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Abstract 

A knowledge base system is a database system with logical, temporal and topological 
structures together with operations on these structures. vVe provide the necessary math­
ematical concepts for modeling such a system. These are parametrized hierarchical rela­
tions, logic functions, hierarchies of variables with their hierarchical control operators, and 
neighbor!1oodjsimilarity structures. These concepts are then applied to define a model 
of a knowledge module. By composition of knO\vledge modules we obtain the knowledge 
system model. 
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Introd uction 

In our model a knowledge base system KBS consists of the follmving com­
ponents: 

S a set of primitive objects, 
5(S) a hierarchy of relations S, all parametrized (referenced) by indices of 

hierarchically structured index sets, 
F(S) an explicitly given part S(S), the 'facts', 
D(S) = def 5(S) \F(S) the implicitly given part of 5(S), obtainable by com­

posite applications of functions of R, a set of (inference, deduction) 
'rules', the application of which is in general subject to constraints. 
conditions. grammatical rules, collected in a set, 

r (R) the grammar of R. The representation of KB5 is facilitated by use of 
variables on sets of components on all hierarchical levels. Assignments 
'to variables and reciprocal, reassignments to substitutable components 
are performed by 

C a hierarchy of control functions and their reciprocals, \vhereby a control 
function val : P X {var x} -+ X is associated with each variable var x, 
and where X = {x[P] I pEP} is the variability domain ('type') of 
var x and P is a set of control parameters p. An assignment to var x is 
then expressed by val (p, var x) = x[P], usually written varx: (p)x[P]. 
Domains of variables can contain variables of lower hierarchical level 
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and variables can defined on sets of lower level control parameters of 
variables [A1BRECHT 1995, 1996, 1997]. 
To operate on the components of KBS, a set of operations 

OP has to be given (e.g. selectors like subset forming, projections, cuts, 
selection of su bstructures by properties, constructors like set forming, 
set prod ucts, set union, set intersection, concatenation of relations, 
and transformations of objects and indices, counting cardinalities [A1-
BRECHT 1995, 1996, 1997]. Again a grammar 

f(OP) for the application of operations of OP may be given. 
To express structural properties of KBS, \Ye need 

P a set of predicates, e.g. generalized quantors, 'is part of' property, etc. 
Given a partially or linearly ordered logical or physical model time 

(T, <) [A1BRECHT 1995, 1996], all components of KBS can be indexed by 
time points t E T and processes (KBSt)tE[iCT \Yith varying states 
KBS[t] at time points t E U ~ T can be considered. Temporal prop­
erties can be adjoined to P. 

Finally, on each hierarchicalleve/' sets of objects, rules and parameters 
of variables can be topologized, mostly by introducing a uniform topological 
structure. Topological properties can be adjoined to P, for example general 
distance or similarity measures [A1BRECHT, 1997]. In engineering science 
topological structures are used under the name 'fuzzy'. 

Knowledge Representation 

Knowledge we have in mind in form of memorized perceptions, concepts, be­
havioral processes, intellectual processes. is physically represented by struc­
tured physical objects in space-time dimension \Yhich we are able to 'in­
terpret'. Mathematically, these objects are abstracted and represented by 
normed symbols in mathematical space, subject to mathematical operations 
(aggregations, partitionings, su bstit u tions, combinations, referencing, etc.). 
The time dimension is mapped onto orderings in space. \~'e use parametrized 
sets (families. relations) and operations on these for the mathematical de­
scription. 

The Hierarchy of Parametrized Relations 

Let there be given a set 5, 5 =f. 0, of elements s. considered primitive with 
respect to the hierarchy. 5 is isomorphic with the family (s) sES (canonical 
indexing). 

