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Abstract 

This paper examines the underlying relationship between radial basis function artificial 
neural networks and a type of fuzzy controller. The major advantage of this relationship 
is that the methodology developed for training such networks can be used to develop 
'intelligent' fuzzy controlers and an application in the field of robotics is outlined. An 
approach to rule extraction is also described. 

Much of Zadeh's original work on fuzzy logic made use of the MAX/MIN form of 
the compositional rule of inference. A trainable/adaptive network which is capable of 
learning to perform this type of inference is also developed. 

Keywords: neural networks, radial basis function networks, fuzzy logic, rule extraction. 

1. Introduction 

In this paper we examine the Radial Basis Function (RBF) artificial neural 
network and its application in the approximate reasoning process. The 
paper opens with a brief description of this type of network and its origins, 
and then goes on to shmv one \vay in which it can be used to perform 
approximate reasoning. vVe then consider the relation between a modified 
form of RBF network and a fuzzy controller, and conclude that they can be 
identical. vVe also consider the problem of rule extraction and we discuss 
ideas which were developed for obstacle avoidance by mobile robots. The 
final part of the paper will consider a novel type of network, the Artificial 
Neural Inference (ANI) network, which is related to the RBF network and 
can perform max/min compositional inference. Making use of some new 
results in analysis, it is also possible to propose an adaptive form of this 
network, and it is on this network that current work is focused. 
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2. The RBF Network 

The radial basis function network has its origins in approximation theory, 
and such an approach to multi-variable approximation has been developed as 
a neural network paradigm notably by BROOMHEAD and LOWE [2]. Surpris­
ingly perhaps, techniques of multi-variable approximation have only recently 
been studied in any great depth. A good account of the state of the art at 
the start of this decade is given by POWELL in [1]. In the application to the 
approximation of functions of a single variable, it is assumed that values of 
the function to be approximated are known at a number, n. of distinct sam­
ple points, and the approximation task is to construct a continuous function 
through these points. If n centres are chosen to coincide with the known 
data points then an approximation can be constructed in the form 

n 

where ri = Ilx - cill is the radial distance of x from the centre Ci, i = 1 ... n, 
and Wi, i = 1 ... n are constants. Each of the n centres is associated with one 
of the n radial basis functions 0;, i = 1 ... n. The method extends easily to 
higher dimensions when r is usually taken as the Euclidean distance. With 
the centres chosen to coincide with the sample or data points, and with one 
centre corresponding to each such point. then the approximation generated 
will be a function 'which reproduces the function values at the sample points 
exactly. In the absence of 'noise' this is desirable. but in situations when 
this is present, steps have to be taken to prevent the noise being modelled 
at the expense of the underlying data. In fact. in most neural net\\'ork 
applications, it is usual to work with a lesser number of centres than of data 
points in order to prod uce a network \\'ith good 'generalisation' as opposed 
to noise modelling properties, and the problem of how to choose the centres 
has then to be addressed. Some users take the vie\v that this is part of the 
network training process, but to take this view from the outset means that 
possible advantages may be lost. The 'default' method for 'prior' centre 
selection is the use of the l'C-means algorithm, although other methods are 
available. In a number of applications. notably those where the data occur in 
clusters, this use of a set of fixed centres is adequate for the task in hand. In 
other situations, this approach is either not successfuL or is not appropriate, 
and the network has to be given the ability to adapt these locations, either 
as part of the training process. or in a later tuning operation. The exact 
nature of the radial basis functions Oi. i = 1 ... n is not usually of major 
importance, and good results have been achieved in a number of applications 
using Gaussian basis functions when 
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Fig. 1. The Radial Basis Function network 
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where ai, i = 1 ... n are constants. This type of set of basis functions, 
with the property that 9 -+ 0 as l' -+ x is knmvn as a set of localised 
basis functions, and although this appears to be a natural choice, there is 
no requirement for this to be the case. There are a number of examples of 
non-localised basis functions in use, including the thin-plate spline function, 

<7'>(1') = 1'2 In (1') 

and the multi-quadric function. 

