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Abstract 

We investigate the combination of AI techniques \vith model checking, which is a suc
cessful approach to verification of particular concurrent systems. vVe present the system 
repair problem and as an application the problem of repairing (i.e. correcting) concurrent 
programs. :Vloreover, we describe optimization techniques for reducing the search space 
of a repair, which use the concept of counterexample. 
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1. Introduction 

Model checking (CLARK and EMERSO:\, 1981: CLARKE et al., 1986) is an 
automatic technique for verifying finite-state concurrent systems such as cir
cuit designs and communication protocols. Specifications are expressed in 
a propositional temporal logic, and the system is modeled as a state tran
sition graph. Model checking has several important advantages over other 
verification methods such as mechanical theorem provers or proof checkers. 
The most relevant is that it is highly automatic. Moreover, recent advances 
in model checking allow to verify tremendously large systems (BURCH et al., 
1992). Major companies including InteL Motorola, Fujitsu and ATT started 
using symbolic model checkers to verify circuits and protocols. 
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The research reported here is motivated by the questions whether AI 
can contribute to model checking, and whether vice versa the AI community 
can gain something from that area. This paper gives a first ans\ver and 
studies the combination of abductive reasoning, cL (POOLE, 1988; CONSOLE 
et al., 1991; EITER and GOTTLOB, 199.5), and model checking. It does not 
present a final theory; the current approach works under restrictions and 
must be extended. However, it is a first step towards integrating AI into 
model checking. 

Process PA 

1: . f1ag1A := true; 
2: turn1B:= false; 
3: ifflag1B &, turn1B then 
4: goto 3; 
0: x:= x and y; 
6: f1ag1A:= false; 
7: if turn1B then 
8: begin f1ag2A:= true; 
9: turn2B := true; 
10: if f1ag2B &, turn2B then 
11: goto 10: 
12: y := false; 
13: flag2A := false; 

end 
14: goto 1; 

Process PB 

1: f1ag1B:= true; 
2: turn1B:= false: 
3: if flag1A &: -, turnlB then 
4: goto 3; 
5: x:= x and y; 
6: f1ag2B:= true; 
7: turn2B:= false; 
8: if f1ag2A & -, turn2B then 
9: goto 8; 
10: y:= not y; 
11: x:= x or y; 
12: flag2B:= false: 
13: flag1B:= false; 
14: goto 1: 

Fig. 1. A concurrent program P 

To give the flavour of the approach. consider the concurrent program 
P in Fig. 1. It has processes P4 and PE. \\' hich share two Boolean vari
ables x and y. To ensure mutual exclusion of the assignments to .r and y, 
some control variables, flags and turns. are used following Peterson's scheme 
(PETERSON, 1981), in \vhich each critical section (.s and 12 in P4 and -nested 
.s-11 and 10 in PE) is executed under an entry and exil protocol. 

The system specification prescribes that P satisfies mutual c.rclusion 
for assignments to ;T and y, respectively, and absence oJ starvation. E.g. PA 

must not execute instruction .s, if PE executes instruction .5 or 11 at the 
same time. Absence of starvation requires that a request of a process for a 
resource must eventually be satisfied. Clearly. this makes sense only if the 
underlying scheduleI' is Jail': absence of starvation cannot be ensured if the 
scheduleI' always dispatches the same process. 

Inspection shows that P is not correct. e\'en under fair schedules: in
struction 2 of PA should be turn1B := true: however, detecting the error is 
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not immediate. Model checking allows to check the correctness of P fully 
automatically. The system specification, mutual exclusion and absence of 
starvation is expressed in the temporal logic ACTL (GRUMBERG and LOC':G, 
1994): fair schedules are specified through fairness constraints (CLARKE et 
al., 1994). Then, an automatic procedure verifies whether P fulfills the 
specification. 

However, if a model checker finds P incorrect, usually it cannot single 
out the error, and is far from fixing it. By using abductive reasoning, our 
method tackles this problem: it tries to locate the bug and proposes a 
repair of the program. The method works under a single error hypothesis, 
in which possible errors may occur in the left or right side of an assignment; 
exchanging two successive assignments and multiple errors should also be 
manageable. 

