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Abstract 

1Iost industrial systems are nonlinear. In these applications the conventional identification 
and control techniques are effectively used if the nonlinearity of the system is known. When 
the system contains unknown nonlinearities, however. the conventional techniques exhibit 
poor performance. To tackle this problem a neural network is proposed to use. The ability 
of neural networks to approximate nonlinear relationships makes them prime candidate 
for applications in nonlinear system identification. Simulation results show that if the 
conventional nonlinear system description is used the modelling error may be significant, 
but using the delta transformation this error can be reduced. This paper demonstrates the 
difference between the shift and delta model and verifies the effectiveness of the structure 
of the delta transformation. Simulation results demonstrate this difference. 

Keywords: neural networks, delta transformation, delta operator, shift operator, identifi­
cation. 

1. Introd uction 

In the past three decades many identification and control design techniques 
have been established. These techniques are efficient for linear systems 
and for those nonlinear systems in which the nonlincarity is known. If the 
nonlinearity is unknown, however, then the task is very difficult. The ability 
of neural networks to learn any non linear mapping between input and output 
data makes them useful and efficient tools to solve this problem. 

The 1\eurall\etworks (l\l\) are parametrised nonlinear functions. The 
parameters in the N\, are its weights. Learning simply means parameter 
estimation. It is well known that the fundamental properties oJ Neural Net­
works make them useJul as approximators oJ nonlinear mapping. 

The Kolmogorov theorem gave insight into the capabilities of multi­
layered neural nets. As explained by LIPF:\IA:\\, (LIpPMANN, 1987) this 
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theorem states that any continuous function of N variables can be com­
puted using only linear summations and nonlinear but continuously increas­
ing functions of only one variable. Actually the theorem states that a three 
layered net with JV(2N +1) neurons using continuously increasing nonlineari­
ties can approximate any continuous function of N variables. Unfortunately, 
the theorem does not indicate how the weights and the nonlinearities in the 
net should be selected. 

2. System Identification 

System modelling (i.e. its mathematical representation) and identification 
are fundamental problems in system theory, where it is often required to ap­
proximate the behaviour of a real system with an appropriate mathematical 
model given by a set of input-output data. The identification problem is to 
find relationships between past input-output data and future outputs. To 
identify non linear systems it is necessary to define nonlinear models, whose 
parameters have to be estimated to represent the system. One condition to 
obtain good identification results is that the input of the plant should be 
adequately 'rich' in order to capture the system dynamics accurately. For 
example, to identify the steady state gain an input signal of small frequency 
is required. On the other hand, the identification of the time constants re­
quires another frequency region in the input signal. If the identification is 
accomplished only in a subspace of the possible inputs, the results produced 
by the network could be poor outside this subspace. The importance of the 
inputs used to train learning systems is widely appreciated. In the Neural 
Network literature the input and output data are called training data or 
training patterns. The main task of the identification is to determine the 
parameters of the assumed model (Fig. 1). 

Plant 

Model A 
L...-___ ----' Yt 

Fig. 1. The structure of identification 

For linear time-invariant systems model structure selection and iden­
tification problem is well established and the literature abounds with many 
useful methods, algorithms and application studies (NARENDRA, 1990). 
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Eg. (1) represents a (SISO) linear time-invariant causal system structure: 

n-l m-I 

Yt+l = L aiYt-i + L bjUt_j , (1) 
i=O j=O 

where ai, bj are the unknown parameters. Two identification models are 
often used (NARENDRA, 1990). 

1. Parallel model (Fig. 2) for linear or linearized nonlinear systems: 

n-l m-I 

Yt+l = L QiYt-i + L bjUt_j . (2) 
i=O j=O 

Non Ii near I--Y_t ____ ---, 
plant 

A 

NN Yt 
~----~----------~ 

Fig. 2. Parallel identification model 

Here the feedback is taken from the output of the estimated model. 
2. Series-parallel model (Fig. 3) for linear or linearized nonlinear systems: 

n-l m-I 

Yt+1 = L QiYt-i + L bjUt_j . (3) 
;=0 j=O 

Here the feedback is taken from the plant output. The TDL in the 
figures denotes a tapped delay line (Fig. 4) where q-l is the backward 
shift operator. 

