
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 41, NO. 1, PP. 91-101 (199B)

COMBINING ABDUCTION AND MODEL CHECKING
TECHNIQUES FOR REPAIR OF CONCURRENT

PROGRAMS (EXTENDED ABSTRACT)

Francesco BUCCAFURRl x
, Thomas EITERxx

, Georg GOTTLOB xXX and
Nicola LEONExXX

• DIEMA, Universita di Reggio Calabria
1-89100 Reggio Calabria, Italy
E-mail: bucca@si.deis.unical.it

•• Institut fill Informatik
Universitiit GieBen

ArndtstraBe 2
D-35392 GieBen, Germany

E-mail: eitedliinformatik.uni-giessen.de
••• Institut fur Informationssysteme

Technische Universitiit Wien
Paniglgasse 16

A-1040 Wien, Austria
E-mail: (leonelgottlob)@dbai.tuwien.ac.at

Received: Oct. 20, 1997

Abstract

We investigate the combination of AI techniques \vith model checking, which is a suc
cessful approach to verification of particular concurrent systems. vVe present the system
repair problem and as an application the problem of repairing (i.e. correcting) concurrent
programs. :Vloreover, we describe optimization techniques for reducing the search space
of a repair, which use the concept of counterexample.

Keywords: automated verification, model checking, abduction. diagnosis and repair.

1. Introduction

Model checking (CLARK and EMERSO:\, 1981: CLARKE et al., 1986) is an
automatic technique for verifying finite-state concurrent systems such as cir
cuit designs and communication protocols. Specifications are expressed in
a propositional temporal logic, and the system is modeled as a state tran
sition graph. Model checking has several important advantages over other
verification methods such as mechanical theorem provers or proof checkers.
The most relevant is that it is highly automatic. Moreover, recent advances
in model checking allow to verify tremendously large systems (BURCH et al.,
1992). Major companies including InteL Motorola, Fujitsu and ATT started
using symbolic model checkers to verify circuits and protocols.

92 F. BUCCAFURRI et a1.

The research reported here is motivated by the questions whether AI
can contribute to model checking, and whether vice versa the AI community
can gain something from that area. This paper gives a first ans\ver and
studies the combination of abductive reasoning, cL (POOLE, 1988; CONSOLE
et al., 1991; EITER and GOTTLOB, 199.5), and model checking. It does not
present a final theory; the current approach works under restrictions and
must be extended. However, it is a first step towards integrating AI into
model checking.

Process PA

1: . f1ag1A := true;
2: turn1B:= false;
3: ifflag1B &, turn1B then
4: goto 3;
0: x:= x and y;
6: f1ag1A:= false;
7: if turn1B then
8: begin f1ag2A:= true;
9: turn2B := true;
10: if f1ag2B &, turn2B then
11: goto 10:
12: y := false;
13: flag2A := false;

end
14: goto 1;

Process PB

1: f1ag1B:= true;
2: turn1B:= false:
3: if flag1A &: -, turnlB then
4: goto 3;
5: x:= x and y;
6: f1ag2B:= true;
7: turn2B:= false;
8: if f1ag2A & -, turn2B then
9: goto 8;
10: y:= not y;
11: x:= x or y;
12: flag2B:= false:
13: flag1B:= false;
14: goto 1:

Fig. 1. A concurrent program P

To give the flavour of the approach. consider the concurrent program
P in Fig. 1. It has processes P4 and PE. \\' hich share two Boolean vari
ables x and y. To ensure mutual exclusion of the assignments to .r and y,
some control variables, flags and turns. are used following Peterson's scheme
(PETERSON, 1981), in \vhich each critical section (.s and 12 in P4 and -nested
.s-11 and 10 in PE) is executed under an entry and exil protocol.