Like abduction, program repair is computationally expensive. Even 
if we plausibly restrict in Fig. 1 to the assignments of control variables, 
we must consider 12 assignments and 6 control variables. Thus, up to 72 
attempts of repair may be done, each of which requires a call of the model 
checker. 

Towards more efficient program repair, we have designed an optimiza
tion technique which exploits a suitable formalization of a counterexample 
from (CU.RKE et al., 1994). It guarantees to make here only up to 15 
attempts . 
.\flore details can be found in the extended paper (BUCCAFURRI et al., 1997). 

2. Preliminaries on ACTL 

ACT L (GRU.IBERG and LOC':G, 1994) is a major fragment of Computa
tional Tree Logic (CLAREE et al., 1986), as it allows abstraction and compo
sitional reasoning (CL .. \REE and GRU:VIBERG, 1992: GRU:VIBERG and LOC':G, 
1994). There. state and path jormulas are propositions on a point in time 
and a computation path, respectively, using linear-time (LT) operators X 
("next time"). D (,'Until"), V ("unless") and the path quantifier A ("for 
all paths"). 

DEFI:\ITIO:\ 1 For a set AP of atomic propositions, ACT L is the smallest 
class of state formulas on AP. where 

@ any atom a E AP is a state (s)-formula: 
@ if j, g are s-formulas, then j Vg, j 1\ g are s-formulas, as well as -,j 

if j lacks LT -operators: 
@ if j. g are s-formulas, then Xj, jD g and jV g are path (p )-formulas: 
@ if j is a p-formula, then A(J) is an s-formula. 

Let Fj=trueUj ("sometimes" j) and Gj=jalseVj ("always" 1). 



94 F. BUCCAFURRI et al. 

The semantics of ACT L is given in terms of K ripke structures. 

DEFINITION 2 A Kripke structure is a 5-tuple 1\11 = (AP, 5,50 , R, L), where 

• AP is a finite set of atomic propositions, 
It 5 is a finite set of states, 

e 50 ~ 5 is a set of initial states, 
e R ~ 5 X 5 is a transition relation, 
et L : 5 -t 2A.P assigns s E 5 the set of atomic propositions true at s. 

A path 'iT in )\11 is an infinite sequence [so, SI, '" Si ... ] such that 
(Si, si+d E R, i 2: O. We use the notation 'iT(i) = Si and 'iT

j = ['iT(j) , 'iT(j + 
1), .. l 

DEFINITION 3 J;[, s F f denotes satisfaction of an s-formula f in a state 
s of }o/l, and M, 'iT F 9 satisfaction of a p-formula 9 along a path 'iT in lvI, 
where 

1. M, SF p, if pE L(s) where p E AP(Jv1); 
2. M,s F -,f1, if l\11,s F h: 
3. 1'vl, SF h V 12, if M, SF h or M, SF 12; 
4. M,s F h /\12, if M,s hand M,s F 12: 
.5. 1\1, SF A(gd, if M, 'iT F gl for all paths 'iT with 'iT(0) = s; 

6. 1\1, 'iT F f, if M, 'iT (0) F f: 
7. M, 'iT F Xh, if 1\1. "I F f1: 
8. cvl,,, F fI U 12, if k 2: 0 exists such that M, "k F 12 and Jf, F h, 

for all 0 :::; j < k: 
9. M,,, F h V 12, if for every k 2: 0, M, "j F f1 for all 0 :::; j < k implies 

M,,,k F 12: 

M F f denotes M. So F f, for every So E 50· 

Fair computations are modeled by fairness constraints (BCRCH et al., 1992). 

DEFE\ITIO;:\ 4 A FC-Kripke structure is an expanded Kripke structure Jl = 
(M', F), where F is a finite set of formulas f (fairness constraints). 

A path " in Jl is fair, if for every f E F and i 2: 0 there exists j 2: i 
such that i'd, ,,(j) F f· Satisfaction as F but where A(gr) is w.r.t. all fair 
paths is denoted by F f (simply F, if unambiguous). 

