
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 42, NO. J, PP. J35-146 (1998)

THE ISM: A FORMAL TOOL FOR MODELLING AND
VERIFICATION

Janine MAGNIER, IVIireille LARNAC and Vincent CHAPURLAT

LGI2P
EIvIA/EERIE

Pare Scientifique Georges Besse
30000 Nimes. France

email: {magnier, larnac. chapurla }@eerieJr
Phone: +33046638 7020 - Fax: +33046638 7074

Received: December 10, 1997

Abstract

This paper addresses the issue of modelling and analysis of systems. The necessity of
carrying out verification and/or validation tasks is discussed, the factors which influence
the choice of a model are shown. and the differences between simulation tools or formal
methods is explained. Within the framework of discrete time modelling of systems, a
method for formally analysing the behaviour of a system described by a Finite State
Machine permits to prove properties: the method is based on the translation into a formal
system which has got a temporal logic interpretation, and the analysis of the sensitivity
of the temporal evolution of the system with respect to some events involves the use of
the Temporal Boolean Difference. Furthermore. in order to improve the expressiveness
power of the model, an extell5ion of the Finite State :"lachine model. called Interpreted
Sequential :Vlachine (lS:\1) supports (he of complex data. The verification
process has been adapted to t his model.

Keywords: discrete time state
poral Boolean Difference. =\lachinE-:.

1. Introduction

temporal logic, Tem-

.:vlanaging the complexity of systems requires to be able to analyse their
behaviour and evolution. Obviously, the method to be used for fulfilling this
task depends on the existence of the system or if it is under development.
In the first case, it can be possible to run real tests on the system itself.
But in general, should the system be achieved or not, the only possibilities
to better understand it, consist in establishing a model and then to perform
some analysis. The necessity of verification and validation, as well as the
criteria for the choice of a representation model, on the modelling point of
view and abstraction level, and of the verification or validation methods are
discussed in the first part of this paper. The formal verification method
defined for the Finite State Machine model is then described: it is based on
the translation of the behaviour of the model into a tem porallogic formalism,

136 J, MAGNIER et al,

and the proof of properties of the system is proven by involving formal tools,
and especially the Temporal Boolean Difference. The third part presents
the application of this modelling and verification method to the Interpreted
Sequential Machine, which constitutes an extension of the FSlvI model by
taking complex data into account.

2. Models, Verification and Validation

Due to the increasing complexity of artificial systems, should they be in
dustrial, environmental, integrated circuits, and so on, it is now \\'ell-known
that it is necessary, in order to red uce design or exploitation costs and risks,
to detect design errors early or to understand how dysfunction can occur.
Let us first remind with the definitions of the two main terms used \\'hen
mentioning analysis domain: verification and validation. Considering the
ISO-8402 norm which defines the quality vocabulary, uerification is the con
firmation by examination and provision of objective euidence that specified
requirements have been fulfilled. since validation is the confirmation by exam
ination and provision of objectice aidence that the particular requirements
for a specific intended use are fulfilled; objective evidence is the information
!Ehich can be proved true, based on facts obtained through obsercation, mea
surements. test or other means, In other words. verification answers the
question 'does the system really implement what it has been designed for:'.
and validation must evaluate 'is the system the one the user expected';'. It
follows that \\'ithin design and development phases, validation concerns the
process of examining a product to determine its conformity \\'ith user needs,
and then multiple validations may be carried out if there are different in
tended uses. In what foIlO\\'s. the term 'verification' will refer to the process
of performing analysis, should the goal be verification or \'alidation.

In order to understand and analyse the behaviour of a real system.
it is often necessary to use a representation model so that some verifica
tion is performed. However. if the system is complex. it can be impossible
for a human user to exactly and completely describe it into any formalism.
,\loreove1', it happens that a black-box approach for modelling is sufficient.
and that only an input/output relationship is suitable for the analysis of
accurate properties of the real system. In other words, there exists no gen
eral rules for determining what a 'good' modelling of a real system is: this
depends first on the possibility to represent some of its aspects into detailed
models or through global approaches, and second on the kind of analysis
one intends to perform.

