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Abstract 

Optimization plays a significant role in almost every field of applied sciences (e.g., signal 
processing, optimum resource management, ... etc.). In spite of the ever-growing need for 
implementable solutions, the traditional methods of optimization suffer from the draw­
backs of either failing to achieve the global optimum or yielding high complexity algorithms 
which are numerically cumbersome to perform. As a result, novel techniques using neural 
networks (e.g. Boltzmann machines and Hopfield netv,rorks) have been instrumental to 
optimization theory. Unfortunately, these novel techniques fell short of the expectations 
for two reasons: (i) in the case of statistical optimization the associated computational 
complexity is rather high leading to tedious algorithms, and (ii) in the case of Hopfield 
network only local optimization can be carried out. Therefore, the aim of this paper is 
to introduce new algorithms for global minimization of :'lulti-Variable Quadratic Forms 
OvlVQF) defined over discrete sets and for the statistical resource management problem. 

The global minimization of rv1VQFs will be solved by a modified Hopfield algorithm, 
where the convergence speed is proven to be a polynomial function of the dimension (in 
contrast to the exponential complexity of exhaustive search). A straightforward applica­
tion of the result is to implement low complexity algorithms for the detection problem of 
linearly distorted signals corrupted by Gaussian noise. 

The constrained optimization problem of statistical resource management will be 
interpreted as a set separation problem approximated by a neural network. Based on 
the underlying tail estimation of the aggregate load, the weights of the network can be 
properly trained. The results can be directly applied to the traffic design of communication 
networks, automated factories, ... etc. 

Keywords: quadratic optimization, tail estimation, resource management. 

1. Introduction 

An MVQF is defined as QUi) = l?vVy - iF? y, where the global mInI­

mum fj : glob minyE { -uP' yTWy - 2T7 y is sought over the finite set of 
all N dimensional binary vectors. This problem frequently occurs in signal 
processing and communication theory. For example, the optimal Bayesian 
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detection under Gaussian noise over a linearly distorted channel reduces to 
the global minimization of an MVQF (see [10,12,13]) and designing struc­
tures termed as associative or content addressable memories also involve 
MVQFs [14]. 

In the case of discrete sets the minimization does not lend itself to 
analytical solutions because no gradient can be established. The traditional 
approach to the discrete problem is the so-called exhaustive search, which in 
turn yields exponentially growing complexity 'with respect to the dimension. 
In order to minimize MVQFs without significant computational overhead, 
new nonlinear methods \vere developed (like Hop FIELD net in [1,2]), for 
which the Lyapunov function was proven to be quadratic. This assures the 
convergence of the underlying algorithm to the extremum of the quadratic 
form. The shortcoming of this method results from the complex topology 
introduced by the optimization algorithm among the elements of y E Y (of­
ten referred to as states). This topology can give rise to se\"erallocal minima 
what prevents to capture the global minimum. To cope with this difficulty, 
statistical optimization methods (e.g. simulated annealing, Boltzmann ma­
chines [9]) came into use introducing large computational overhead. As a 
result, the question of developing fast and global optimization algorithms 
for MVQFs based on neural architectures remained opened. 

Optimal resource management is a central problem of multi-access net­
works (e.g. ATM networks) connecting random sources together [6,7]. The 
problem can be modelled as having a user population denoted by 1, ... , J, 
while XJ(t) random process refers to the random load presented by the jth 
user. The aggregate traffic is expressed as Y(t) Xj(t). which is com­
pared with the system capacity C. Congestion or overload occurs when 
'2..:-1=1 Xj(t) > C. The probability of this event should be kept under a cer­
tain threshold dictated by the Q 0 S parameter ~f' according to the following 
ineq ualities: 

The task of the resource manager is to enforce inequality (1) by controlling 
the number of sources. It is obvious that this task comes do\yn to the tail 
estimation of the aggregate load. As the tail does not lend itself to analytical 
evaluation, the central problem is to develop an efficient tail estimator with 
the following properties: 

61 the estimator is computationally simple for performing real time man­
agement function: 

61 simple descriptors are required from the users which characterize their 
load (first or second order statistics, without estimating their proba­
bility distribution); 
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• despite the computational simplicity and weak description of sources 
a sharp estimation is to be achieved. 

This casts statistical resource management as a constrained optimiza­
tion problem, where neural networks can be of help. 

The aim of the paper is to introduce neural based methods for solving 
the above detailed problems by using a modified Hopfield net for quadratic 
optimization and the set separation approach for optimal resource manage­
ment. 