A major advantage of the RBF neural network, when the centres have been 
pre-selected, is the speed at which it can be trained. In Fig. 1, we show 
a network with two output nodes and we note that with the centres fixed, 
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the only parameters which have to be determined are the weights on the 
connections between the single hidden layer and the output layer. This 
means that the parameters can be found by the solution of a system of 
linear equations, and this can be made both efficient and robust by use 
of the Singular Value Decomposition (SVD) algorithm. The algorithm has 
further advantages when the number of centres is less than the number of 
data points since a least squares approximation is then found automatically. 

If centres are not pre-selected, then some proced ure for selection, per­
haps based on gradient descent, must be incorporated into the training 
algorithm. In this case, either all parameters are determined by gradient 
descent, or a hybrid algorithm may be used, with the parameters of the 
centres being updated by this means and new sets of weights found (not 
necessarily at each iteration) again as the solution of a system of linear 
equations. 

3. A Fuzzy Controller 

(4) 

w 

(:3) 

(2) 

(1) 

Fig. 2. A fuzzy controller 

In Fig. 2 we show the architecture of a fuzzy controller based on the Takagi­
Sugeno design, with a crisp output. This controller is a variant of that 
discussed by JANG and SUN [4]. In general. this fuzzy controller has m crisp 
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inputs Xl, X2,"" Xm and, in this case, one output y. There are n linguistic 
rules of the form: 

Ri: IF Xl is Ai,l AND X2 is Ai,2 AND ... AND Xm is Ai,m THEN Y 

is Yi i = 1, ... , n where i is the index of the rule, Ai,j is a fuzzy set for i-th 
rule and j-th linguistic variable defined over the universe of discourse for 
j-th variable, and Wi is a real number. The fuzzy sets Ai,j,i = 1, ... , n, 
j = 1, ... , m are each defined by Gaussian membership functions j..li,j(Xj), 

where 
( )'/ - x -c - (r j..li,j(Xj) = e ) t,) t,). (1) 

Here Ci,j and ai,j are the constant Gaussian parameters. 
In the first layer of the structure shown in Fig. 2, fuzzification of the 

crisp inputs Xl and X2 takes place. This means that the degree of mem­
bership of the inputs Xl and X2 is calculated for each of the corresponding 
fuzzy sets Ai,j. These values are then supplied to be nodes in the second 
layer, where a t-norm is applied, and here we use the algebraic product. The 
output of the kth unit in this layer is then the firing strength UI; of rule k, 
and in this case, with two inputs, it is given by 

k = 1, .. . ,n. 

In the general case this is 

m 

UI; = IT j..lk,j(Xj) , k = 1, .. . ,n. (2) 
j=1 

The rule firing strength may also be taken as a measure of the degree of 
compliance of the current input state with a rule in the rule base, taking 
the value 1 when compliance is total. 

The overall network output at the fourth layer has to be a crisp value, 
and this is generated by the height method. The Wi, i = L ... , n are the 
weights between the third and fourth layers and are in some sense 'partial 
conseq uents'. The out pu t y is finally formed as 

(3) 

This can be .. vritten as 
n 

111 112 Un L:-- , -L ' • -L ,'-. ,. y - ,\,n ..1(; 1 I ,\,n .. /1;2 . .. I ,\,n . Un - U, U, . 
L.,i=1 U, L.,i=1 U, L.,i=l 11, i=l 

( 4) 

Eq. (4) suggests that layer three should perform a normalisation function, 
and if this is the case the output of unit I in layer three is given by 

_Ut 
U/ = n . 

Li=1 U; 
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The structure described here is reminiscent of a form of the RBF artificial 
neural network, and in earlier work GODJEVAC [5] gave an algorithm for 
training such a system. Using input/output training data, a set of weights 
wi,i = 1, ... , n are obtained, and values found for Gaussian parameters Ci.j 

and (ji,j i = 1, ... , n, j = I, ... , rn, using a gradient descent algorithm. In 
effect, this means that the rule base is deduced from the input/output data. 
This work was carried out in connection with the robot obstacle avoidance 
problem, and good results were achieved for this application. 