A global approach for modelling a complex system consists in describ
ing the outputs which are obtained when inputs are applied, \vithout ex
pressing the transition function between inputs and outputs, and \vithout
giving the inner structure of the system (the knowledge of which can be in-

THE ISM: A FORMAL TOOL 137

complete or even totally unknown). The class of models thus obtained, like
for instance Neural Networks, is usually qualified as 'adaptative' or 'auto
organising', since the inner parameters of the model auto-evaluate through
an iterative learning phase.

The verification of a description of a system based on such models most
of the time consists in applying new input sequences and verifying that the
produced outputs are those which \vere expected. This kind of verification
is thus based on simulation.

An internal model of a system is based on the description of one or
several points of view (structural, behavioural, data flows, geographical,
etc.) of the real system into a given formalism. Nevertheless, whatever
model is chosen, the description will ahvays be oriented towards the internal
aspects of the model.

As far as the model is based on a formal system and is associated a
clear semantics, it must be possible to carry out some verification. Tw'o
methods can be envisaged: simulation or formal verification.

Simulation is the most widely spread method: it consists in applying
values on the inputs, executing the model and examining the values of the
outputs. The key point here is that the verification method is not simulation
itself, but consists in the analysis and the interpretation of the results of the
simulation. These tasks are usually carried out manually (i.e. the user looks
at the simulation results and compares them with what he expected), but
can also be based on some formal methods and tools.

Formal verification gathers all the methods which are not based on
execution of the model. but on an expression of the model thanks to a
formal system and on the bringing into play of formal reasoning methods.
This can be a means for analysing the behaviour of the system, but in
addition to that. these methods may provide some tools to extract some
inherent properties which are contained in the system but which do not
explicitly appear in its description.

Finally, simulation is very useful if the user wants to carry out a partial
verification for a fe\\" particular cases. The main problem is to generate (if
possible) the accurate input vectors which correspond to the property of the
system one intends to test. Furthermore. classical simulation is not really
applicable when data (inputs) vary on an interval with an infinite number
of values. On the other hand, a major advantage of this approach is that
several industrial, efficient and user-friendly tools exist on the market for
simulating any kind of system.

The purpose of the work presented in the following is to show what
and how to formally verify modelling approach based on Finite State Model.
The first step concerns the classical Finite State Machine model: then the
method has been extended to the Interpreted Sequential j\Iachine \vhose
goal is to overcome the main expressiveness limitations of the FSM.

138 J. M.4GNIER et al.

3. Verification of the Finite State Machine Model

DEFINITION 1 The Finite State Machine (FSM) model is classically defined
by the 5-tuple (HARTMANIS - STEARNS, 1966; KOHAVI, 1978):

j1;1 =< 5,1,0,5, A>

where: 5 is a finite, non empty set of states
1 is a finite, non empty set of inputs
o is a finite set of outputs
5 is the transition (next state) function:
A is the transition output function:

5:1x5-+5
A,: 1 x 5 -+ 0

We denote by #5, #1 and #0 the cardinalities of 5, 1 and 0 respectively.
We consider only deterministic machines, which obey the following rules:

- each state has one and only one following state for each relevant input
no two distinct inputs can be applied simultaneously
no two distinct outputs canbe output simultaneously

Also, we consider machines which are corn pletely specified. This means
that for all states, the next state and output are specified for all inputs. It
is possible to study machines which are incompletely specified within the
framework of our modeL by defining a new type of variable for representing
the unspecified inputs or outputs. HO\vever, we concentrate on completely
specified machines in this article.

Kcpression in Temporal Logic: \Ve define the foJlmving: Three sets S. X
and Z each representing propositions of the same type.

- S is the set of state type propositions:

Si E S, \j Si E 5, i 0, .. " #5 - 1. Si is TReE when the state
of I\l is Si.

X is the set of input type propositions:

Xj E X. \j ij E 1. j = O , ;1 - 1. Xj IS TRCE when the
present input of j\,l is ij.

