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Abstract 

We investigate a variant of Probably Almost Correct learning model where the learner 
has to learn from ambiguous information. The ambiguity is introduced by assuming that 
the learner does not receive single instances with their correct labels as training data, 
but that the learner receives tuples of instances where a tuple has a negative label if all 
instances of the tuple should be labeled as negative and a tuple has a positive label if 
at least one instance of the tuple should be labeled as positive. Thus, a positive tuple is 
ambiguous since it is not known which of its instances is a positive instance. 

Such ambiguous information is, for example, relevant in learning problems for drug 
design. We present an improved algorithm for learning axis-parallel rectangles in this 
model of ambiguous information. In the drug design domain such rectangles represent the 
shapes of molecules with certain properties. 

/( eywords: computational learning theory, classification, multiple instance problem, axis­
parallel rectangles. 

1. Introduction and Statement of Results 

1.1. The FAG Learning j1;Jodel 

The PAC learning model was first introduced by [VALIANT, 1984]. It gives 
formalization of concept learning in respect to an underlying distribution 
D over some domain X. Concepts are modeled as subsets G ~ X of the 
domain X and the class of all relevant concepts is called the concept class 
C C 2X. For convenience we sometimes refer to a concept as a function 
G ~X -+ {+, -} with C(x) = + if x E C and C(x) = - if x (j. C. 

The goal of the learner is to calculate a hypothesis C ~ X \vhich 
approximates the unknown target concept C to be learned. The quality of 
the approximation is measured by the underlying distribution D such that 
D{x : C(x) :f C(x)} is the error of hypothesis C, i.e. the probability that 

iSupported by the ESPRIT Project NeuroCOLT 
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a random instance drawn according to D is incorrectly (in respect to C) 
classified by 6. If D{x : C(x) :f- 6(x)} < E we say that 6 is an E-accurate 
hypothesis. 

To obtain a good hypothesis the learner is given a random training sam­
ple of labeled instances (Xl, C(XI)), .. " (Xml C(xm)) drawn independently 
from D. Since the sample is drawn at random the learner might be unlucky 
and receive a sample from which one cannot learn much. Thus, the learner is 
required to calculate a good hypothesis only for most of the possible sample 
draws. Formally, we have the follo'wing definition. 

DEFINITION 1.1 An algorithm .4 PAL~ learns the concept class C ~ 2X with 
accuracy E > 0 and confidence <5 > 0 from m examples if for all distributions 
D on X and all C E C, with probability 1 - <5 a random sample of size m is 
drawn from which algorithm A calculates a hypothesis 6 with D{x : C(x) :f-
6(x)} < E. The input to the algorithm are the parameters E and <5 and the 
random sample. 

A general technique to calculate a good hypothesis is to pick an ar­
bitrary concept 6 E C which classifies all examples in the training sample 
correctly. Then, under some mild conditions and if the training sample is 
big enough, it can be shown that t is a sufficiently accurate hypothesis. 

1.2. Ambiguous Information - j\;iultiple Instances 

In a variant of the PAC learning model. the multiple instance model. the 
learner receives a training sample of label r-tuples 

((XI,I,"" XI,r), id,···, ((Xm.I,··" Xm,r), im) 

with fk = + if there is a Xk.j E C and ik = - if all Xk,j rf. C, \vhere C is the 
target concept. Of course, this model could be equivalently embedded into 
the usual PAC model by using as domain x r and as concept class c(r) := 

{c(r) ICE C and (Xl"'" X r ) E c(r) {::} 3j : Xj E C}. Unfortunately, 
it is very likely that in this model even simple concept classes cannot be 
learned within a reasonable amount of time. Consider for example the class 
of d-dimensional axis-parallel rectangles 1 

C = {rno, bi ] : bi ::: o} 
,=1 

Then there is the following theorem. 

lWe consider only rectangles with their 'lower left' corner fixed at O. The generalization 
to arbitrary axis-parallel rectangles is straightforward. 



AMBIGUOUS INFORMATION 117 

THEOREM 1.2 ([AVER et al., 1997}) If the class c(r) can be learned with 
arbitrary small accuracy E and confidence 8 in time polynomial in d, r, ~, 
and t, then RP = NP. 

The above problem arises because when learning c(r) the distribution 
on R dxr is arbitrary. To circumvent this problem we assume that all in­
stances Xk,j of a tuple (Xk,l, ... , Xk,r) are drawn independently from some 
distribution D on Rd (2). Thus, the distribution on Rdxr from which the 
i-tuples are drawn is Dr, i.e. the underlying distributions from ,vhich c(r) 

has to be learned are restricted to this type. Formally, we have the following 
model. 

DEFINITION 1.3 An algorithm A learns the concept class of d-dimensional 
rectangles C with accuracy E > 0 and confidence 8 > 0 from m indepen­
dent i-instance examples if for all distributions D on R d and all C E C the 
following holds: with probability 1 - 8 a random sample of i-instance ex­
amples of size m is drawn from Dr and labeled by c(r) such that algorithm 
A calculates a hypothesis C ~ Rd with Dr {(Xl, ... , Xr ) : c(r)(XI 1 ••• , Xr ) -I 

A ( ) 

er (Xl, ... ,Xr)} < E. 