In [3] it was shown that the 'standard' RBF network could perform 
the function of an inference mechanism in fuzzy-logic based control. 'Ne 
now re-examine the RBF network in this role, with the aim of showing 
that the structure described above can be embedded in il generalisation of 
that paradigm. In order to do this, we consider the operation of the RBF 
network in detail. Following the presentation of the vector x as the input 
the expression for the output, Uk, of the k-th hidden node is, 

_ (1IX- CkII )2 
Uk - exp -

(jk 
k=l, ... ,n 

and can be written as 

m { ?} m Xj-Ck,j - _ 
uk=IIexp -( (j. ) = II,uk.j(Xj) , 

J=l k )=1 

(5) 

say. There is some similarity between Egs. (5) and (2). The similarity 
is not complete, however, since in the earlier case, the Gaussian variances 
were functions of two indices, and here they are functions of a single index. 
Eg. (5) shows that the output of the kth hidden unit in an RBF network can 
be viewed as the product of the degrees of membership of each component 
of x in fuzzy sets, with Gaussian membership functions each with the same 
variance, one centred on each co-ordinate of the centre vector q. Again. 
this output value may be interpreted as a measure of rule firing strength. 

In the next Section. we consider hO\y the standard RBF model can be 
modified so as to reproduce the complete structure of the fuzzy system. 

4. Modification of the Standard RBF Network 

The network shown in Fig. 3 is a modification of the standard RBF net­
work in which a form of normalisation similar to that included in the fuzzy 
system described earlier. It should be noted that the addition of the new 
node attached to the hidden units by connections with unit weights, and 
the associated normalisation process, does not destroy the linearity of the 
optimisation task. The only change is to the right hand side of the systems 
of equations which have to be solved to determine the network weights. 
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Fig. 3. RBF network with output normalisation 

:\"etwork outputs vmuld have to be modified as discussed in [3] to yield true 
fuzzy set membership functions, if this is what is required. However, as 
an alternative, the network could be required to perform the defuzzification 
operation itself, and such a network is shown in Fig. 4. In [3], vectors repre­
senting fuzzy sets were used as inputs. If instead, we use crisp state vectors, 
and if the state vectors corresponding to reference states as used in the rule 
base are used as centres, then the transition to the fuzzy reasoning system 
is virtually complete. The one remaining difference is, recalling (.5), that the 
variance of the Gaussian activation function associated with each centre is 
a parameter whose value depends only on the centre or node number. 

In order to represent the fuzzy reasoning system fully, this parameter 
must be allowed in addition to vary with each component of the input. To 
see how to do this within the modified RBF structure, consider again (2). 
If we set 

ak,j = ak,kAk,j = 7h Ak,j , 

where Ak,j is a parameter, this can be written 



162 N. C. STEELE and J. GODJEV.4C 

Here Xk,j = Xj/Ak,j, and Ck,j = Ci,j/Ak,j' This is now in the same form as 
(5), but note that we are using a coordinate scaling of the inputs and the 
centres, and that this scaling depends both on the associated centre and on 
the component of the input vector. The implication of this scaling operation 
is that we must allow weights on the arcs from the input nodes to the hidden 
units, with the centres also appropriately modified. 

We have now achieved our aim of embedding the fuzzy reasoning sys­
tem in the modified RBF architecture, however, there is a penalty. The ne\v 
first-layer weights, or scaling factors, are additional adaptable parameters 
which also may have to be learnt during training. Because they occur within 
the arguments of the non-linear activation functions, the overall optimisa­
tion task is then no longer linear. and other methods must be used. This is 
examined further in the next Section. 

5. Training and Adaptation 

Given a set of rules for the rule base, and if we set the scaling factors to fixed 
values, then provided that \ve have sufficient input/output data, the modi­
fied network can be trained by solving a system of linear equations. From 
this basis, an algorithm can be deduced for adapting the network parame­
ters to improve performance, based on the gradient descent method. This 
adaptation process would focus on modifying both the net\\'ork weights. in­
cluding the scaling parameters, and the Gaussian parameters. Changing the 
Gaussian parameters and scaling factors is equivalent to changing the rules 
in the rule base. since the fuzzy sets which describe them are modified by this 
process. This approach consists of distinct training and adaptation phases 
and given that the rules given \vill probably be imprecise, it is attractive to 
consider an approach which is based solely on the adaptive phase. 