As the parallel model under training may cause a divergent result -
during the training phase the series-parallel modeL after the training the 
parallel model is used. Notice that in the series-parallel identification model 
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. Nonlinea.r 
------.-------~ 

plant 

A-

NN Yt 
~--~----------~ 

Fig. S. Series-parallel identification model 

u t -1 q 

-
Y;.. -1 q ~ 

. 

~ U t - n 
~---jIi;>-1i!> 

Fig. 4. The tapped delay line 

a feedforward, while in the parallel identification model a recurrent neural 
network is used. The objective of the identification is to determine the t1i 

and bi parameters that guarantee minimal error betv,.'een the real output 
and its estimated value. 

11.9 - yl! < s. (4) 

IvJost systems encountered in industry are nonlinear. To model non linear 
systems, nonlinear system descriptions have to be applied. Nonlinear Auto 
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Regressive Moving Average (NARMA) description has been shmvn to pro­
vide a very useful unified representation for a wide class of non linear systems: 

Yt+1 = J[Yt, ... , Yt-n+1, Ut, ... , Ut-m+d . (5) 

Here J[.] is a nonlinear function which is rarely known a priori and can be 
very complicated. 0ievertheless, nonlinear system identification is a complex 
and difficult task. 

The problem of identifying a model structure and its associated pa­
rameters can be related to the problem of learning a mapping between a 
known input and output space. In this paper a neural network is used to 
solve this problem. 

An immediate problem is how large the variables n and m should be 
in Eq. (.5). From a practical viewpoint they should be as small as possible 
to reduce the complexity of the network, and the number of the parameters. 
In this case the task of determining the parameters of the network is easier 
and the learning procedure is shorter. On the other hand, these variables 
should be large enough to model the significant dynamics of the nonlinear 
plant (VVARWICK, 1992). 

3. Neural Networks 

The literature is rich in definitions of neural networks. A neural network is 
a set of simple elements (neurons) which are connected together organised 
into layers to form either one single layer or multiple ones. Each neuron 
has multiple inputs and one output. In each input there is a weight by 
which the input signal is multiplied. Each neuron has a self weight (bias). 
Each neuron sums all its weighted inputs and performs CL nonlinear function 
operation on it. This nonlinear function is called the activation Junction of 
the neuron. 

3.1. Aeural Aetu'ork Architecture 

A typical multiple-layer feedfonyard neural network consists of an input, an 
output and one or more hidden layers. If a network contains some delayed 
outputs or delayed internal states as inputs then that network is a recur­
rent or dynamic network which has useful properties in dynamic system 
identification and control. 

Key questions are: . hmv many layers of hidden units should be used, 
and how many units are required in each layer? What is the smallest possible 
number of neurons in a hidden layer for best possible operation? 
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3.2. Neural Networks as Universal Continuous 1l;lapping Approximators 

Using Neural Networks is just a way of curve fitting to data. They have 
excellent approximation properties. Due to the Kolmogorov's theorem any 
continuous function f of several variables defined in space (P = [o,l]n; 
n ::: 2) can be represented in the form: 

where Xi, 'l/;ij are continuous functions of one variable and Wij are monotone 
functions which are not dependent on f. 

A lot of theorems demonstrate the ability of a neural network to 
approximate nonlinear functions (HECHT- NIELSEN (1987), GALLANT and 
WHITE (1988), CYBENKO (1989), HORNIK et al (1989), FUNAHASHI (1989)). 
In (FUNAHASHI, 1989) the following theorem was proved: 

Let cp( x) be a nonconstant, bounded and monotone increasing con­
tinuous function. Let K be a compact subset (bounded closed subset) of 
Rn and f(Xl, X2, ... , xn) be a real value continuous function on K. Then 
for an arbitrary c > 0, there exists an integer N and real constants Ci, 

Bi(i = 1, ... , N), wij(i = 1, ... , N,j = 1, ... , n) so that: 

(6) 

satisfies : 
(7) 

In other words, for an arbitrary c > 0, there exists a three-layer network 
( one-hidden layer) \vhose transfer functions for the hidden layer are cp( x) 
and for input and output layers are linear and which has an input-output 
function j(Xl1.'" xn) which satisfies Eq. (7). The theorem does not say 
that a single hidden layer is optimum in the sense of learning time or ease 
of implementation. 