1.3. Pievious and New Results 

The first investigation of learning axis-parallel rectangles from multiple in­
stances was undertaken by [DIETTERlCH et al., 1997] in an empirical work 
for drug design. The first positive theoretical result for learning rectangles 
from independent multiple instances was obtained by [LONG and TAN 1 1996], 
but they had to assume that the underlying distribution is a product distri­
bution on Rd. In [AVER et al., 1997] the restriction to product distributions 
was removed and the performance bounds were considerably improved. 

THEOREM 1.4 ([AVER et al., 1997}) The class of d-dimensional axis-parallel 
rectangles can be learned from 

independent r-instance examples with accuracy E and confidence 8. 

A general result for learning from multiple instances was obtained in 
[BLVM and KALAl, 1997]. For the class of rectangles they have the following 
bound. 

2 In the following we denote instances by x to indicate that they are elements of Rd. 
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THEOREM 1.5 ((BLUM and KALAI, 1997) ) The class of d-dimensional axis­
parallel rectangles can be learned from 

m = 0 - 100'''': + 100' 100' -(d
2r (d r)) 

E2 05 0 0 E 

independent r-instance examples with accuracy E and confidence 5. 

Combining the techniques of [AUER et al., 1997] and [BLUM and 
KALAI, 1997] we are able to obtain an algorithm for learning rectangles from 
independent multiple instances whose analysis gives performance bounds 
which improve on both bounds given in Theorems 1.2 and 1.3. 

THEOREM 1.6 The class of d-dimensional axis-parallel rectangles can be 
learned from 

2 d2r 2d + 2 
m = 38 . 32 . 1000' ---

5 
independent r-instance examples with accuracy E and confidence 5. The run 
time of the learning algorithm is 0 (drmlogm). 

Remark. We did not attempt to optimize the constants. 

2. An Improved Algorithm for Learning Rectangles from 
M ultiple Instances 

2.1. Basic Idea 

The main idea to calculate a good approximation C of a target rectangle 
C is to calculate estimates for3i (t) = D{x : x E C and Xi > t} \vhich 
are the probabilities that a random instance is inside the target rectangle 
and its i-th coordinate is greater than t. Another important quantity is 
p = D{x : x rt C}, the probability to draw a random instance outside of 
the target rectangle. l\ote that q = pr is the probability to draw a negative 
r-instance example. The following lemmas show that a good approximation 
C of C can be calculated from sufficiently accurate estimates6i (t) and q of 
,3;(t) and q, respectively. 

LEMMA 2.1 If Iq - ql ::; ~ and q < lE then C = Rd is an E-accurate 

approximation ofC. Otherwise, if Iq - ql ::; ~ and q 2:: t then 1 ::; ~ ::; ~. 

Proof. If C = Rd then the hypothesis classifies all examples as positive. 
Thus, the probability of error is q ::; q + Iq - ql < E if Iq - ql ::; ~ and q < ~E. 
If q" > ~E then q> .s. and 1£ - 11 = 1 q-q 1 < 1. 0 -4 -2- q q-2 
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LEMMA 2.2 If q 2: ~, c ~ C, and D{x : C(x) =f= C(x)} < 3":q then 

Dr{(Xl,' .. ,xr ): c(r)(Xl,' .. ,xr) =f= C(r)(Xl, ... ,xr )} < E. 

Proof. Since C ~ C 

Dr 
{ (x 1: ... , x r ) : C (x 1, ... , x r) =f= C (x 1, ... , Xr )} 

= (1- D{C}Y - (1- D{C}Y 
r-l 

= (D{C} - D{C}) 2:)1 - D{C})k(l- D{C}y-k- 1 

k=l 

Ep ( Ep )r-l E ( l)r-l :;- p+- :;- 1+- :;E. 
3q 3rq 3 r 

LEMMA 2.3 If Iq - ql :; ~, q 2: 1-, and for all i = 1, ... , d and all t E R, 
, 'd ' 

i,8i(t) - ;3i(t) I :; 12":rq' then C = TIi=dO, bi], 

is an E-accurate approximation of C. 

Proof. Let C = (b 1 •...• bd). Then8i (bi) = ° and /3 i (bi) < ~ < "id
l/r 

, , 12arq - S rq 

bv Lemma 2.1. Thus hi < b;. Furthermore 3 i (b i ) < "sqd
l/

: + l')cdP < 3d"P " - ' . ; - rq _ rq - rq 

since ,8i(') is continuous from the right. Hence C ~ C and D{C\C} :; 
"£.1=1 8;(b;) :; 3":q' and Lemma 2.2 gives the claim. 