When training such a system for use as an obstacle avoidance controller 
for a mobile robot. a simple supervised learning approach, based on gradient 
descent \vas used to determine appropriate values of the parameters. With 
a known desired system output Vd corresponding to an input vector x it 
is possible to define an error measure E = (Vd - V)2, where V is the actual 
response of the network. The partial deri\'atives aE / aa of E with respect to 
the network parameters are calculated and parameters are adapted/updated 
according to the standard scheme 
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with Ba a parameter dependent learning rate. Initially, all parameters were 
set to random values and using several input/output pairs, all parameters 
were adapted by this method. Other schemes are possible which exploit the 
partial linearity of the problem. 

Fig. 4. Defuzzification included in the network: y is now the defuzzified output 

The methods outlined above were demonstrated successfully on trial 
problems involving function approximation. Experimental evidence showed 
that the fuzzy reasoning system, that is, the generalised RBF network, was 
capable of learning the data in fe'wer presentations. For the purpose of 
obstacle avoidance, both designs controlled the robot satisfactorily, although 
again the generalised network showed slightly superior learning speeds. 

6. An Approach to Rule Extraction 

The work described here also serves to suggest an approach to rule extrac­
tion from adaptive RBF networks. namely by interpreting them as fuzzy 
reasoning systems, and examining the final form of the centre vectors to­
gether with the associated values of y, the system output. It is tempting to 
try to place interpretations on the weights lEi, i = L .... n, since these are 
playing the roles of the locations of the maxima of the fuzzy sets \vhich are 
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being combined if the height method for de-fuzzification is used. However, 
even if a single rule is being fired with strength 1, other rules will also usu­
ally be active, and these will contribute to the output y. This means that no 
single Wi and thus a single fuzzy set, can be interpreted as an 'independent' 
consequent of rule i. We will thus describe an alternative approach for a 
network with a single output, but which generalises to multiple outputs in 
an obvious way. 

For compactness, we use the notation q'J;(x) = <Pi(llx-cill), where IIx­
cdl is either the usual Euclidean distance, or a weighted form. Effectively 
we are working with normalised basis functions 

i = 1, . .. ,N, 

where N is the number of basis functions/centres. For the network output, 
we have 

N 

Y = L Wi0j(X) . 
;=1 

Assume that the network has been trained and on completion the process, 
the set of centres Ci, i = 1, ... , N, and weights Wi, i = 1, ... , N have been 
determined. We now establish N network rules, YRi' i = 1, ... , N by pre­
senting the N vectors corresponding to the N centres as inputs to obtain as 
(crisp) outputs 

That is, 

where 

1 

N ' "". . 0 J' (c 'T) L.,J=!' " 

YR = 

1 

""N '( ) L.,j=i Cj)j CN 

and w is the vector of weights. 

i=l, ... ,N. 

1 

""N '( ) L.,j=i 0] eN 

(6) 
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\Vhen the network is operating and presented with an arbitrary input 
vector x the output is 

y W1-;;1(X) +'" + WN9N(X) 

[61 (x)"""", 9N(X)]W, 

So using Eq. (6) and assuming that q> is invertable, 

(7) 

The entire operation of the fuzzy reasoning system RBF network is contained 
in this equation, from the process of fuzzification, through the calculation 
of the t-norm, inference and defuzzification to produce the system output. 
GODJEVAC [6] develop a method for the linguistic expression of rules ob­
tained in this way, based on assigning primary labels, 'small', 'medium', 
and so on, to fuzzy sets on the antecedent universes of discourse. A set of 
hedges to operate on the membership functions was also defined, together 
with a measure of similarity between fuzzy sets. 'When nebvork training is 
com plete, the fuzzy set as defined by the Gaussian function associated with 
each component of each centre vector is examined. This is then given the 
label which corresponds to the closest of the (hedged) reference sets and by 
this means, all rule antecedent clauses can be established. There are two 
possible approaches to the consequent parts. In the approach developed by 
GODJEVAC, a further set of linguistic labels were assigned to elements of the 
consequent universe of discourse. This means that fuzzy rules with fuzzy' 
sets as consequents can be deduced. However, since the underlying fuzzy 
system has crisp outputs, it may be more appropriate to extract rules of 
the form given in Section 3, with the consequent part stated as 'about Yi'. 
Eq. (7) provides further scope for investigation. 