The system specification prescribes that P satisfies mutual c.rclusion
for assignments to ;T and y, respectively, and absence oJ starvation. E.g. PA

must not execute instruction .s, if PE executes instruction .5 or 11 at the
same time. Absence of starvation requires that a request of a process for a
resource must eventually be satisfied. Clearly. this makes sense only if the
underlying scheduleI' is Jail': absence of starvation cannot be ensured if the
scheduleI' always dispatches the same process.

Inspection shows that P is not correct. e\'en under fair schedules: in
struction 2 of PA should be turn1B := true: however, detecting the error is

COMBINING ABDUCTION ... 93

not immediate. Model checking allows to check the correctness of P fully
automatically. The system specification, mutual exclusion and absence of
starvation is expressed in the temporal logic ACTL (GRUMBERG and LOC':G,
1994): fair schedules are specified through fairness constraints (CLARKE et
al., 1994). Then, an automatic procedure verifies whether P fulfills the
specification.

However, if a model checker finds P incorrect, usually it cannot single
out the error, and is far from fixing it. By using abductive reasoning, our
method tackles this problem: it tries to locate the bug and proposes a
repair of the program. The method works under a single error hypothesis,
in which possible errors may occur in the left or right side of an assignment;
exchanging two successive assignments and multiple errors should also be
manageable.

Like abduction, program repair is computationally expensive. Even
if we plausibly restrict in Fig. 1 to the assignments of control variables,
we must consider 12 assignments and 6 control variables. Thus, up to 72
attempts of repair may be done, each of which requires a call of the model
checker.

Towards more efficient program repair, we have designed an optimiza
tion technique which exploits a suitable formalization of a counterexample
from (CU.RKE et al., 1994). It guarantees to make here only up to 15
attempts .
.\flore details can be found in the extended paper (BUCCAFURRI et al., 1997).

2. Preliminaries on ACTL

ACT L (GRU.IBERG and LOC':G, 1994) is a major fragment of Computa
tional Tree Logic (CLAREE et al., 1986), as it allows abstraction and compo
sitional reasoning (CL .. \REE and GRU:VIBERG, 1992: GRU:VIBERG and LOC':G,
1994). There. state and path jormulas are propositions on a point in time
and a computation path, respectively, using linear-time (LT) operators X
("next time"). D (,'Until"), V ("unless") and the path quantifier A ("for
all paths").

DEFI:\ITIO:\ 1 For a set AP of atomic propositions, ACT L is the smallest
class of state formulas on AP. where

@ any atom a E AP is a state (s)-formula:
@ if j, g are s-formulas, then j Vg, j 1\ g are s-formulas, as well as -,j

if j lacks LT -operators:
@ if j. g are s-formulas, then Xj, jD g and jV g are path (p)-formulas:
@ if j is a p-formula, then A(J) is an s-formula.

Let Fj=trueUj ("sometimes" j) and Gj=jalseVj ("always" 1).

94 F. BUCCAFURRI et al.

The semantics of ACT L is given in terms of K ripke structures.

DEFINITION 2 A Kripke structure is a 5-tuple 1\11 = (AP, 5,50 , R, L), where

• AP is a finite set of atomic propositions,
It 5 is a finite set of states,

e 50 ~ 5 is a set of initial states,
e R ~ 5 X 5 is a transition relation,
et L : 5 -t 2A.P assigns s E 5 the set of atomic propositions true at s.

A path 'iT in)\11 is an infinite sequence [so, SI, '" Si ...] such that
(Si, si+d E R, i 2: O. We use the notation 'iT(i) = Si and 'iT

j = ['iT(j) , 'iT(j +
1), .. l

DEFINITION 3 J;[, s F f denotes satisfaction of an s-formula f in a state
s of }o/l, and M, 'iT F 9 satisfaction of a p-formula 9 along a path 'iT in lvI,
where

1. M, SF p, if pE L(s) where p E AP(Jv1);
2. M,s F -,f1, if l\11,s F h:
3. 1'vl, SF h V 12, if M, SF h or M, SF 12;
4. M,s F h /\12, if M,s hand M,s F 12:
.5. 1\1, SF A(gd, if M, 'iT F gl for all paths 'iT with 'iT(0) = s;