2.2. Calculating an Estimate for ,8i(t) 

To calculate an accurate estimate of,3i(t) we introduce the quantities Qi(t) = 
D{x : Xi > t}, the probability of drawing a random instance whose i-th 
coordinate is greater than t, and ~fi(t) = D{x : Xi > t I x rJ. C}, the 
conditional probability of dra\ving a random instance whose i-th coordinate 
is greater than t given that the random instance is not inside of the target 
rectangle. These quantities can be easily estimated from a random sample 
5 of multiple instance examples. Furthermore /3i(t) = Qi(i) - p. ~(i(t) which 
yields the estimate 

(1) 
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with 

q: 

p: 

"Yi(t) : 
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number of instances x in S with Xi > t 
total number of instances in S 

number of negative examples in S 
total number of examples in S 

ij1/r , 

number of negative instances x in S with Xi > t 
total number of negative instances in S 

(2) 

(3) 

(4) 

(5) 

The following shows that this gives a sufficiently accurate estimate for Pi (t) 
if the random sample S is big enough. 

LEMMA 2.4 If Iq - ij! :s: 3~d' ij ;:::: 1, and for all i = 1, ... , d and all t E R, 

lai(t) - Oci(t)1 :s: 3~:rq and lii(t) - "Yi(t) I :s: 36
t:rq' then L8i (t) - ,3i(t)1 :s: 12

t:rq' 
, I 'I' I (')1/rl' (')l/r Proof. We have Ip - pi = P 1 - ~ == P 1 - ~ . If q ;:::: q then ~ :s: 

exp (q~q) :s: 1 + 36~rq since d;q :s: 1. If ij < q then or/r ;:::: exp O~ q~q) ;:::: 

1 - 36drq since d;q :s: 1. Thus Ip - pi :s: 36drq· Then L8i (t) - j3i(t)1 < 
lai(t) - Oci(t)1 + Irfi(t) - P1i(t)1 + Ip~fi(t) - P"Yi(t) I :s: 12drq· 

LEMMA 2.5 ({VAPNIK and CHERVO;--';E;--';KIS, 1971}) Let P be an arbitrary 
probability distribution on Rand f(t) = P{x : x > t}. Furthermore define 
the random variable im(t) = #{l<i<m:x,>t.(X! ..... xm) drawn from pm. Then 

m 

for all m ;:::: ~i log t the probability that If(t) - i(t)1 > E is at most J. 

Proof. By art adaption of [VAP;--';IK and CHERVONENKIS, 1971]. 

LEMMA 2.6 If the size of the sample S satisfies m := ISI ;:::: 382 
• 32 . 

d
t

2

2r log 2dt2 and ij ;:::: 1 then the estimates ij, Oi(t), and 1i(t) satisfy the 
conditions given in Lemma 2.4. 

Proof. We use Lemma 2.5. Since ij is estimated from m independently 
drawn examples, it follows that Iq - ijl :s: 3~d with probability 1 2d~2' 
Since Qi(t) is estimated from rm independently drawn instances \ve get 

lai(t) - Qi(t)1 :s: 36
t
dr :s: 36

t
:rq with probability 1 - 2d~2 for eachi = 1, ... , d 

and all t E R. Since "Yi(t) is estimated from the negative instances we first 
lower bound their number. The probability that from m examples less than 
m (q - 3(8) are negative is at most 2d~2' Thus with high probability there 
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are rmq (1- 119) negative instances and lii(t) - /i(t)l::; 3;srffii::; 36€:rq 
with probability 1 - 2d~2 for eachi = 1, ... , d and all t E R. Hence with 
probability 0 all estimates are sufficiently accurate. 

2.3. Computational Issues, Proof of r;'heorem 1.6 

With all the preceding \york the algorithm for calcu 'iting a good hypothesis 
C = nf=l [0, b;] can now be described quite easily. 

From a sample of size m, ij and p can be calculated by (3) and (4) in 
time O(m). If ij < ~€ the algorithm outputs C := Rd. Otherwise it proceeds 
as follows. 

Since the values of Cti(t) and Cti(t'), t < t', differ only if there is an 
instance x in the sample with t < Xi ::; t' the values of Cti(t) (see (2)) can be 
calculated incrementally after sorting all instances according to their i-th 
coordinates. This takes time O(rm log(rm)). The values of ii(t) can be 
calculated analogously from (.s). 

Finally, bi can be calculated by considering the i-th coordinates of 
all instances in ascending order. Then bz is given by the first coordinate 
Xz which satisfies ,:3i (Xi) ::; 8~~q with 13i(') given by (1). This takes time 
O(rm). 

Proof of Theorem 1.6 Obviously the run time of the algorithm is 
bounded by O(drmlog(rm)) = O(drmlogm). Furthermore, Lemmas 2,1, 
2.3. 2.4. and 2.6 show that the calculated hypothesis is E-accurate with 
probability 1 - o. 

3. Conclusion and Ongoing Research 

In this paper \\'e presented an approach to solve the multiple instance learn­
ing problem for axis-parallel rectangles. Along these lines similar multi­
ple instance learning problems can be attacked. A particular interesting 
problem is learning decision trees from multiple instances. Since in general 
learning decision trees even from single instances is hard, one has to restrict 
oneself to situations where learning from single instances is possible. It can 
be shown that in these situations also learning from multiple instances is 
possible. 
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