Z is the set of output type propositions:

Zk E Z, \j Ok E 0, k = 0, ... , #0 - 1. Zk IS TReE when the
present output of ,H is Ok.

These definitions allow us to describe the temporal evolution of .vl (by
expressing the behaviour of the transitions of jl/!) into the following notation
(based on the DUX temporal logic (GABBAY et aL 1980: :\1.-\':\:\A P:\CELI.

1982)), called Elementary Valid Formula (EVF):

THE ISM: A FORMAL TOOL 139

Let us suppose that we have <5 (si,ij) = Sk and A (Si, i j) = 0/; it follows

EVF ::= 0 (Si 1\ Xj ::::> OSk 1\ zd

whose interpretation is the following: 'it is always true (0 operator) that if
Si is the current state (and therefore Si is true) andiJ is the current input
(Xj is true), then the next state (0 operator) will be Sk (Sk will be true),
and the current output is 0/ (z/ becomes true),.

It follows that the set of all the EVF's (each of which expresses the
existence of a transition of the FSM) provides an equivalent representation of
the behaviour of the FSIvl model. This statement is true if we also take into
account the set of formulae which represent the determinism constraints.
The first set contains the state determinism concept, which says that at a
given time step, there is one and only one current state. This determinism
formula can be written, using the DUX formalism:

DFl ::= O[Si ::::> ,Sj] V j i= i, ij E {O, ... , #S - l}.

Similarly, DF2 and DF3 express that at a given time step, the machine
cannot have t\VO different inputs, and cannot produce two different outputs:

DF2 ::= o [Xi ::::> ,X)] V j i= i, ij E {O, ... , #X - l},

DF3 ::= O[Zi ::::> 'Zj] V j i= i, i,j E {O, ... , #Z - l}.

'Within the framework of a verification process, it is often necessary to con
sider time intervals. This leads to the definition of a state, input and output
sequences, which are noted, respectively:

n 0 0 2 1\ on-l Si ::= Sil (\ Si2 1\ Si3 ... 1\ Sin,

Xn ,,- -v. ;\ OX' 1\ 02-v 1\ 1\ ("n-1 X ' j ,,- -"-)1)2 -"-)3· • . J jn

n . 1\ 0 1\ 0 2 1\ ;\ on-l Zk .:= Zkl Zk2 Zk3···· Zkn·

Then, in order to provide the user with a more global view of the system
evolution. first the concept of Temporal Event (Et) which represents the
possible effects of the machine functioning has been defined, and then all
the conditions which lead to obtaining a given temporal event are gathered
into one single formula, called Unified Valid Formula (UVF). A temporal
event will be a future state (Et= OSi), a future state within n time steps
(Et= onSi), a state sequence (Et= si), a present output (Et= Zk), a n
future output (Et= onZk), or an output sequence (Et= zk)' The Unified
Valid Formula associated with a temporal event Et is thus:

UVF(Et) ::= v
(p,q)/SpI\X~::::> Et.

140 J. MAGNIER et al.

It appears that the calculation of an UVF only consists in manipulating the
set of EVF's.

Verification of properties: Let us come back to the goal of this work;
it addresses the formal verification of properties of systems which are rep
resented thanks to a FS:yr model. The first question to answer is: 'what
kind of properties can be proven?'. To start with, the structure of the FSM
can be exploited, and properties of some states can be of great interest. For
instance, it is worth knowing if two states are equivalent, or if a state is a
source or a sink. More sophisticated properties consist in establishing the
conditions (on input sequences) to make a state being a 'functional' sink,
even though it is not a structural one, or to generate input sequences to
resynchronise the machine into a given state.

In most cases, the state evolution of the machine is not available, and
the only means for the user to get some information on the machine evolution
is to examine the outputs. So the analysis process of output sequences is
very important, and a tool for generating input sequences in order to obtain
outputs, or to distinguish internal states must be provided.