2. Modified Hopfield Net for Quadratic Optimization 

The original Hopfield net [1] is given by the following algorithm \vith a 
sequential updating rule. 

(2) 

The Lyapunov function of this algorithm is quadratic which implies conver­

gence to the extremum of Q(y) = IlvVy - 21l y. T\vo shortcomings occur 
in this solution, however: 

1. the algorithm can get stuck in one of the local optima instead of achiev­
ing the global optimum: 

2. only maximization of positive definite quadratic forms can be accom­
plished, though many applications require minimization (e.g. nearest 
neighbour type of tasks in detection and recognition theory). 

To overcome these difficulties the following algorithm is proposed [3,4]: 

(3) 

which can be reviritten in the form of Yi(k+1) = -sgn { Lj~l W"ijYi(k) -bi­

-riYi(k) }. 

The novelty lies in the negative hysteretic type of non linearity. While 
the negative sign assures the minimization, the hysteresis with an appropri­
ately chosen width parameter (ri) enforces that the algorithm converges to 
only one steady state corresponding to the global minimum of the underly­
ing quadratic form. More precisely the main result can be summarized in 
the following theorem: 
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THEOREM 1 If 

(i) W is a symmetric matrix which is eye-opened with parameter D and 
has positive diagonal elements, 

(ii) there exists an m such that Wm = b and m E dC, where 

and 

dC := {u : c ::; IUil ::; 2 - c} , 

3 + kj mini Lj,j:f=i IWijl 
l+D 

(iii) the hysteresis parameter Ti is defined by 

Ti = }Vii + k for some k > 0, 

(4) 

(5) 

then (i) algorithm (3) has one and only one steady state corresponding 
to the global minimum of the quadratic form yTW y - 2bT y over the 
set of N -dimensional binary yectors; (ii) algorithm (3) is stable; and 
(iii) the necessary number of steps needed to achieve the steady state 
(transient time) can be upperbounded by the following expression 

T R < N2 11WII + 2v'N3llyll + NIIW-1 ItllbI1 2 

- 4k 
(6) 

where 11 . 11 refers to the Euclidean norm. 

Here we only concentrate on demonstrating the fact that ?vIVQF is 
Lyapunov function of the nei-V algorithm which minimizes it, the detailed 
proof of Theorem 1, involving the globality of the solution can be found 
in [3]. 

To embark on the proof of minimization we need the following lemma. 

LEMMA 1 Let y(k+l) = y(y(k)) a nonlinear recursion defined over the state 
space y E Y. If there exists a function (the so-called Lyapunov function) 
L(y) for which the following properties hold 

1. L(y) is bounded 3A., B: A. ::; L(y) ::; B t/y E Y 
2. D.L(k) := L(y(k + 1)) - L(y(k)) < 0 t/y E Y then the recursion 

y(k + 1) = y(y(k)) converges to one of the local minima of L(y). 

Based on this lemma the convergence properties of algorithm can be 
easily proven as follows: Analysing the change of the quadratic form due to 
the state transitions, 'we obtain expression 

D.Q(k) := Q(k + 1) - Q(k) = D.y;(k)H/ii + 2D.Yi(k) {I: WijYj(k) - bi} , 
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where Q(k) := yT (k)Wy(k) - 2bT y(k) and !::"Yi(k) := y(k + 1) - y(k). If 
there is a state transition then Yi (k) can change from -1 to + 1 or vice versa. 
Let us deal \vith the state transition from -1 to + 1, which results in 

AQ(k) = 4Wii + 4 { Jt WijYj (k) - bi } . 

Owing to the hysteresis type of nonlinearity (4) this state transition can only 
'occur if I:j WijYj (k) - bi :::; -ri = (Wii + k) which provides the following 
bound on !::"Q(k): 

.6.Q(k) :::; -4k < O. 

Now it is easy to verify that the same bound can be obtained for each i in 
the case of a + 1 to -1 state transition, therefore the first condition for Q (y) 
being a Lyapunov function of algorithm (4) is satisfied. Q (y) can easily be 
lowerbounded by using the Sch\varz inequality and taking into account that 
it has one ,plobal minimum over RN in the point m = vV- l B with value 
Q(m) = m Wm - 2bT m = -mTb - bTW-lb. Therefore 

Q(y) ?:: -bTvV-lb ?:: -llbI121IW-lll'v'y E {-1, l}N 

which implies the fulfillment of the second condition for Q(y) being a Lya­
punov function. 