7, The Artificial Neural Inference Network (ANI-net) 

This network carries out the reasoning process using the compositional rule 
of inference, and is shown in Fig. 5. In the first layer following the input 
nodes, the crisp system state vector is fuzzified using Gaussian membership 
functions as described earlier. If we wish to make the network adaptable, 
then any membership function which is at least piecewise differentiable with 
respect to its parameters, may be used instead. The nodes in this layer are 
grouped in such a way that each group calculates the degree of membership 
of the current state in one and only one (compound) rule antecedent clause. 
Thus if there are N rules, and the dimension of the state vector is n, there 
will be a total of nN nodes in this layer. 

In the next layer, a t-norm operation is carried out by the nodes, and 
this is a MIN operation. Elsewhere, where network adaptation is required, 
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the t-norm has been taken as the product, and the main reason for this 
has been to allow differentiation of the node outputs with respect to the 
Gaussian (or other) parameters. ZHANG, HA:\G, TA:\ and \VANG have 
shown in [7] that this is not necessary since a calculus can be developed for 
both the MIN and MAX operators, and indeed, combinations thereof. In 
the next section we give the essential results from their \vork for this type 
of net\vork. 

The outputs of the second layer are then truth values or rule firing 
strengths of each rule and these are propagated along weighted arcs for­
ward to the next layer. This third layer is made up of ':vL-\Xj.\IE\ units, 
which first compute the minimum of the arc weights and the output of the 
relevant activating unit in the second layer. These \veights may be chosen 
as the membership functions of the lY consequent fuzzy sets, defined at "VI 
sample points in the appropriate universe of discourse, where JI is the num-
ber of ?vlAXjMIN nodes. Thus the weight vector Wi = [Wi,l, Wi.2, ... , WiN] 
containing the weights on the arcs emanating from unit i, i = 1, ... , N rep-
resents the consequent fuzzy set for rule i, as it would be given for inclusion 
in a rule base. (Note that our ~arlier remarks still apply in that unless a 
'sum-to-one' convention is adopted for the definition of the antecedent fuzzy 
sets, then no 'consequent' set Wi would appear as the network output.) The 
calculation of the minimum of the output of unit i in the second layer, and 
the weights on the arcs from it, is equivalent to clipping the antecedent set 
at the level set by the firing strength. The second part of the operation of 
these units is the computation of the maximum of all these clipped inputs. 
This means that \vith an identity transfer function. each unit in this layer 
provides as its output the value of the member:ship function of The union 
of the clipped fuzzy seTS at a particular sample point j. j 1. .. " M. in 
the output universe of discourse. Again in [iJ it is O'ho\\"11 hO\y '\L-\X(\II:\ 
functions can be differentiated (almost e\'ery\\'here). and thus a trainable 
network can be designed, 

As shown in Fig, 5, the output of the nel\\-ork is the consequent fuzzy 
set corresponding to the input crisp state, Additional layers can be added 
to perform the defuzzification process. for example using the centre of area 
method, 

Clearly this net\\"ork is capable of carrying out compositional inference 
1lsing the individual rule firing approach. and in this case the antecedent 
and desired consequent fuzzy sets are loaded onto the net\\'ork using 

1. the location and radius of the Gaussian functions. or their equivalents. 
for the antecedent sets. and 

2. the net\\'ork weights for the consequent sets. 

\Vhen this has been done. compositional inference is performed ex­
hibiting the usual rule owrlap phenomena, The key question is \\-hether 
the network can be adapted from this configuration. or indeed trained from 
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Fig. 5. The artificial Neural Inference network 

system data with no preconceived (expert) rules given initially. This will 
only be possible, using gradient techniques, if the network output can be 
differentiated with respect to the Gaussian (or other) parameters, and the 
network weights. This will entail the differentiation of MAX/?vII~ functions, 
and we consider this in the next section. 