6. 1\1, 'iT F f, if M, 'iT (0) F f:
7. M, 'iT F Xh, if 1\1. "I F f1:
8. cvl,,, F fI U 12, if k 2: 0 exists such that M, "k F 12 and Jf, F h,

for all 0 :::; j < k:
9. M,,, F h V 12, if for every k 2: 0, M, "j F f1 for all 0 :::; j < k implies

M,,,k F 12:

M F f denotes M. So F f, for every So E 50·

Fair computations are modeled by fairness constraints (BCRCH et al., 1992).

DEFE\ITIO;:\ 4 A FC-Kripke structure is an expanded Kripke structure Jl =
(M', F), where F is a finite set of formulas f (fairness constraints).

A path " in Jl is fair, if for every f E F and i 2: 0 there exists j 2: i
such that i'd, ,,(j) F f· Satisfaction as F but where A(gr) is w.r.t. all fair
paths is denoted by F f (simply F, if unambiguous).

Intuitively, path 'iT is fair if each f E F holds infinitely often along Jr.

Typical fairness constraints on a concurrent program P = PI,"" Pn are
ai == "Process Pi is active;" fair paths amount to schedules of the (infinite)
processes where no Pi is paused forever (which is not expressible in ACTL).

COMBINING ABDUCTION ... 95

3. Abductive Reasoning on ACT L Specifications

We employ abductive reasoning for the problem of modifying a FC-Kripke
structure lVI in order to satisfy an ACT L formula. Recall that abductive
reasoning is, roughly speaking, an inverse of modus ponens. From a rule
9 :J 'Ij; andlb, abduction concludes 0 as an explanation of 'Ij;.

Given a FC-Kripke structure ivJ (the "system") and a formula f, we
define the System Repair Problem as the abduction problem whose solution
consists of a set of modifications to the transition relation R (additions or
deletions of tuples in R), such that f is true in the modified system.

DEFINITION .5 Let R ~ 5 X S. Every pair fJ = ((51,52), EEl), where 51 E 5,
52 E 5, and EB E {-, + }, is a 5imple modification. The application of fJ on
R, denoted fJ(R), is R U {(51, 52)}, if EEl = +, and R\ {(51, 52)} else.

DEFINITION 6 A modification for M is a set r of simple modifications for R
S.t. r+nr- = 0, where r+ = {(51,52) I (51,52,+) Er} and r- = {(51,52) I
(51,52, -) E r}. mod(J\lJ) denotes the set of all modifications for M. The
result r(M) of r is the FC-Kripke structure (AP, So, 5, Rf, L, F), where
Rf = nSEf- fJ(R) U (USEf+ fJ(R) \ R).

Intuitively, a modification r of system M is a set of nonconflicting sim
ple modifications, and r(2\11) is the result of their simultaneous application.

DEFI='iITION 7 A system repair problem (SRP) is a triple Q = (M, f, Y) of
an FC-Kripke structure j\;1, formula f, and computable Boolean function Y
on mod(1.1"I). Any modification r S.t. y(r) = true is called admissible. A
solution for Q is an admissible modification r for 1\1 S.t. r(2\11) F f.

This definition describes the abduction problem in a general frame
work. The admissibility function y is domain-dependent: e.g., in the case
of concurrent programs, y is derived from possible changes to the code.

A solution of an SRP is an abductive conclusion of how to modify the
system for satisfying f. :\"ote that this process is, as well-known, intimately
related to theory change and counterfactual reasoning.

4. Repair of Concurrent Programs

A concurrent program is a collection P = PI, ... , Pn of processes running
in parallel. \Ye assume a system \\"ith shared memory, i.e. all variables x =
Xl, :r2, ... , Xl are accessible to all processes, and that every x j is Boolean; by
coding, this allows expressing all finite domains. :\ote that communication
protocols usually use such domains (flags, finite counters, etc).

