1VI, L ~ 1/T, we can construct an H
TTSPOI8+card(V

T
) of type (FIN, FIN, REG+) which generates L. 



76 R. FREUND 

In fact, the best result known so far and communicated by Gheorghe 
Paun says that an H-TTSPOh is already s)lfficient, i.e. the number of test 
tubes can be bounded. 

THEOREM 2 For every L E ENUM we can construct a CR-TTSPOI of 
type (FIN,FIN,CRFI ) which generates L. 

For the CR TTSPOI in Theorem 2 it is an open question whether the 
number of test tubes needed for generating arbitrary recursively enumerable 
languages can be bounded or not. 

THEOREM 3 For every L E ENUM we can construct a CR-TTSPOI of 
type (FIN,FIN,CRSFi) , i E {1,2}, which generates L: 

THEOREM 4 For every L E ENUM we can construct a CR-TTSPOI4 of 
type (FIN,FIN,CRF2) which generates L. 

For obtaining universal computability, the number of test tubes n in 
a CR-TTSPOIn of type (FIN, FIN, C RF2) may already be optimal with 
being four: in any case, this number cannot be reduced to less than three: 

(i) Any language generated by a CR-TTSPOI I of type (FIX, F I J.Y, CRF2 ) 

is finite, because according to the definitions given above it equals the 
set of axioms in the single test tube. 

(i) Any language generated by a CR-TTSPOI2 of type (F IS. FIX. CRF2 ) 

is regular, because in one test tube only a regular language can evolve 
as shuwn in the following theorem. 

THEOREM·5 The family of languages generated by extended eR-systems 
,'/ith finite sets of axioms and finite sets of cutting and recombination rules 
equals the family of regular languages. 

Proof. a) Let;, ~f (F, i'vi, FT, A, C, R), be an extended eR-system with a 
finite set of axioms A and finite sets of cutting and recombination rules C and 
R. \Ve now construct an extended splicing system a such that L (a) L (;) . 

According to the results proved in [13] and [14], L (a) is a regular 
language, hence L (;) is a regular language, too: 

The extended splicing system a is defined by 
a = (V u Ai u {Y, Z}, Vy, A', RI U R2), 

where Y and Z are ne\v symbols not in Il U cl1, 
A'= /4: U {YmZ I m E M}, 
A= (FX n A) U {Y} (MFx n A) U CVx }vl n /1) 

{Z} U {Y} OvlVx 1v1 n /1) {Z}, 
RI = {u#vSY #mZ. Yn#ZSu#l.: lu#mSn#v E C} , and 
R2= {#mZSYn# I (m, n) ER}. 
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The splicing rules in RI simulate the cutting rules of ~(, whereas the splicing 
rules in R2 simulate the recombination rules of ,. The axioms as well as 
the objects derived by a are constructed in such a way that a left (right) 
end marker m in an object derived by, corresponds with a left (right) end 
marker Ym (mZ, respectively) in an object derived by a, i.e. the object win 
a corresponds with the object h (w) in "where h : VUMU{Y, Z} -t VU2v[ 
is the projection with h (Y) = h (Z) = A and h (X) = X for all X E Vu IV[. 

For example, given two cutting rulesul #ml$nl #VI andu2#m2$n2#v2 
in C as well as two objects h (Xl UI vIyd and h (X2U2V2Y2) in 0 (V, M) , we 
obtain two new objects xlulmlZ and Yn2v2Y2 derived in a by using the 
splicing rules UI #VI $Y #mlZ and Y n2#Z$u2#V2 from RI. Such objects 
Xl ulmlZ and Yn2v2Y2 can be recombined according to the splicing rule 
#mIZ$Yn2# from R2 yielding the object XIUIV2Y2 in a in the same way as 
the two objects h (Xl ulmlZ) and h (Yn2v2Y2) yield the corresponding object 
h (Xl UIV2Y2) in , by using the recombination rule (ml' n2) from R in ,. 

Finally it should be stated that parasitic strings like Y Z additionally 
evolving in a have no influence on the final result L (a) . 

b) On the other hand, let G be a regular grammar, G = (V;y, VT, P, S) . 
Then L (f) = L (G) for the CR-system ~( with ,= (VT, {X+,X-I X E VI\'} ,A.,(i),R), 

R = {(X+, X-) I X E V~v} , and 
A. = {S+} U {Y-aX+ I Y -t aX E P} u {Y-a I Y -t a E P}. 

By using the appropriate axioms from A and suitable recombination 
rules from R. for arbitrary words w E Vi, X, Y E "\I;v, and a E VT. a 
deri\·ation step in G 

(L:Y t-c waX (or wY t-c wa) 
corresponds \\·ith the derivation step in , 

(wY+, Y-aX+) t-~! waX+ (or (wY+, Y-a) t-~, wa, respectively). 
Hence, in the CR-system ~I there is no need for extended symbols or for 

cutting rules; the markers take over the roles of the non-terminal symbols 
in the regular grammar G. 

4. Conclusion 

In this paper \ve presented various theoretical models of test tube systems 
and gave an overview of results shown in [4], [7], and [8]. 

In [9] test tube systems with controlled applications of rules were intro
duced, and several variants of test tube systems with controlled applications 
of cutting and recombination rules were shown to have universal computa
tional power. 
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Many of the results exhibited in this paper also hold true for test tube 
systems working on a mixture of linear as well as circular strings (confer to 
[7], [14], and [15]). 
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