In general, one-hidden layer neural network with a nonlinear mono­
tone increasing (e.g. sigmoidal) nonlinear hidden neuron transfer function 
can approximate any continuous function with an arbitrary accuracy. The 
transfer function is usually sigmoid, tangent hyperbolic or saturation. 

3.3. Learning Algorithms 

Learning for Neural Networks simply means parameter (weights) estima­
tion. But the model is non linear in the parameters. In each neural network 
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application learning is a critical question. The objective is to determine an 
adaptive algorithm or rule which adjusts the parameters (weights) of the 
network based on a given set of input-output pairs. The collected data are 
used as training data for the learning process of the neural network. 

The problem of determining the network weights can be considered es­
sentially as a nonlinear optimisation task. The simplest optimisation tech­
nique uses the objective function (cost function) to determine the search 
direction. It is well-known that gradient search jor the minimum is ineffi­
cient, especially close to the minimum. It is better to use another search 
technique. The quasi-Newton (variable metric) and the conjugate gradient 
search techniques are very efficient solving this task. 

The main feature of the quasi-l\ewton method is that it makes a se­
quence of progressive estimates of the inverse Hessian (second derivative of 
the cost function) matrix. based only on the first derivatives. The approxi­
mated matrix is updated in each iteration step, supposing that the function 
can be calculated at all points and the gradients can be determined analyt­
ically at each point or can be estimated from the differences of values of the 
function to be minimised. 

The conjugate gradient algorithm generates a conjugate direction as 
a linear combination of the current gradient and the previous search direc­
tion. The current parameter vector is a linear combination of the previous 
parameter vector and the current conjugate direction (CHARAF et aI, 1995). 

3."/. The Problem oj the Identification Based on the Shijt Operator 

Let us assume that a non linear system is defined by Eq. (.5). A neural 
neti.vork is used to identify the nonlinear behaviour of the system. ender 
training the series-parallel model is used (Fig. 3). The neural network ap-
proximates function j (Eq. (5)) by j. The training task is to minimise the 
square error betv;een the real system output and the output of the network. 
The remained identification error is defined as follows: 

S A r 
tt+l = j [Yt .... , Yt-n+l· Ut····. Ut-m+d - j Lye····' Yt-n+l·Ut,···, Ut-m+d· 

(8) 
After the training the parallel model is used. The output of the net\\'ork 
(which contains eS error) is fed back. The error of the network can be 
significant. This error (Fig. 2) is defined as follows: 

\\' here 
(10) 

supposing that the function j is continuous and differentiable around the 
working point. j can expanded to Taylor senes. The network error is 
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calculated as follows: 

p "-' S I {)1 I (' ) et+1 "-' et+1 T -{) Yt - Yt + 
Yt y 

I {) 1 I (' ) i. + {) 1 I (.' ) -r -{)-. - Yt-1 - Yt-1 I'" {). Yt-n+1 - Yt-n+1 . 
Yt-1 y Yt-n+1 y 

where 
Y = [Yt: ... : Yt-n+1: Ut:···, Ut-m+d 

The Eq. (ll) can be written in other form: 

i=l 

\vhere 

ai = {) 1 I 
- {)Yt-i+1 y 

Since in the steady state the folluwing equalities are available: 

S S S et = et- 1 = ... = e 

and 
p p p 

et = et- 1 = ... = e : 

it can be shown that the network error in this case will be: 

eS 
eP = ----:--:---

1 + Li~1 a; 

For example in the case of a first order system 

S P e 
e =--

l+a 

(ll) 

( 12) 

(13) 

(14) 

(1.5) 

(16) 

(17) 

This means that if a = -0.99. then the error of the network in a given 
working point is 100 times bigger than the identification error remained after 
training (Example 1 in section 4.) In the case of a second order s~'stem: 