In Pnueli's model (PNCELL 1981), each process Pi is represented as a
labeled digraph G(Pi) = (IV-i. Ei), where

96 F. BUCCAFURRI et al.

• Ni = {I, 2, ... , md is the set of break points (BPs) of Pi, i.e. the
points before the code and between successive statements (cf. Fig. 1).

• Ei is a set of labeled arcs a = bj -t bk. Intuitively, a represents
transition from bj to bk in Pi. The label l(a) = (c(x), stmnt) is a
pair of a Boolean condition c(x) and an either empty or assignment
statement stmnt. Intuitively, the transition bj -t bk can be followed
if c(x) is true, and then stmnt is executed.

Given a set F of fairness constraints, associate with P an FC-Kripke
structure 1\1F(P) such that

• 5 = XiNi Xj Dj x {I, ... , n} is the Cartesian product of all sets j\li of
break points, domains Dj of the x j, and the set of process numbers. A
state s intuitively corresponds to a configuration of the system, where
the last component tells the process executed in the previous step;

e 50 holds only states s whose last components have the value l.
e R is obtained from the graphs G(Pi) by following one arc in some

G (P;) from one state to another.
fI AP contains x, variables b7 = "Pi is at break point k," and ei == "P;

was executing".
fI L is straightforward from that.

Suppose a formula f is a formal specification for P and we have fairness
constraints F for P. Then, P fulfills f iff lviF (P) F= f. If P does not fulfill
f, we are interested in a change to the code of P such that the modified
program pi fulfills f. This amounts to a (mostly nontrivial) SRP.

EXA~IPLE 1 (ctd) For P in Fig. 1, define

f = !\;~·i,B AG(JlagiV -t AF'flagiF)

/\AG(,(bF i\ b~)) i\ AG(,(b1 i\ (b~ V b~o))) .

f says that in every computation, Pv must eventually exit the critical section
i after entering it, and that both processes may not be simultaneously in a
critical section. For F = {eA, eB} (fair scheduling), ,viF(P) F f.

\Ve tackle program repair under simplifying assumptions. We focus
here on the case that a single statement is wrong, and allow that the solution
of an instance will be an assignment correction; in P, which is either

fI replacing the right-hand side of an assignment ;1:j := expr, by a con
stant (true or false), or

fI changing the variable of its left-hand side.

DEFINITION 8 A correction for P is a triple 0' = (k, b,;), where b E Nk is a
break point in Pk and; specifies an assignment correction for the statement
b in h. Let pc< be the program obtained from P if 0' is implemented.

COMBINING ABDUCTION ... 97

Implementing 0' merely changes the label of bin G(Pk); thus, iVlp(PO)
and MF(P) coincide except for R. Hence, 0' induces a system modification
r as in Def. 6 such that RO = Rf. Not every r is induced by some 0'; yp
selects those r which are. Thus, program repair reduces to a SRP.

DEFINITION 9 The tuple D = (P, F, J) defines a program repair problem
(PRP) for P w.r.t. f under fairness constraints F. A solution for D is a
solution r for the SRP Q = (JV!F(P), r yp). A repair for D is a correction
0' for P such that D has a solution r induced by 0'.

Repairs are characterized as follows.

PROPOSITIO:\" 1 A correction 0' is a repair [or P vv·.r.t. f if[lVlp(PO) F f.

5. Computation of Repairs and Counterexamples

The naive algorithm for computing a solution for a PRP simply tries every
possible correction Cl: on each assignment in P, and checks l\1F(PO) F f.
However. this is clearly not efficient.

Our approach restricts the search space by exploiting counterexamples.
Informally, a counterexample for a PRP (P, F, J) is a portion of the possible
computation branches witnessing that f fails. Given a counterexample, our
technique identifies corrections Cl: under which it is invariant, i.e. still applies
if Cl: is implemented. Such O"s are useless and can be discarded. This \vay,
the space of candidate repairs may be drastically reduced.