For a given index set /(1), /(l) =f. 0, let there be 5{l) ~ 5 U UJC1(1) 5 J , 

5(1) =f. 0. An element (Si)iEJ of 5{l) is a family or relation on level 1 \\'ith 
I-dimensional index set J, with ind J -+ 5, i -+ Sri], Si = def (i, S[i]). 
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For a given index set 1(2), 1(2) i= 0, let there be 5(2) ~ 5(1) U UJCI(2) x 

x (5(1)) J, 5(2) i= 0. An element of 5(2)\5(1) i= 0 is a family of fami­
lies (( Si(2) i(1)) (i(2) ,i(l) )EJ(1) [i(2)]) i(2) EJ(2) , or a relation on level 2 'with two 1-

dimensional index sets J(l) ~ 1(1), J(2) ~ 1(2), whereby we use the nota­
tional conventions J(1)[i(2)] = def {i(2)} x J(l), J(2)[i(1)] = defJ(1) x {i(2)}, 

J(2,1) = {(i(2), i(1)) I i(2) E J(2) 1\ i(1) E J(1)[i(2)]} = {(i(2), i(l)) I i(1) E 

J(1) 1\ i(2) E J(2)[i(1)]} ~ 1(2) x 1(1). Then the position of the indices ex­
presses their membership in the hierarchy of index sets. 

Concatenation of the family of families yields 
K((si(2)i(1) )(i(2),i(1))EJ(1)[i(2)1)i(2)EJ(2) = (si(2)i(1) )(i(2),i(1))EJ(2,1), a family 

with 2-dimensional index set. 
On the other hand, (cut ({i(2)}) (Si(2),i(I))(i(2),i(1))EJ(2,1)));(2)EJ(2) = 

((Si(2)i(1))(i(2),i(1))EJ(I)[i(2)])i(2)EJ(2) , and for the transposed case, (cut ({i(1)}) 

(si(2)i(1) )U(2),i(1))EJ(2,1) ))i(1)O(1) = ((si(2)i(!))j(2),i(1))EJ(2)[i(1)j)i(I)EJ(1)' 

Applying induction with respect to n E N we have for given 5(n), 

1(n+1), 1(n+1) i= 0, 5(n+1) ~ 5(n) U UJcI(n+l) (5(n))J in general on hierarchi-

callevel n+ 1. An element of highest hi~rarchicallevel of 5(n+l) is then of the 
form ( ... ( (si( n+ I) ... i(1) L(n+ I) ... i(1) EJ( I) [i( n+ I) , ... i(2)]) i( n+ I) ... i(2) EJ(2) [i(n+ I) , ... i(3)]) ... 

. . . );(n+l) EJn+(I), or if concatenated (Si(n+l) ... i(1) ) i(n+l) ... i(1) EJ(n+I,.I) with 
J(n+1, ... 1) ~ J(n+1) x ... :; J(1). The structural complexity of the objects is 
mirrored in the structural complexity of the indices after concatenation. 

EXAMPLE 1 Construction of valuated objects, especially logics [see AL­
BRECHT, 1997]: We assume 5 = A. U y' is a partition, 1(1) = ({l. 2}, <), 
5(1) ~ A. x y' with elements (a, v), the indices suppressed, 1(2) a finite 

set, 5(2) ~ TIJCI(2) (5(1))J \\'ith elements (ai, Vi)iEJ, 1(3) = ({I, 2}, <). 

5(3) ~ 5(2) x V \~ith elements ((ai, Vi)iEJ, v), whereby v = YcardJ((L'[ilLEJ), 

Ycard J : v card J -7 V, which is in particular a logic function for V a lattice. 
In this example TI, x, ycard J are elements of OP, the applications of TI, x 
are restricted, the restrictions are elements of [(OP). 

Rules 

At logical time t let there be given a part D ~ F. A rule fER is then 
a surjective function f : D -7 VV with d r-+ U' = f(d). If the grammar 
[(OP) admits for F and w a concatenation, then at logical time t', t < 
t', D' = def K((F,w),£(C),C) (for concatenations I refer to [ALBRECHT, 
199.5]). If i(w) is the (composite) index of w, then w = def pr(i(w))D'. 
Rule applications can be composed. \Ve distinguish rule applications from 
operations op E OP. However, both can be combined, 
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EXAMPLE 2 (,formal languages'): I( = {1,2,3,4}, D = {(aikhEK , i E 
1/\1\ i E 1(a[i]3 = a3/\ 1\ k E K(a[ik] E A))}, A a given set, 'production rule' 
!(a3) = (b31 b32 ), K(pr( {il, i2, i4} )D, {(b31 , b32 )} = {(ail, ai2, b31 , b32 , ai4)} 
(concatenation with replacement, a3 ::= (b31 , b32 ), in context 1\ i E (a[il], 

a[i2],a[i4) EA)). 