.1)t - 1.8.561.1)1-1 + 0.8607.1)1-2 = 0.0024 Ut-l + 0.0023ut-2 . (18) 

According to Eq. (16) the networ k error is as follo\':s: 

eS ~ 
-------- ::::::; 218· e.) . 
1 - 1.8.561 + 0.8607 

(19) 

These examples demonstrate that the shift operator form has a lot of dis­
advantages. In case of higher order systems this error grows very fast. 
.\' umerical exam pies verify that in some cases this form is not useful. It is 
necessary to find another structure which guarantees the smaller error. The 
proposed structure uses the delta transformation. 
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3.5. Delta Transformation 

The shift operator q is often used to describe discrete systems. The definition 
of the forward shift operator is 

(20) 

Csing this operator the discrete state space model of a system can be written 
as 

qXt = F(Xt,Ut) , 
Yt = G(Xt, Ut) , 

(21 ) 

where Xt, Ut, Yt are the state, the input and the output of the process, re­
spectively. 

Another equivalent description of the system can be obtained by using 
the delta operator. This operation is defined as 

X(t . h + h) - x(t . h) 
h 

(22) 

where h is the sampling time UdIDDLETO;:\ et al. 1987). The relationship 
between the q and 5 operators is a sim pie linear function: 

_ q - 1 
0=--

h 
(23) 

This guarantees the same flexibility in the modelling of dynamic systems as 
does the shift operator. L sing the 5 operator the discrete state model can 
be described by 

P(.ft. utl . 
G'(.Tt. ud . (24 ) 

One way to determine the discrete delta modei form is to find a shift model 
form and then to substitute 

q=l+M. (2.5 ) 

Though this transformation method is technically correct. this is not the best 
way to derive the delta model. A better method is based on the selection 
of the state variables which are used in the continuous time state space 
equation. 

To demonstrate the transformation we present the discrete description 
of a second order linear system. Consider the following continuous input­
output model: 

d
2 

I' d I) ( ( ) 2-
d 

?Ylt;) + 3-
1 

y,\t + Ylt) = ut. t-· ( t . . .. (26) 
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If we discretize this system assuming a zero order holding at the input and 
a sampling period of 0.1 sec, the following input-output model is obtained 
in the shift form: 

(q2 _ 1.856 q + 0.8607)Yt = (0.002379 q + 0.002263)Ut . (27) 

The equivalent form of the above system in delta form is 

(2.15562 + 3.1016 + I)Yt = (0.0.5l25 6 + l)ui 

or by eliminating the operator the obtained model is: 

2 1:;- Yt - 2Yt-1 + Yt-2 + 3 101 Yt-l - Yi- 2 ..l.... = 
• OC) h2 . h I Y,-2 

(28) 

We can see that the coefficients in the delta model show a close similarity to 
the corresponding coefficients of the continuous model. Another advantage 
of the delta model is that the numerical properties of the delta models are 
superior to those of shift operator model in practice. This fact '.vill be 
presented in the next section. Here the nonlinear behaviour of the system is 
approximated by a neural network and the dynamics of the system is taken 
into consideration by a network containing only discrete integrators. This 
realisation is the special case of Eq. (24). Fig. 5 shows the structure which 
is used for modelling the nonlinear system. 

u 

on-IU 
:- Sl1y .... 

NN '" -.... 
y 

'--JjIlit 

Sl1-1 y 

hq-l hq -1 

"" ~ - -- -1 -1 -q 1 -1 -q 

Fig. 5. The structure of delta operator 
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4. Numerical Results 

To verify the feasibility of the proposed structure a number of examples 
has been studied by simulations. In this section the results of two simple 
examples are presented. In the first example a first order system, in the 
second one a second order system \vith deadzone nonlinearity is identified. 
The examples are to demonstrate the difference between the two structures. 

EXAMPLE 1 A first order non linear model is given in Fig. 6. 