Taking into account that y E {-I, l}N, Q (y) can be u pperbounded as 
Q(y) :::; IIyl1211WII + 211 bllllyll = NIIWII + 2VNll bll· Hence the totaJ variation 
of Q is bounded 

As a result, the necessary number of steps needed to achieve the global 
minimum (TR) can be upperbounded in the following fashion: 

The factor N reflects the fact that we are working in the sequential mode 
of operation, thus in the worst case it can take N steps until a component 
chaIiges its value. 

2.1. Application of the Modified Hopfield Net to the Detection Problem 

In digital communication theory, detection of linearly distorted signals under 
Gaussian noise is of primary importance. Efficient detection algorithms 
make possible to implement low bit error rate (BER) receivers in QAM 
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systems. Whereas traditional system design tried to keep BER at low level 
by using channel equalizers, the new quadratic minimizer as a detector can 
perform the optimal Bayesian detection rule. 

The problem of optimal detection can be form ulated as follows (see Fig. 1): 

Vk noise 

channel detector 
v I k 

I A IJ ~ ~ Zk f(vk,· .. ,vk_N) 
~I hk ~+\ Zk I "'.~ 

I 

Fig. 1. Digital communication system with linearly distorted channel and Gaussian 
nOlse 

where 
Zk 

hI: 

" - ",}vf h Z I 
"k - L..,n=O n k-n T J/k 

Zk = f(vl:, ... , Vk-JV) 
N 
M 

binary independent identically distributed 
random variables, where k = L ... , IV; 
discrete impulse response of the channel, 
where k = 0, ... , A1 othenvise: 
Gaussian noise sequence EVk = 0, Vk, 
EVkVI = 1(1:/ = Cjk-iJ and Ev~ = No: 
received sequence, where k = 0, ... , lVI + 
iY: 

detected sequence: 
the length of the transmitted sequence; 
the length of the channel memory. 

It is easy to see that the optimal detection reduces to the global min­
imization of a quadratic form given by the following expression. 

y: max vi 1 _ exp (-~(L' - Hy)TJ<,..--I(V - Hy)) = 
y 2" det 1\. 2 

min(v - Hy)TJ<,--I(v - Hy) = min(yTWy - 2bT y). 
y y 

This prompts us to apply the modified Hopfield algorithm as an optimal 
detector given that the conditions listed in Theorem 1 are fulfilled. It can 
be easily proven [3] that these conditions are not restrictive at any rate, as 
far as a typical communication scenario is concerned (ho > hi, i = 1, ... , ~v1). 

The following figure shows some simulation results when the channel 
characteristics are h_2 = 0.05, h-I = 0.1, ho = L hI = 0.1, h2 = 0.05 and 
the noise is 'white Gaussian with Ev/ = 0 and (J'2 = 0.01, The optimum 



NOVEL OPTIMIZATION TECHNIQUES BY NEURAL NETWORKS 109 

T 
12 R 
11 A 
10 

N 
9 S 

I 
8 
7 

E 
6 N 

T 
5 
4 

T 
3 

I 2 

M 
1 

E 
0 

0 2 3 4 5 6 7 8 

INITIAL STATE 
Fig. 2. Transient time of the detection by the ne\v algorithm 

detection rule was calculated for all possible three dimensional binary input 
vectors yielding the following convergence times. 

As can be seen, this convergence time is far below the complexity given 
by the exhaustive search. Therefore, neural based optimization systems can 
be successfully applied in communication theory where the underlying op­
timization problems do not lend themselves to easy solutions by traditional 
methods. 

3. Optimum Resource Management by Feedforward Neural 
Networks 

As was detailed earlier, optimum resource management is concerned with 
evaluating the tail of the aggregated load [.5,6] in the form of 

P (limHco 'Lf=l Xj(t) > C) < e-~i, where Xj(t) represents the random 

load presented expressed in number of work unit/time unit by the sources 
of the system. C denotes the capacity of the system defined in terms of how 
many work units the system can handle during a time unit. 

One can approach the problem by assuming memoryless independent 

sources [6,7]. In this case the formula above reduces to P ('Lf=l Xj > C) < 
< e-~! which allows the use of traditional statistical inequalities, such as 
the Chernoff and Hoeffding bounds. The Chernoff bound yields a relatively 
sharp estimation of the tail in the form of 
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where f.1j(s) = In Eesx; and SX : 'L-!=1 dJ.L2;s) = C. 

Based on this bound C AC can be performed as 'L-!=1 f.1j (s") - s"C ::; 
::; -I' One can run into problem though by calculating the optimum s". 
This problem can be tiresome when the number of users are changing fre­
quently, leading to numerous re-optimization of parameter s". 