EXA!\!PLE 3 Creasoning' inference rules): K = {l. 2, 3, 4}, V = {'t', '!'}, 
D = {((ak,vkhEK, v = Y4((V[k]hEK) 'v E V /\ (v[kJhEK E V4}, inference 
rule! : D -+ {((b1, WdIE{I,2}, W =W2((W[1])IE{I,2}) , wE V /\ (W[I])IE{I,2} E 
V2}, Y4, ?j;2 logic functions, such that ((ak' Vk)kEK, Y4((V[k]hEK) = 't'I'!,) 
f-7 ((b 1, WdIE{I,2j,li'2((W[I])IE{I,2}) = 't'I'I'). An example in usual notation 
is: 'if' ((a[I]/\ a[2]/\ a[3]) V a[4]) 'then' (b[l] V b[2]) 'else' -,(b[1] V b[2])' 

Utilisation of Variables 

We can represent a KBS by a hierarchy of variables and their control func­
tions/operators: Starting on 'top'. we consider var KBS = (var S, var S 
(varS), varF(varS), yarD (varF), varR (varF), varf (varR), varOP, varf 
(var OP), var P, var (T, <)). All variables var X range on given domains X 
parametrized by p[x] and have control functions val: p[x] -+ .X:- with control 
parameters P[x] E p[x]· 

The assignment steps in logical time are: 
var S := S f::. 0, selection of the primitive objects: var 1 := 1 f::. 0, selection 
of the primitive indices: 
var OP := OP. var f(\'ar OP) := f(OP). selection of admitted structors for 
5: 
var P := P. selection of structural predicates: for bottom up construction of 
the hierarchy F up to F(S): 
v,u F(O) : pO\\' 5\0. selection of \"ar F(O) := F(O): F(O) = 0: 
var S: N \'cH S:= .Y. for 71 0.1. 2.,. ,S - 1: 
\',H j{,,+I) : Po\\" [\0, selection of var [(n+l) := 1(,,+1): 

\'ar F(7, ,-I) : pow UJcvar /(n+i) (F(n))J\0. selection of var F(n+l) := F(n+I); 

\'ar F(n + 1) F(71) U F{71+I): 

varR(F(S)) := R(F(S)), varr(H(F(S))) := R(F(.Y)). selection of admitted 
rules. 

This rcsldts in var KBS := 1\:BS. \Ve suppressed the assignment pa­
rameters, Assignments to composite variables can be performed in partial 
:-;teps [see e.g. ALBRECHT 1997J. Analogously, assignments to time variables 
and topological structure variables can be made. 

The deduction steps in logical time are: 
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var f(var D) : R with f(R). Selection of f : var f := f, follows 
var D := D, varlV := f(D). Selection of an argument: vard: D, vard:= d, 
evaluation of var w := w = f(d). 

Decision on operation on (F, w) : var op(F, w) : OP with f(OP), 
var op(F, w) := op(F, w). 

So far we made the assumption, that 'someone' made the selection 
of all the control parameters P[x) involved, whereby the sets p[x) of control 
parameters are in hierarchical dependence. Parametrizing these sets by 
higher order parameters Q[x), we can define variables on the lower order 

parameter sets p[x) : var P[x) : {P[q.x) I P[q.x) E p[x) A q E Q[x)} and control 
functions val : Q[x) x {var P[x)} -7 p[x)' These higher order control functions 
can depend on the results of previous 100ver order assignments (,feedback') 
and on currently given external parameters ('goals') and are assumed to 
represent 'higher intelligence' for forthcoming decisions. The hierarchy of 
higher order control functions can be extended. More details are given in 
[ALBREcHT, 1997]. 

Binary Knowledge Modules 

As a particular but important case we consider knO\vledge represented by 
valuated binary relations. For example, if Y = f(x), (y, x) is a pair, if (y, .r) 
is a proposition ( object Y has property x), it can be val uated for exam pIe 
by v E V = {'t', 'f'} to give ((y, x), v). This includes of course composite 
objects (relations) y and composite properties (relations) x and arbitrary 
sets V with any structures. 