Counterexamples were introduced in (CLARKE et al.. 1994): the re
spective procedure returns as counterexample a single path in .VI. 'Ve need
a richer concept as we must consider multiple, possibly nested paths. Thus
\\"e introd uce m ult i-sequences and m ulti-paths.

DEFI:\"ITIO:\" 10 Every state s E S is a finite multi-sequence in 5: if TIo, TII:
... are countably infinite many multi-sequences. then TI = [TIo, TII""] is a
multi-sequence. TI(i) denotes the i-th element of TI, and or(TI) = s if TI = s
is finite and or(TI) = or(TI(O)) otherwise.

Informally, an infinite multi-sequence IT is a kind of infinitely branch
ing tree whose leaves (where or(TI) is the leftmost) are states. It enables
representation of nested infinite paths: we call this a multi-path. There is a
main path from which other paths branch off.

More formally, let the main sequence of TI, denoted p(TI), be p(IT) = s,
if IT = s is finite, and p(TI) = [or(IT(O)), or(IT(l)), ...] otherwise.

DEFI:\"ITIOT\ 11 A multi-sequence IT is a multi-path in M, if either TI is finite
or p(IT) is a path in M and for every i 2:: 0, IT(i) is a multi-path in M. TI is
fair, if IT is finite or p(TI) and every IT(i) is fair.

98 F. BUCCAFURRI et al.

E.g., consider TI = [[[80,811' 812' ...], 821,822 ...], 831' 832' ··l It has the
main path ,u(TI) = [80, 831' 832' ··l At the state 80, the paths 111 =
[80, 811,812' ...], 112 = [80, 821 , 822' ...] branch off.

Informally, a counterexample for f is a particular multi-path TI, origi
nating at an initial state such that f is not true along TI. A counterexample
for f without LT-operators is simply an initial state 80 such that M,80 F f.
Counterexamples for more complex f are defined inductively, using the con
cept of local (1-) counterexample. For the definition, we need the concept of
merge of two multi-paths.

DEFINITION 12 Let TI1 and TI2 be two multi-paths such that or(TId
or(TI2)' The merge of TI1 and TI 2 , denoted TI1 * TI 2 , is the multi-path

if TI2 = 8 is finite;
if TI2 is infinite, TI2 (0) = 8;

otherwise.

E.g., merging TI = [[80,811,812""]' 82 1, 823' ...] and TI' = [80,831,832""]

yields TI*TI' = [[[80,811,812,"'], 821,823""]' 831,832' ...], while TI'*TI =
[[[80, 831 , 832' .. -], 811' 812' ...], 82 1 , 822' .. l which essentially represents the
same branching of three paths.

DEFINITIO;\ 13 Let 11/1 be a FC-Kripke structure and I be a formula on
AP(1V1). A multi-path TI in Jf is a local (l-) counterexample for f, s.L, if

1. f has no LT-operators: II sand JJ,8 F f:
2. f = A(h U h): TI is an innnite fair multi-path and either

(2.1) there exists I,: ~ 0 such That TI(k) is an !-counterexample for
h V h, TI(i) is an I-counter-example for h. for each 0 ::; i < k,
and TI(j) is a state. for j > k: or

(2.2) TI(i) is an l-counterexample for h, for each i ~ 0;

3. f = A(f1 V h): TI is an innnite fair multi-path and there exists a
k such that every TI(j), 0::; j < k, is an l-counterexample for h, TI(k)

is an l-counterexample for h, and every TI(.e) is a state, for .e > k:
4. fAXh: TI is an infinite fair multi-path, TI(l) is an I-counterexamp

le for h, and TI(i) is a state, for each if. 1;
o. f = h V h, \vhere f has LT-operators: TI = TI1 ",TI 2 , where TIi, i = 1. 2,

is an l-counterexample for fi:
6. f = h 1\ h, where f has LT-operators: TI is an l-counterexample for

either h or h·
Counterexamples are particular l-counterexamples.