Last, it seems very important to be able to formally establish the
influence of a current factor (input or state) on the future evolution. This
relates to the 'sensitivity' of the future with respect to a present situation
or decision.

The verification method is based on two approaches:

- in some cases (for some properties). it is sufficient to analyse the
EVF's and UVF's (either search if Cl gi\'en formula exists, or what
its form is). For example, if sp is a sink state. it means that all the
transitions which leave sp go back to this state. It follows that all
the EVF's which contain sp in their left part must be of the form:
EVF::= O(sp /\ Xj :::> OSp 1\ zL), for all Xj. Similarly. if sp is a source
state. i~ means that if there exist some transitions whose destination
is sp, they come from sp. The consequence is that either CVF(Osp)
is empty, or that it has the following form: CVF(Osp) = V (sp 1\ Xj).

- Unfortunately, this approach of verification based on the study of
EVF's and UVF's is not sufficient for analysing the influence of the
present on the future. This is the reason why a formal tool for
analysing the sensitivity has been defined: the Temporal Boolean Dif
ference.

The Temporal Boolean DzjJerence: The Temporal Boolean Difference
(TBD) is the extension of the classical Boolean Difference (KOHAVI. 1978)
defined on propositionallogic. to temporal logic. especially the DCX system.

THE ISM: A FORM.4.L TOOL 141

The formal definition of TBD of J (Xl, ... , xn) with respect to a variable Xi

is the following:

The important point is that there is a strong analogy with the Boolean
Difference of Boolean functions, but the fundamental differences are that
the formulae are expressed in Temporal Logic, and that the variables which
are manipulated are typed (states, inputs, outputs) and non independent
(because of the determinism properties).

For the verification of properties of a FSl'vl model, the TBD is applied
on an UVF for obtaining a Temporal Event which concerns future states
or outputs (cL the definition of Temporal Event), with respect either to
a current state or to an input. The formula is called the Derived Valid
Formula (DVF) and is the following:

D,rF(E) 8UVF(Et) U·'TF (E) "" U'VF (E) v t, q = 8q = v tlq t7 tl:;:q .

The result of the calculation of DVF(Et, q) can be:

False. This means that UVF(Et) is independent of q; in other words,
the fact that q changes value has no influence on the fact that Et will
occur or not.

- not False. In this case, we obtain a Temporal Logic formula which
expresses the sensitivity of UVF(Et) to changes in q, i.e. the conditions
for UVF(Et) to pass from True to False (or conversely) when q changes
value.

The applications of TBD are various. It permits to generate input
sequences for resynchronising the machine into a given 'initial' state, or for
distinguishing the inner states (\vhich are unknown) through the generation
of distinct output sequences. Moreover, a very wide field of application
is the study of the impact of a decision (or a current event) on the future
evolution of the system. Further, even though the user has got no possibility
to change the present, he knows all the conditions which, when made True,

. make the system evolve into a given way. It is then up to him to choose his
strategy for modifying some parameters and then determine what he wants
to get into the future.

In conclusion, \ve have defined a formal method for providing the user
with an equivalent symbolic representation of the behaviour of the Finite
State ::vlachine modeL and then with a tool which supports proof of proper
ties and formal analysis. In order to do this, it has been necessary to define
the concept of Temporal Boolean Difference for evaluating the sensitivity of
the evolution of a system with respect to some variable change. The details

142 J. IvfAGNIER et al.

of the modelling and verification approach, as well as the demonstrations of
all the theorems can be found in (MAGNIER, 1990).

The limitations of this approach are linked to the weak expressiveness
of the FSM model, which only handles Boolean data, and which needs to
express any data influencing the system through inputs or states. It follows
that the number of states or transitions tends to increase exponentially as
soon as new data have to be taken into account. This is the reason why
we have defined an extension of the FSM, called the Interpreted Sequential
Machine model.