Deterministic Case with Discrete Topology 

Given a non-empty set Y of elements y named 'objects' and a non-empty set 
X of elements x named 'properties', bijective parametrizations ind : J H Y, 
ind': I H X, and a relation R = (Yj,Xi)(j.i)EU, [; <;;; J x I, with pr1U J, 
pr2U = I. As well we could have named X the set of objects and Y the set of 
properties. If V is a non-empty set and y : R -7 V is a valuation, then R can 
be represented by ~VJ = def(vji)(j,i)EU with Vji =defY((Yj. Xi)). We consider 
/\j E J(cut ({j}) Ai = (Vj;)iEI[JJ)' Ai E I(cut {i}) M = (Vji)jO[,]), which 

define IU), JU)' and we assume Aj,j' E J(j =j:. j':::::} (Vji)iEl[JJ =j:. (L'j1iLEI[JljL 

Ai,i' E l(i =j:. i':::::} (Vji)jEJ[iJ =j:. (Uji')jEJ["J)' We name ((Yj,X;),Vji)jiE[i a 
'knowledge module' 101. 

Let there be given TJ: V x V -7 B = ({'f. 'f'}, n, \vithTJ(diag V x 
V) = {'t'}. TJ(V x V\diag V x \l) = {'f'}. For card I( < card [T we 
consider ycard J{ E (Beard J{ -7 B). For j <;;; I and j <;;; J we define J[l] = 
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defnEiJ[i] = {j 1 j E J /\ J ~ IU]}' I[J] = defnjEjIU] = {i 1 i E 1/\ J ~ 
J(i]}, and forv[jij E V,,8 E B, Y((Vi)iEY'Ycardy"B) = def{Yj Ij E J[J]/\ 
YcardY((17(V[ij, V[jij))iEi) = ,B}, 

X((Vj)jEj, Ycardj,.6) = def {Xi 1 i E I[J] /\ Ycardj((ry(vU), V[jij))jEj) = ,B} . 

We have 
Y((V;)iEi' YcardY' 't') = <pcardy((Y(Vi, 't'))iEi) , 

Y(Vi, 't') = defY((v)iLE{i},ry(V[i]:V[jij) = 't') , 

X((Vj)jEj, Ycardj, 't') = <Pcardj((X(Vj, 't'))jEJ) , 

XCVj, 't') = defX((v)j)jE{j}, ry(vUj, V(ji)) = 't') , 

<P card j, <P card j the set functions corresponding to the boolean functions 
YcardY' Ycardj, respectively. Further, 

is a filter base for J -+ IUj) , 

/\i E I(Xi = def{X((vUji)jEj, ncardj, 't') 1 J E (pO\\' J[ij)\0}, 

is a filter base for J -+ J[iJ) . 

This expresses the 'inheritance' principle: the larger the set of common 
properties/objects, the smaller the set of objects/properties possessing these 
properties/objects. If /\j E J(lim Yj = {Yj}) and /\i E I(limXi = {Xi}). 
then we say (L'ji)iEI[J] and (Vji)jEJ[,] 'characterize' Yj and ~'i, respectively. 
Under this assumption, there may exist 'coarser' filter bases Y7 and Xi also 
converging to {Yj} and {.I'd. respectively [see e.g. ALBRECHT 1994]. It can 
be of practical importance to find such )-7 and Xi of maximal coarseness 
(minimal characterizations). For all IUt being characteriiations and for a 

given {Yj 1 j E J} we have 

= u n Y(VUij, 't') , 
jE] iEI'Uj 

and an analogue result for the transposed equation. Considering the dual 

is an ideal base for J -+ IUj) , 
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/l.i E I(Xi = def{X((vU]i)jEj, Ucardj, 't') I j E (powJ(i])\0}, 

is an ideal base for j -+ J[i]) , 

we have the dual to the inheritance principle: the larger the set of alternative 
properties/objects, the larger the set of objects/properties possessing these 
properties/ objects. 

'Queries' to the knowledge module KM are then formulated by appli­
cations of operations of OP. For example: 

1. given: 0 C K ~ U. (f'ji)jiEK, 0 C \I"Ui] ~ VT; find: cut ((Vji)jiEK)M, 

find card cut ((Vj;)jiEK)AI, find 

{ v j'i' I v j' i' E l\1I /I. VL'ji E cut (( Vji) jiEK) AI (V[j'i'] = V[ji])} . 

2. given: /I.(j,i) E K(\-i[jij ~ V"), YcardK, /3, find: /I.(j, i) E K /I. Vji E 
\-~i(R((Vji)jiEI{' YcardK, ,3), with 

R( (Vji) jiEK, ycard I{, 3) = def {Vji I (j, i) E 

K /I. Ycardj((7](V[jij, V[jij))jiEK)) =3}. 