Intuitively, path 'iT is fair if each f E F holds infinitely often along Jr. 

Typical fairness constraints on a concurrent program P = PI,"" Pn are 
ai == "Process Pi is active;" fair paths amount to schedules of the (infinite) 
processes where no Pi is paused forever (which is not expressible in ACTL). 
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3. Abductive Reasoning on ACT L Specifications 

We employ abductive reasoning for the problem of modifying a FC-Kripke 
structure lVI in order to satisfy an ACT L formula. Recall that abductive 
reasoning is, roughly speaking, an inverse of modus ponens. From a rule 
9 :J 'Ij; andlb, abduction concludes 0 as an explanation of 'Ij;. 

Given a FC-Kripke structure ivJ (the "system") and a formula f, we 
define the System Repair Problem as the abduction problem whose solution 
consists of a set of modifications to the transition relation R (additions or 
deletions of tuples in R), such that f is true in the modified system. 

DEFINITION .5 Let R ~ 5 X S. Every pair fJ = ((51,52), EEl), where 51 E 5, 
52 E 5, and EB E {-, + }, is a 5imple modification. The application of fJ on 
R, denoted fJ(R), is R U {(51, 52)}, if EEl = +, and R\ {(51, 52)} else. 

DEFINITION 6 A modification for M is a set r of simple modifications for R 
S.t. r+nr- = 0, where r+ = {(51,52) I (51,52,+) Er} and r- = {(51,52) I 
(51,52, -) E r}. mod(J\lJ) denotes the set of all modifications for M. The 
result r(M) of r is the FC-Kripke structure (AP, So, 5, Rf, L, F), where 
Rf = nSEf- fJ(R) U (USEf+ fJ(R) \ R). 

Intuitively, a modification r of system M is a set of nonconflicting sim
ple modifications, and r(2\11) is the result of their simultaneous application. 

DEFI='iITION 7 A system repair problem (SRP) is a triple Q = (M, f, Y) of 
an FC-Kripke structure j\;1, formula f, and computable Boolean function Y 
on mod(1.1"I). Any modification r S.t. y(r) = true is called admissible. A 
solution for Q is an admissible modification r for 1\1 S.t. r(2\11) F f. 

This definition describes the abduction problem in a general frame
work. The admissibility function y is domain-dependent: e.g., in the case 
of concurrent programs, y is derived from possible changes to the code. 

A solution of an SRP is an abductive conclusion of how to modify the 
system for satisfying f. :\"ote that this process is, as well-known, intimately 
related to theory change and counterfactual reasoning. 

4. Repair of Concurrent Programs 

A concurrent program is a collection P = PI, ... , Pn of processes running 
in parallel. \Ye assume a system \\"ith shared memory, i.e. all variables x = 
Xl, :r2, ... , Xl are accessible to all processes, and that every x j is Boolean; by 
coding, this allows expressing all finite domains. :\ote that communication 
protocols usually use such domains (flags, finite counters, etc). 

In Pnueli's model (PNCELL 1981), each process Pi is represented as a 
labeled digraph G(Pi ) = (IV-i. Ei ), where 
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• Ni = {I, 2, ... , md is the set of break points (BPs) of Pi, i.e. the 
points before the code and between successive statements (cf. Fig. 1). 

• Ei is a set of labeled arcs a = bj -t bk. Intuitively, a represents 
transition from bj to bk in Pi. The label l(a) = (c(x), stmnt) is a 
pair of a Boolean condition c(x) and an either empty or assignment 
statement stmnt. Intuitively, the transition bj -t bk can be followed 
if c(x) is true, and then stmnt is executed. 

Given a set F of fairness constraints, associate with P an FC-Kripke 
structure 1\1F(P) such that 

• 5 = XiNi Xj Dj x {I, ... , n} is the Cartesian product of all sets j\li of 
break points, domains Dj of the x j, and the set of process numbers. A 
state s intuitively corresponds to a configuration of the system, where 
the last component tells the process executed in the previous step; 

e 50 holds only states s whose last components have the value l. 
e R is obtained from the graphs G(Pi ) by following one arc in some 

G (P;) from one state to another. 
fI AP contains x, variables b7 = "Pi is at break point k," and ei == "P; 

was executing". 
fI L is straightforward from that. 