4. Extension to the Interpreted Sequential Machine

The Interpreted Sequential Machine (ISM) model is a behavioural model
which extends the expressiveness power of the FSM model by associating
\vith a Control Part (the core of which is a sequential machine), a Data Part
in which data and operations are represented, The underlying concepts of
the ISM were adapted from the Extended Finite State Machine (EFSM)
defined by CHENG - KRISHi\'AKU",fAR (1993) for functional testing purpose,

Definition of the [Sft! model: The main characteristics of this model
are the following:

- the core of the model is a state system (extension of state machine)
- the inputs and outputs can be of any type (Boolean, integer, reaL

data, event. etc.)
- the data which constitute the environment of the system and which

infl uence the functioning of the seq uential part of the system are rep
resented separately

As any sequential model, the state diagram, called Control Graph, is
composed of an alternation of states and transitions. Informally, a transition
between two states is activated if first an event appears on the inputs, and
then if some conditions on the environment (data) are fulfilled; then the
effects of this transition firing appear on the outputs and on the data of the
environment which change value,

Structurally, the IS111 model owns inputs and outputs, and is made up
of two parts (Fig. 1):

the Control Part (CP) contains the Control Graph and some necessary
interpreters

- the Data Part (DP) is made up of the set of data which represent the
environment of the system, and of the operations on these data

THE ISM: .4 FORMAL TOOL 143

.--__ --.Control Part

. Data Part

Fig. 1. Structure of the ISM model

It is possible to partition the set I of inputs into two disjoint sets: the
set le of the Control Part inputs and the set ID of the Data Part inputs.
Similarly, the set 0 of outputs is split up into Control Part outputs (Oe)
and Data Part outputs (OD).

The formal model of the ISM is thus the following:
ISM =< I, 0, CP, DP > with:

- CP=< Ie,CII,E,F,CG,U,COI,Z,Oe > where:

le is the set of the Control Part inputs
- E is the set of propositional input variables of the Control Graph
- CII is the Control Input Interpreter. Its role is to evaluate some

conditions on the Control Part inputs of le, and therefore to gi\-e
some propositional (Boolean) values to the elements of E
F is the set of propositional enabling variables
CC is the Control Graph: CG =< S,E,F,Z,U,15,A,;J > where:

- S is the set of propositional symbolic state variables
6 is the propositional transition function (next state): is
SxExF-+S
A is the propositional output function: A : S x E x F -+ Z
/3 is the propositional updating function: .e : S x E x F -+ U

A transition t of CG is defined as follows: t : (s;, ej, fk) -+
(SI, Zm. lirJ \vhere:

(S;,SI) ES2, ejEE, fkEF, zmEZ, linEU
SIE15(Si,ej,fk), ZmEA(Si,ej,fd. lin Ei3(Si,ej,fk)

U is the set of propositional updating variables (assigned when
.8 is evaluated)

- Z is the set of propositional output variables of the Control Graph
(assigned \,,'hen A is evaluated)
CO I is the Control Output Interpreter. Its role is to give values
to the Control Part outputs from the values of the propositional

144 J. MAGNIER et al.

variables of the variables of Z.
- Oc is the set of the Control Part 'outputs

DP =< ID, D, P, EF I, U F I, F, D, OD > where:
ID is the set of the Data Part in pu ts

- D is the set of internal variables
- P is the set of parameters (fixed characteristics of the system)

EF I is the Enabling Function Interpreter. Its role is to evaluate
some conditions on the Data Part inputs, on the internal variables
and on the parameters and therefore to give some propositional
(Boolean) values to the elements of F

- F is the set of propositional enabling variables
D is the set of propositional updating variables
U F I is the Updating Function Interpreter. It contains all the
functions that are used for calculating the new values of the Data
Part outputs and of the internal variables of D. These updating
functions are activated by the variables of D
OD is the set of the Data Part outputs

The behaviour of an 15:0.1 model is described by the dvnamic evolution
both of the Control Graph, and of the internal vari"ables of D ..