The Hoeffding inequality does not need the knowledge of the logarith­
mic moment generating function f.1( s). The trade off for simplicity is the 
rough nature of this estimation given in the form of 

( 
J J) -2 (c-"J m .)2/ "J (b_a)2 

P .r; Xj > C - f; mj ::; e· L.,;=1; L.,;=l;;, 

where aj, bj : P(aj ::; X ::; bj) = 1. In spite of the fact that both up­
per bounds allow simple resource management, the system utilization may 
not be optimal due to approximate nature of the bounds. Therefore, other 
methods should be used for tail estimation. 

Neural networks can be of help when tail estimation is reduced to a set 
separation problem. In this case the users are assumed to be On/Off type 
with Bernoulli distribution (P(Xj = 0) = 1 - ?-P(Xj = hj ) = ?-) and 

; ; 

they are divided into classes i = I, ... , 1'v1 with regard to their parameters 
mi, hi. 

Users from the same class are supposed to be homogeneous having the 
same traffic characteristics. The system can be described by a traffic state 
vector n = (nl,"" ni,.'" nAJ) where the component ni denotes the number 
of users being present from the ith class. Then CAC can be interpreted as 
a dichotomy in the traffic space expanded by vectors n (see Fig. 3) 

Fig. 3. The dichotomy of the traffic state space defined by CAC 

which is generated by the following inequality. 

P (f niXi > c) ::; e-i 
. 

1=1 

(7) 

As the calculation of (7) does not lend itself to numerical tractability, the 
task of CAC is to find a good approximation of the separation surface (see 
Fig. 4) allowing simple admission algorithm under the following constraints: 
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• lvappr.accept C Naccept 

Et the number of lost calls should be minimized (for a measure JI, 
min JI (Naccept _ Nappr.accept)). 

N'lPpr·accept 

Fig. 4. Approximating the separation surface 

An efficient approximation of the separation surface can be obtained 
by using a polygonal surface (see Fig. 5). 

fIlPpr.accepl 

loss 

Fig. 5. Polygonal approximation of the separation surface 

This polygonal approximation can be carried out by a two-layer neural 
net\york, in which the neurons in the first layer introduce separations by 
individual hyperplanes, whereas the single neuron in the second layer carries 
out an OR function to unite the individual separations, as indicated by 
Fig. 6: 

i 
hyperplanes 

Fig. 6. A two-layer neural network carrying out the polygonal approximation 
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The input-output mapping of the corresponding neural network IS 

given by (8) 

{ K (M )} Y = sgn L ai L bij x j - bi~ - ao 
t=1 )=1 

aIld the weights can be optimized according to the following criterion: 

Wopt : min f.1(lvaeeept _ Nappr.aeeept) , 
w 

(8) 

where f.1 is measure defined over the state space (e.g. f.1(A) = the number of 
points which lie within A). 

In the case of Markovian users, the following stochastic differential 
equation characterizes the system which now forms a queue 

J 

q(k + 1) = [q(k) - 1]+ + L Xj(k) . 
j=1 

The objective is to evaluate the tail of the stationary queue length distribu­
tion, which determines the cell loss probability. 

Tii := lim P(q(k) = i) 
k-+oo 

Peell loss = Pbuffer overflow = L Ti i . 
i>L 

An efficient estimate of the tail can be obtained by estimating the PERRO:\ 

FROBENIOuS eigenvalue [.5], yielding 

{ (
Et2 Et2 ) Et 

.3 = 1 + 2 (1 - p) / L . ~n + . ~ff - 2 . I on . (I-
. i Etoff Eton Eton T Etoff 

Eton ( Eton) } 
Eton + Etoff 1 - Eton + Etoff 

CAC can then be performed based on the geometrical tail. 

3.1. Simulation Results 

Some numerical results are indicated in the next figure, \vhere the admission 
region is shown in the case of heterogeneous traffic including two traffic 
classes. 

As one can see, the neuron based management algorithms present the 
best approximation of the theoretically calculated separation surface achiev­
ing the highest system utilization. 
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Fig. 7. Admission regions in the case of heterogeneous traffic obtained by neural 
set-separation, Hoeffding inequality and Chernoff inequality 

4. Summary 

The capability of solving hard optimization by neural networks \vas proven 
in two areas (i) the global minimization of discrete quadratic forms and (ii) 
in optimum resource management problems. In both cases, fast and low 
complexity solutions were achieved by neural architectures. The obtained 
modified Hopfield net and t\yo-Iayer feedforward network can be successfully 
applied to the problem of detection and call admission control, respectively. 
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