DEFI:\ITIOl\: 14 Let .:.V1 be a FC-Kripke structure and f be a formula on
AP. An I-counterexample TI for f in :V1 such that or(TI) is an initial state
of AI is called a counterexample for f in A1.

COMBINING ABDUCTION ... 99

An example is considered below. The next theorem states that the
concept of counterexample captures failure of a formula.

THEOREM 5.1 Let !vI be a FC-Kripke structure, f a formula f. Then,
M, s F f iff there exists a counterexample TI for f in M.

Note that counterexamples, while mostly infinite objects, can be finite
ly represented; a construction by a modification of the procedure in (CLAR
KE et al., 1994) seems feasible .

. The space of candidate repairs to a PRP (P, F, 1) can be reduced as
follows: Assume TI is a counterexample for f in MF(P) and 0: a correction
for P. If TI' is a multi-path in MF(PO:) equivalent (in a formally precise
sense) to TI, then TI' is a counterexample for f in po:; hence, 0: is not a
repair for the PRP. Based on this principle, we exploit two properties of
counterexamples and repairs for optimization.

Execution : A multi-path TI executes a correction 0: = (k, rn, I), if transi
tion (IT (i) , IT (i + 1)) exists in some paths IT of TI in which process Pk proceeds
from break point rn (i.e. executes the assignment after rn).

THEOREM 5.2 We have: Let 0: = (k, rn, I) be a repair for the PRP Q =
(P, F, 1). Then, every counterexample TI for f in MF(P) executes 0:.

Exploitation : A multi-path TI exploits a correction 0: = (k, rn, ~(), if it is
infinite and one of the infinite paths IT in TI has a transition (IT (i), IT(i + 1))
in which Xi or Xj is evaluated, where Xi := expri (resp. Xj := exprj) is the
assignment after rn in Pk (resp. in Pk corrected by 0:).

THEOREM 5.3 Let V(o:) = {Xi, Xj}. Let 0: = (k, rn, ~() be a repair for the
PRP Q = (P, F, 1) such that no variable in V(o:) occurs in f or F. Then,
every counterexample TI for f in MF(P) exploits 0:.

Any correction 0: which is not executed or not exploited by a coun
terexample TI can be immediately excluded as a repair. Given TI and 0:, this
can be checked efficiently. This test can lead to drastic savings.

EXAMPLE 5.4 (cont'd) We have MF(P) F f: Consider the path IT (we
show each state Si, left to right, the break points for PA and PB, the flag
and turn variables that are true, and the process lastly executed):

IT(O) = 80 = 1 1 PA

IT(l) = 81 =2 1 fiaglA PA

IT(2) 82 =2 2 fiaglA, fiaglB PE
,,(3) = 83 =3 2 fiaglA, fiaglB PA

IT(4) = 84 =3 3 fiaglA, fiaglB PE

From S4, where flag1B is true, a path IT' branches off: .

100 F. BUCCAFURRI et al.

r,' (0) = 54

r,' (1) = 55 =5 3 fiag1A, fiag1B PA
r,' (2) = 56 =5 4 fiag1A, fiag1B PB
r,' (3) = 57 =5 3 fiag1A, fiag1B PB
r,' (4) = 58 =6 3 fiag1A, fiaglB PA
r,' (5) = 59 =6 4 fiag1A, fiaglB PB
r,' (6) = 510 = 6 3 fiag1A, fiaglB PB
r,'(7) = 511 = 7 :3 fiaglB PA
r,'(8) = 512 = 14 3 fiaglB PA

r,' (9) = 513 = 1 3 fiag1B PA

r,' (10) = 514 = 2 3 fiag1A, fiag1B PA
r,'(ll) = 515 = 3 3 fiag1A, fiag1B PA
r,'(12) = 55 = .5 3 fiag1A, fiaglB PA

r,'(13) = 56 =5 4 fiag1A, fiag1B PB
r,'(14) = 57 =D 3 fiag1A, fiag1B PB
r,'(15) = 58

r,' (i) = 515

where flaglB is ahvays true. Consider now the multi-path IT = [80,81,82,83,

[84, 85, ... , 814,815,85: 86, ... , 814, ...], 85,86,87, .. -j. It is a counterexam
pie for the formula AG(JZaglB --t AF.....,flaglB) , and consequently also a
counterexample for f.