3. given: (Vi)iEl' Ycard1' 3, find (Yj)jEJ' = defY"((v
'
)iE1, Ycard1, (3); given 

(Yj) j El': find (all) (Vi) iEl' Y card 1, ,3) such that 

(Yj ))0* = Y ((i\)iE1, Ycard l' .3) . 

4. For 0 C j C I[jl let be (Yj')j'El* = Y((V[jji)iEl,ncardf 3). This defines 
deduction rules, implicitly given by AI: 

\vith 

r(j) = I[j]\l r = U r(j), r(i) = {j IJ E r /I. i E ru)}· 
jO' 

The conclusion can be repeated for (,Ti, (L'j;)jEl*(i)):EI*. 

Deterministic Case with General Topologies 

\Ve assume that (V :S, uu , ne) is a complete atomic boolean lattice. Then 
the families (Xi, U[j]iLEI[jj define functions f[j] : I[jj -+ F. The set extensions 
of the fU] are homomorphisms, i.e. for I' ~ I" ~ IU] holds fU] (I') :s 
fU] (I"). Then a filter/ideal base I = {I[jk] I k E K} on pow I[j] maps 
onto a filter/ideal base V = {f[j](I[jk]) I k E K} on pow V Filter/ideal 
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bases can express neighbourhood/similarity relations between objects y and 
between properties x. To measure neighbourhood and similarity of values 
v t;: 1l we introduce a uniform topological structure on F by a filter base 
B = {D[q] Iq E Q} on pow (FxF) with l/xF E B, diag(1/x1/) <;:;; nqEQ D[q], 

and D~{ = D[q] and assume B is itself a complete lattice. Then for any pair 

Cv, v) E Il X V uniform, generalized, multivalued distances duCv, v) and 
dn(v, v) E B with du(iJ, v) C dn(v, v) can be introduced [see ALBRECHT, 

1997J. \Ve set ry(v, v) = dn(v, v) and have B (or any isomorphic complete 
lattice) as generalization of B = ft', 'J'}, the latter corresponding to B = 
{V x 1/, diag(\l x V)}. This makes it possible to measure the distance of any 
(V··) "E C" - pr(K) M from a uiven (V')"E T." bv (0["] - def n(V[··] V[' .])) "E To" Jl )1 H - • 0 Jl Jl H v , Jl - ./ J'" Jl Jl I\. 

and to valuate the Vji : (Vji, ,Oji)jiEK. We then can appLy a logic function 

ycardK E <!>cardK = (BcardK -+ B) for a valuation ((vj;,3 ji )jiEK, 'PcardK 

(C3[ji]) jiEK) and can formally proceed as in the boolean case before. 

Knowledge Modules with Variables 

If the knmvledge module contains variables, e.g. ((Yj, Xi), VarVji), they 
express indeterminacy in the sense that the domain ('type') of the variable 
is known but the value to be assigned is not yet determined. This case has 
to be distinguished from elements not appearing in the mod ule, e.g. index 
pairs (j', if) E (.J x I) \ U. 'Queries' with variables to a mod ule with variables 
in general result in 'answers' \vith variables. 

Composition of Knowledge Modules 

A knowledge module can be seen as an input/output system and hence 
modules can be composed to a knowledge base system by feeding (part of) 
the answer of one module as (part of a) query to the same or another module. 
This composition is analogue to the composition of functional modules in 
computer architecture. 

References 

[1J ALBRECHT, R. F. (1994): Some Basic Concepts of Objectoriented Databases. System 
Science, Vo!. 20/1, vVroclaw, pp. 17-30. 

[2J ALBRECHT. R. F. (1995): On the Structure of Discrete Systems. Lect. ;Yotes in 
Comp. Se., Vo!. 1030, Comp. Aided Systems Theory, Springer, pp. 3-18. 

[3J ALBRECHT, R. F. (1996): The Structure of Discrete Systems, Trends in Theoretical 
lnformatics, (eds. R.F. Albrecht, H. Herre). Osterreichische Computer Gesellschaft, 
pp. 127-144. 

[4J ALBRECHT. R. F. (1997): Systems with Topological Structures. submitted to 1nt. 
Conf. on Computing AnticipatTy Systems, CASYS97. Liege. 