8. Construction of a Training Algorithm 

The development of an adaptive or training algorithm based on gradient de­
scent depends upon two definitions of variants of the Heaviside step function. 
They are: 

1. 

lor (x) = { t 
0, 

if x > 0 
if x = 0 
if x < 0 

(8) 
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{ 
1. if X > 0 

pOS (X) = 0; if X <: 0 

It then follO\vs that we can write for any two functions f(x), g(x), 

f(x) V g(x) = lor [J(x) - g(x)]f(x) + [g(x) - f(x)]g(x) 

and we note that if f(x) = g(x), then f(x) V g(x) = 1/2(J(x) + g(x)). 

(9) 

This idea can be extended to a set of functions F(x) = {fi(X), 1 = 
1. ... , n}, and then we have 

2J{(F) n { n } V f(x) = K(F) ~ }llor [Ji(X) - fJ(x)] j;(X) , 

where 
n .n 

K(F) L I1poz [Ji(X) - fJ(x)]. (10) 
i=1 j=l 

With this definition, it follows that if at a particular point Xr , V f(xr) = fj, 
j = 1, ... , r < n; after re-ordering if necessary, then 

We also have for the minimum of two functions f(x) and g(x). 

f(x) 1\ g(x) = lor [g(x) f(x)]f(:r) + lor [J(x) - g(;r)]g(x) , 

which can also be extended in a similar \vay to a set of functions. In order 
to develop a gradient descent based adaptive algorithm, the question of 
differentiating functions defined in this way has to be considered, and in [7] 
it is established that such functions are differentiable almost everywhere in 
R. In particular, the following results hold. 

1. If a is a constant and f (x) is differentiable at x, then 

d \ df(J) 
-a V f(x) = lor [J(.r) - a]-- . 
dx dx 

2. (a) If f(:r) and g(x) are differentiable at :1.', then 

d . . .]df(x) " ]dg(.r) 
-f(x) V g(.r) = lor [J(.r) - g(.r) -d-+ loqg(x) - f(.7") -d-. -. 
dx .r .r 
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(b) 

d df(x) dg(x) 
-d f(x) I\g(x) = lor [g(x) - f(x)]-d-+ lor [j(x) - g(x)]--. 

x x dx 

3. If the n functions in the set F = {fI (x), h(x), ... , fn(x)} are all con­
tinuously differentiable in R, and if V F is differentiable at x, then 2a 
generalises to 

d 2K (F) n { n } 
dx V F(x) = I«(F) ~ }llor [ji(X) - fj(x)] ff(x) , 

where K(F) is defined in (10). 

It is also established in [7] that a training algorithm based on gradient 
descent for networks such as the ANI-net \vill converge to a local minimum 
with probability 1. In order to derive such a training algorithm, we use the 
network as shown in Fig. 5, that is, with )\11 outputs, J..Lj j = 1, . .. ,1\11. The 
output 0i, i = 1, ... , N of the i-th minimisation unit will be given by 

where 

0i = fi,l (xd 1\ !;,2(X2) lor [!;,2(X2) - J;,l (xd]!;,l (xIJ+ 

+lor [fi,l (xd - !;,2 (X2)]!;,2(X2) , 

{ 
(Xk - Ci.k)2} 

!;,dXk) = exp - ? 
, a;,k 

k = 1, .... n (11 ) 

and Ci,k and ai,k are adjustable parameters. The outputs J.Lj are then gen­
erated as 

;\1 

J.L) = V {Wi.j 1\ o,} j = 1, ... ,M. 

In order to derive a gradient descent algorithm, after defining a suitable 
error measure say, we must calculate, inter-alia the partial derivatives 
~ ~ d 00, 'h ,.... . C 'd fi t ~ f '-
OWi,) 'OOi an oa"k 1 \\ ere 01.k IS C"k or a"k· ons1 er rs OlL'i,) or 1 -

1. ... , Nand j = 1, ... , lVI. We have 

OJ.1j 0 N 

OlL'£.j OW,,] i~ {Wi.j 1\ od 

~ {( lL' , 1\ 0) V VS {11.," ' 1\ o,}} on" , 1.)' l,j 1 
1..] 1'=1 

t':;!t 
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l 
N 1 {J lor (w·· 1\ 0') - V {w·, .1\ o,} --(w·· 1\ 0') I,J 1 I,J 1 {Jw" I,J 1 

i'=1 I,J 
i'~i 

= 10r l (Wi,j 1\ oil - :~: {Wi',j 1\ 0;0} 1 X 10r [Oi - Wi,jj . 