The naive repair technique considers in PA the assignments after break
point i E {L 2, 6, 8. 9, 13} and in PB after break point j E {I, 2, 6, 7,12, 13}.

For simplicity. let us only consider repairs changing right sides of as
signments as described. Then, our optimization technique allows us to re
strict attention in P.4 to i E {L 2, 6} and in PB to j E {1,2}. Indeed, the
variables referenced along IT are flagL4, flag1B, turnlB. Thus, only .5
out of 12 candidate repairs remain. (In case of general repairs, 1.5 out of 72
remain.)

The only repair for P is a = (A, 2, ~() where ~(amounts to turnlB :=
true. Indeed, po does not enable PB to loop forever between 3 and 4.

References

[1] BUCCAFURRI, F. - EITER, T. - GOTTLOB. G. LEO:\,E,:--:. (1997): Enhancing
Model Checking by AI Techniques, Technical Report, IFIGRR 9702, Institut fur
Informatik, Uniy. Griefien, Germany, 1997.

[2] BURcH, J. - CLARKE, E. Mc:VIILL.-\:-\. K. DILL. D. - HWA:-\G. J. (1992): Sym-
bolic Model Checking: 10 120 States and Beyond. Information and Computation,
Vol. 98(2) pp. 142-170.

COMBINING ABDUCTION ... 101

[3] CLARKE, E. - E:V!ERSON, E. (1981): Synthesis of Synchronization Skeletons for
Branching Time Temporal Logic, In Logic of Programs: Workshop, Yorktown
Heights, iVY, May 1981, LNCS 13l.

[4] CU.RKE, E. - EMERSOl'\, E. - SISTLA, A. (1986): Automatic Verification of Finite
State Concurrent Systems Using Temporal Logic Specifications, A CM Transactions
on Programming Languages & Systems, Vol. 8(2) pp. 244-263.

[5] CLARKE, E. GRUMBERG, O. - LO:-.'G, D. (1994): Verification Tools for Finite-State
Concurrent Systems. In: A Decade of Concurrency - Reflections and Perspectives,
LNCS 803.

[6] CU.RKE, E. - GRUi\IBERG, O. LO:-.'G, D. (1992): Model Checking and Abstraction.
In Proc. A CM Symposium on Principles of Programming Languages, 1992. ACM
Press.

[7] CONSOLE, L. THESEIDER DUPRE, D. - TORAsso, P. (1991): On the Relation-
ship between Abduction and Deduction. Journal of Logic & Computation, Vo!. 1(5)
pp. 661-690.

[8] EITER. T. GOTTLOB, G. (1995): The Complexity of Logic-Based Abduction. Jour
nal of the AC/vf, Vo!. 42(1) pp. 3-42.

[9] GRUMBERG, O. - LONG, D. (1994): Model Checking and Modular Verification. ACM
Transactions on Programming Languages & Systems, Vo!. 16, pp. 843-872.

[10] PETERSON, G. (1981): Myths about the Mutual Exclusion Problem, Information
Processing Letters, Vol. 12(3) pp. 115-116.

[11] P:-.'UELI, A. (1981): The Temporal Semantics of Concurrent Programs, Theoretical
Computer Science, Vo!. 13, pp. 45-60.

[12] POOLE, D. (1988): A Logical Framework for Default Reasoning. Artificial Intelli
gence. Vo!. 36, pp. 27-47.