The behaviour of CG is expressed by the sequence of fired transitions.
The interpretation of a transition t (Fig. 2), where t : (Si, ej, fd -+

(Si. Zm. Un) is the following: if Si is true (Si denotes the current state of the
Control Graph), then if ej is true (the value of the inputs of CP verifies the
conditions which make ej be true), then, if fk is true (the value of the inputs
of D P, of the internal variables in D and of the parameters of P verifies the
conditions which make fk be true), then:

at the same time, Zm and Un become true until the next transition
firing on CG.

the functions associated with Zm in CO I update the Control Part
outputs
the functions associated with Un in 'C F I update both the internal
variables and the Data Part outputs

the next state will be Si (Si will be true, while Si will become false).

Fig. 2. A transition of CC

Verification: Given an IS?\1 model of a real system, it is possible to
carry out formal verification by proof of properties. The process described
above for the verification of FS:L\I models has been adapted and extended to

THE ISM: A FORMAL TOOL 145

the ISM (LARNAC et ai, 1997). At present, only the first step of verifying
the behaviour of the Control Graph has been fulfilled. Of course, numbers
of properties which were verified on the FSM (e.g. independence and ex
clusivity of the inputs) are no longer verified, and it has been necessary to
state new hypotheses for expressing a realistic view of determinism within
this model. Roughly speaking, it consists in no longer considering the only
inputs, but the couples constituted by the propositional input variables and
the propositional enabling variables (VANDERMEULEN, 1996). Furthermore,
the properties which are verified on the Control Graph appear to be only
sufficient at the ISM level.

5. Conclusion and Perspectives

A formal method for the verification by proof of properties of discrete finite
state systems has been defined, first on the Finite State Machine model, and
then on an extension called Interpreted Sequential ~vlachine. The advantages
of this approach concern a better understanding of the temporal behaviour
and evolution of systems, by highlighting the influence of the present on
the future. The result here is more complete than with simulation, since
it is possible to obtain all the conditions which make a future event being
sensitive to the present or to the past.

Finally, in order to take into account the complexity of systems in
terms of the data which interact and \\'hich must be manipulated, the ISM
model has been defined, and the verification process has been extended. It is
no\\' necessary. first to take into account the non independence of data states
from one time step to another, and second to widen the model concepts to
a more precise notion of time. Indeed, for the moment, time is only viewed
as a succession of steps. For some real applications. it may be necessary
to insert some 'real time' features, as for example duration on transition
firings. or delays in data updatings. In parallel. the interconnection and
decomposition mechanisms must be described, and the verification process
studied.

References

[lJ CHE::-lG. K. T. KRISH::-lAKU?>lAR, A. S. (1993); Automatic Functional Test Gen-
eration using the Extended Finite State \clachine ;-"'Iodel; 30th A CM/IEEE Design
Automation Conference.

[2J GABBAY, D. P::-lUELI, A. - SHELAH, S. - STAY!. J. (1980); On the temporal analysis
of fairness; 7th A CM Symposium on Principles of Programming Languages.

[3J HARD1.-\i'ls. J. STEAR::-lS, R. E. (1966); Algebraic Structure Theory of Sequential
Machines; Prentice Hall, Englewood Cliffs, N.J.

[4J KOHAV!. Z. (1978); Switching and Finite Automata Theory; Tata :vIcGraw Hill, Com
puter Science Series.

146 1. MllGNIER et al.

[5] LARNAC, M. - CHAPURLAT, V. - MAGNIER, J. - CHENOT, B. (1997); Formal Rep
resentation and Proof of the Interpreted Seq!lential Machine; Eurocast'97, LNCS,
Springer Verlag, to appear.

[6] MAGNIER, J. (1990); Representation symbolique et verification formelle de machines
sequentielles, These d'Etat, University of Montpellier 11, France.

[7] MANNA, Z. - PNUELI, A. (1982); How to cook a temporal proof system for your
pet language; report No. STAN-CS-82-954, Depart. of Computer Science, Stanford
University.

[8] VANDERMEULEN, E. (1996); La jVlachine Sequentielle lnterpretee: un modele a etats
pour la representation discrete et la verification de systemes; PhD Thesis, University
of Montpellier II.