This result enables us to perform weight updating using an equation of the 
form 

wnew = Wold _ e {JE {JJij 
1 J I.J W!:l !:l 1 
, . UJij UWi,j 

where ew is a learning rate. 
In a similar way we can shO\v that 

[ 
N 1 {JJi' . 

_J = lor (w·· 1\ 0') - .v. {w·, . 1\ o·,} {Jo. I,J 1 1 ,J 1 

1. i'=l 
1'#-1 

x lor [Wi,j - oil . 

(12) 

Now we have to calculate a~~'k 1 'where Gi,k is Ci.k or ai,k. In the case when 
n = 2, it is easy to see that ' 

{JOt 

{Jai.l 

where 0';,1 is Ci,l or ai.l, since A2 (X2) does not depend on either of these 
quantities. Similarly, we have 

{JO 
{Ja.'? = lor [hI (xr) 

',-

where ai,2 is Ci,2 or ai,2' The calculation of these derivatives is straightfor­
ward, using (11), and updating of the Gaussian parameters is by use of an 
equation similar in form to (12). 

In our preliminary studies, we have succeeded in training an ANI­
net, including added defuzzification layers, to represent a simple mapping, 
although the computational effort was significant. 0:evertheless, it is satis­
fying to be able to take the relation between artificial neural networks and 
fuzzy inference systems one stage further. 
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9. Conclusions 

In this paper, we have endeavoured to show the deep association which 
exists between Radial Basis Function artificial neural net\vorks and the im­
plementation of fuzzy logic. At the heart of this association is the Gaus­
sian function, appearing as it does, in different roles. By establishing the 
equivalence of a modified RBF network and a fuzzy inference system, we 
have proposed a method for rule extraction from (modified) RBF netlNorks. 
Also, by examining the details of this equivalence, we see that there may 
be advantage in using as basis functions in such networks. functions \vhich 
have (hyper)-elliptic rather than circular cross sections in 'pattern' space, 
as was anticipated by ALBRECHT and WERl'."ER in 1966 [8]. The alternative 
view, that of needing to find an appropriate distance metric suggests that 
we consider further forms of generalisation for example, by the use of the 
Mahalanobis distance D between two vectors x and c, where 

and where S is a symmetric rather than a diagonal matrix. 
The paper opened with a discussion of a network structure, designed 

to perform inference while avoiding the perceived shortcomings of the com­
positional rule of inference in terms of rule overlap. This led on to a con­
sideration of a modified form RBF network which could model iln adaptive 
fuzzy control system and the question of rule extraction was addressed. The 
approach which has been developed serves to show that the extraction of a 
single consequent fuzzy set for a given antecedent will not. in general. be 
possible. :\ aturally, this causes us to reflect on the meaning of the verbal 
forms of the rule base! 

In the first form of RBF network considered. \ve paid attention 1.0 the 
need to produce 'genuine' membership function values as the outputs. that is 
\vith values in [0,1]. In fact. for satisfactory operation, this is unnecessary. 
since subsequent de-fuzzification using the centre of area method. would 
yield the same value whether or not this had been done. :\evertheless. 
this was thought at the time to be appropriate to remain within the scope 
of fuzzy logic. A recent paper by "\IITAI\I and KOSKO [9] might lead to 
second thoughts! There it is concluded that for the purpose of function 
approximation. the use of fuzzy sets defined by membership functions of the 
form sinc :r = si~x are the most efficient. In noting that sinc :r can take 
negative values. the paper suggests that such values be interpreted as 'very 
10\\' degrees of membership'! 

The paper concluded \vith a discussion of our preliminary \\'ork on 
the A:\I-net. and reported that the computational times seemed excessive 
for the task in hemel. \Ye are currently looking a little more closely at the 
mechanism for training, and in detail at making economies. for example. in 
using fuzzy error measures. 



172 N. C. STEELE and J. GODJEVAC 

In our view, the most interesting aspect of this work has been the cross­
domain insight which has been gained between t\VO apparently distinct areas 
of 'soft computing'. As this field expands, it will be important to maintain 
this capability, in order to re-invent the wheel at regular intervals! 
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