Suppose a formula f is a formal specification for P and we have fairness 
constraints F for P. Then, P fulfills f iff lviF (P) F= f. If P does not fulfill 
f, we are interested in a change to the code of P such that the modified 
program pi fulfills f. This amounts to a (mostly nontrivial) SRP. 

EXA~IPLE 1 (ctd) For P in Fig. 1, define 

f = !\;~·i,B AG(JlagiV -t AF'flagiF) 

/\AG(,(bF i\ b~)) i\ AG(,(b1 i\ (b~ V b~o))) . 

f says that in every computation, Pv must eventually exit the critical section 
i after entering it, and that both processes may not be simultaneously in a 
critical section. For F = {eA, eB} (fair scheduling), ,viF(P) F f. 

\Ve tackle program repair under simplifying assumptions. We focus 
here on the case that a single statement is wrong, and allow that the solution 
of an instance will be an assignment correction; in P, which is either 

fI replacing the right-hand side of an assignment ;1:j := expr, by a con
stant (true or false), or 

fI changing the variable of its left-hand side. 

DEFINITION 8 A correction for P is a triple 0' = (k, b,;), where b E Nk is a 
break point in Pk and; specifies an assignment correction for the statement 
b in h. Let pc< be the program obtained from P if 0' is implemented. 
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Implementing 0' merely changes the label of bin G(Pk); thus, iVlp(PO) 
and MF(P) coincide except for R. Hence, 0' induces a system modification 
r as in Def. 6 such that RO = Rf. Not every r is induced by some 0'; yp 
selects those r which are. Thus, program repair reduces to a SRP. 

DEFINITION 9 The tuple D = (P, F, J) defines a program repair problem 
(PRP) for P w.r.t. f under fairness constraints F. A solution for D is a 
solution r for the SRP Q = (JV!F(P), r yp). A repair for D is a correction 
0' for P such that D has a solution r induced by 0'. 

Repairs are characterized as follows. 

PROPOSITIO:\" 1 A correction 0' is a repair [or P vv·.r.t. f if[ lVlp(PO) F f. 

5. Computation of Repairs and Counterexamples 

The naive algorithm for computing a solution for a PRP simply tries every 
possible correction Cl: on each assignment in P, and checks l\1F(PO) F f. 
However. this is clearly not efficient. 

Our approach restricts the search space by exploiting counterexamples. 
Informally, a counterexample for a PRP (P, F, J) is a portion of the possible 
computation branches witnessing that f fails. Given a counterexample, our 
technique identifies corrections Cl: under which it is invariant, i.e. still applies 
if Cl: is implemented. Such O"s are useless and can be discarded. This \vay, 
the space of candidate repairs may be drastically reduced. 

Counterexamples were introduced in (CLARKE et al.. 1994): the re
spective procedure returns as counterexample a single path in .VI. 'Ve need 
a richer concept as we must consider multiple, possibly nested paths. Thus 
\\"e introd uce m ult i-sequences and m ulti-paths. 

DEFI:\"ITIO:\" 10 Every state s E S is a finite multi-sequence in 5: if TIo, TII: 
... are countably infinite many multi-sequences. then TI = [TIo, TII""] is a 
multi-sequence. TI(i) denotes the i-th element of TI, and or(TI) = s if TI = s 
is finite and or(TI) = or(TI(O)) otherwise. 

Informally, an infinite multi-sequence IT is a kind of infinitely branch
ing tree whose leaves (where or(TI) is the leftmost) are states. It enables 
representation of nested infinite paths: we call this a multi-path. There is a 
main path from which other paths branch off. 

More formally, let the main sequence of TI, denoted p(TI), be p(IT) = s, 
if IT = s is finite, and p(TI) = [or(IT(O)), or(IT(l)), ... ] otherwise. 

DEFI:\"ITIOT\ 11 A multi-sequence IT is a multi-path in M, if either TI is finite 
or p(IT) is a path in M and for every i 2:: 0, IT(i) is a multi-path in M. TI is 
fair, if IT is finite or p(TI) and every IT(i) is fair. 
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E.g., consider TI = [[[ 80,811' 812' ... ], 821,822 ... ], 831' 832' ··l It has the 
main path ,u(TI) = [80, 831' 832' ··l At the state 80, the paths 111 = 
[80, 811,812' ... ], 112 = [80, 821 , 822' ... ] branch off. 

Informally, a counterexample for f is a particular multi-path TI, origi
nating at an initial state such that f is not true along TI. A counterexample 
for f without LT-operators is simply an initial state 80 such that M,80 F f. 
Counterexamples for more complex f are defined inductively, using the con
cept of local (1-) counterexample. For the definition, we need the concept of 
merge of two multi-paths. 

DEFINITION 12 Let TI1 and TI2 be two multi-paths such that or(TId 
or(TI2)' The merge of TI1 and TI 2 , denoted TI1 * TI 2 , is the multi-path 

if TI2 = 8 is finite; 
if TI2 is infinite, TI2 (0) = 8; 

otherwise. 

E.g., merging TI = [[80,811,812""]' 82 1, 823' ... ] and TI' = [80,831,832""] 

yields TI*TI' = [[[80,811,812,"'], 821,823""]' 831,832' ... ], while TI'*TI = 
[[[ 80, 831 , 832' .. -], 811' 812' ... ], 82 1 , 822' .. l which essentially represents the 
same branching of three paths. 

DEFINITIO;\ 13 Let 11/1 be a FC-Kripke structure and I be a formula on 
AP(1V1). A multi-path TI in Jf is a local (l-) counterexample for f, s.L, if 

1. f has no LT-operators: II sand JJ,8 F f: 
2. f = A(h U h): TI is an innnite fair multi-path and either 

(2.1) there exists I,: ~ 0 such That TI(k) is an !-counterexample for 
h V h, TI(i) is an I-counter-example for h. for each 0 ::; i < k, 
and TI(j) is a state. for j > k: or 

(2.2) TI(i) is an l-counterexample for h, for each i ~ 0; 

3. f = A(f1 V h): TI is an innnite fair multi-path and there exists a 
k such that every TI(j), 0::; j < k, is an l-counterexample for h, TI(k) 

is an l-counterexample for h, and every TI(.e) is a state, for .e > k: 
4. fAXh: TI is an infinite fair multi-path, TI(l) is an I-counterexamp

le for h, and TI(i) is a state, for each if. 1; 
o. f = h V h, \vhere f has LT-operators: TI = TI1 ",TI 2 , where TIi, i = 1. 2, 

is an l-counterexample for fi: 
6. f = h 1\ h, where f has LT-operators: TI is an l-counterexample for 

either h or h· 
Counterexamples are particular l-counterexamples. 

DEFI:\ITIOl\: 14 Let .:.V1 be a FC-Kripke structure and f be a formula on 
AP. An I-counterexample TI for f in :V1 such that or(TI) is an initial state 
of AI is called a counterexample for f in A1. 
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An example is considered below. The next theorem states that the 
concept of counterexample captures failure of a formula. 

THEOREM 5.1 Let !vI be a FC-Kripke structure, f a formula f. Then, 
M, s F f iff there exists a counterexample TI for f in M. 

Note that counterexamples, while mostly infinite objects, can be finite
ly represented; a construction by a modification of the procedure in (CLAR
KE et al., 1994) seems feasible . 

. The space of candidate repairs to a PRP (P, F, 1) can be reduced as 
follows: Assume TI is a counterexample for f in MF(P) and 0: a correction 
for P. If TI' is a multi-path in MF(PO:) equivalent (in a formally precise 
sense) to TI, then TI' is a counterexample for f in po:; hence, 0: is not a 
repair for the PRP. Based on this principle, we exploit two properties of 
counterexamples and repairs for optimization. 

Execution : A multi-path TI executes a correction 0: = (k, rn, I), if transi
tion (IT ( i) , IT (i + 1)) exists in some paths IT of TI in which process Pk proceeds 
from break point rn (i.e. executes the assignment after rn). 

THEOREM 5.2 We have: Let 0: = (k, rn, I) be a repair for the PRP Q = 
(P, F, 1). Then, every counterexample TI for f in MF(P) executes 0:. 

Exploitation : A multi-path TI exploits a correction 0: = (k, rn, ~(), if it is 
infinite and one of the infinite paths IT in TI has a transition (IT (i), IT( i + 1)) 
in which Xi or Xj is evaluated, where Xi := expri (resp. Xj := exprj) is the 
assignment after rn in Pk (resp. in Pk corrected by 0:). 

THEOREM 5.3 Let V(o:) = {Xi, Xj}. Let 0: = (k, rn, ~() be a repair for the 
PRP Q = (P, F, 1) such that no variable in V(o:) occurs in f or F. Then, 
every counterexample TI for f in MF(P) exploits 0:. 

Any correction 0: which is not executed or not exploited by a coun
terexample TI can be immediately excluded as a repair. Given TI and 0:, this 
can be checked efficiently. This test can lead to drastic savings. 

EXAMPLE 5.4 (cont'd) We have MF(P) F f: Consider the path IT (we 
show each state Si, left to right, the break points for PA and PB, the flag 
and turn variables that are true, and the process lastly executed): 

IT(O) = 80 = 1 1 PA 

IT(l) = 81 =2 1 fiaglA PA 

IT(2) 82 =2 2 fiaglA, fiaglB PE 
,,(3) = 83 =3 2 fiaglA, fiaglB PA 

IT( 4) = 84 =3 3 fiaglA, fiaglB PE 

From S4, where flag1B is true, a path IT' branches off: . 
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r,' (0) = 54 

r,' (1) = 55 =5 3 fiag1A, fiag1B PA 
r,' (2) = 56 =5 4 fiag1A, fiag1B PB 
r,' (3) = 57 =5 3 fiag1A, fiag1B PB 
r,' (4) = 58 =6 3 fiag1A, fiaglB PA 
r,' (5) = 59 =6 4 fiag1A, fiaglB PB 
r,' (6) = 510 = 6 3 fiag1A, fiaglB PB 
r,'(7) = 511 = 7 :3 fiaglB PA 
r,'(8) = 512 = 14 3 fiaglB PA 

r,' (9) = 513 = 1 3 fiag1B PA 

r,' (10) = 514 = 2 3 fiag1A, fiag1B PA 
r,'(ll) = 515 = 3 3 fiag1A, fiag1B PA 
r,'(12) = 55 = .5 3 fiag1A, fiaglB PA 

r,'(13) = 56 =5 4 fiag1A, fiag1B PB 
r,'(14) = 57 =D 3 fiag1A, fiag1B PB 
r,'(15) = 58 

r,' ( i) = 515 

where flaglB is ahvays true. Consider now the multi-path IT = [80,81,82,83, 

[84, 85, ... , 814,815,85: 86, ... , 814, ... ], 85,86,87, .. -j. It is a counterexam
pie for the formula AG(JZaglB --t AF.....,flaglB) , and consequently also a 
counterexample for f. 

The naive repair technique considers in PA the assignments after break 
point i E {L 2, 6, 8. 9, 13} and in PB after break point j E {I, 2, 6, 7,12, 13}. 

For simplicity. let us only consider repairs changing right sides of as
signments as described. Then, our optimization technique allows us to re
strict attention in P.4 to i E {L 2, 6} and in PB to j E {1,2}. Indeed, the 
variables referenced along IT are flagL4, flag1B, turnlB. Thus, only .5 
out of 12 candidate repairs remain. (In case of general repairs, 1.5 out of 72 
remain.) 

The only repair for P is a = (A, 2, ~() where ~( amounts to turnlB := 
true. Indeed, po does not enable PB to loop forever between 3 and 4. 
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