_ll_t_-lll>I -o£lL ~V-,t ill>! 1 

~ -*---------------. t 

+ 

1 
A 

Yt 

Y l-1 

Fig. 6. The identification process 

The model is described by the following equation: 

Yt - 0.99 Yi-l = 0.01 Vt-l 

with 

Vi = { ~t - 0.2· sign (ur) 
if IUtl < 0.2 } 

otherwise . 

The non linearity represents a dead zone. The training of the model for this 
plant has been carried out using one hidden layer including two neurons in 
it. The transfer function of the hidden neurons is tangent hyperbolic. The 
transfer function of the output neuron is linear. The system equations above 
show that Yt will be a function of Yt-l and Ut-l. Using inputs in the [-1: 1] 
interval at -1, -0.8, ... ,1 and assuming the same set for Yt-l a pattern of 
121 values results in a surface of the Yt due to the system equations. The 
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0.9 u 
0.8 

0.7 1\ 
.... -_ ... - ..... _ ...... -- ... - .... ------

~ 

0.6 

u,y y 

400 600 800 1000 

number of steps 
Fig. 7. The step response of the trained neural network using the shift operator 

used input signal guarantees the persistent excitation. The training method 
is the quasi-Newton algorithm. 

The simulation results of identification based on shift operator are 
shown in Fig. 7. The difference bet\yeen the real and the estimated output 
is approximately eP = 0.12. The identification error in this working point 
(u = 0.8. Y = 0.6) is eS = 0.0012. According to Eq. (IT) the netv,ork error 
numerically is 100 times bigger than the identification error. 

To illustrate the advantages of the delta transform modeL now the 
same network with the same initial weights is trained using the delta oper­
ator model. This system is equivalent with a discretization of a continuous 
time system where the steady state gain is f{ = L the time constant is 
T 1 sec, and the sampling time is h = 0.01 sec. A normalisation proce­
dure is perform.ed on the output values to scale the output interval to the 
[-1,1] interval. 

The simulation results of identification based on the delta operator are 
sho\vn in Figs. 8, 9. In Fig. 8 the square impulse responses. in Fig. 9 the 
sinusoidal responses of the trained net\vork and the real system are shO\yn. 
The used neural network learnt the given plant \vit"h an excellent accuracy. 
As a matter of fact the real system output and the output of the neural 
network almost completely cover each other. The parallel model is used 
to test the validity of the training. The dotted line is the output of the 
network and the solid line is the desired signal. Figs. 10, 11 represent the 



.'IO.'lLlNEAR SYSTEM IDENTIFICATIO,\' 

o.8\------------, U 

0.6 

0.4 

U,Y 0 

-0.2 

-0.4 

-0.6 

-0.8 

-10L----2~OO~--4~OO---~600~---8~0~0----~1000 

number of steps 
Fig. 8. Square pulse response using the delta operator 

0.8 u=O.8*sin(O.002*step) 

0.6 

U,Y 

-0.2 

-0.4 

-0.6

1 
-0.8 

-1~--~-~--~-~--~--~-~~ 
o 500 1000 1500 2000 2500 3000 3500 4000 

number of steps 

Fig. 9. Sinusoidal response using the delta operator 

final output of the netviork and of each hidden neuron alone in 3-D. 

18T 

EXA:vIPLE 2 Consider a second order nonlinear model described by the fol­
lowing: 

Yt - 1.982-5 Yt-l + 0.9841 Yt-2 = 0.00079-56 Vt-l + 0.0007914 /.'i-2 
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1.5 

1 

0.5 

0 

-0.5 

-1 
1 

1 

y -1 -1 u 
Fig. 10. The outputs of the hidden neurons. 

1.5 

1 

0.5 

o 

-0.5 

-1 

-1.5 
-1 1 

1 -1 
y 

u 
Fig. 11. The output of the network. 
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with 
" _ { 0 if IUtl < 0.2 
t:i -Ut - 0.2 . sign (Ut), otherwise 

The nonlinearity represents a dead zone. This system is equivalent with a 
discretized second order continuous time system, where the two poles are 
51 = -0.04+0.196j l/sec and 52 = -0.04-0.196j l/sec, respectively, the 
steady state gain is I{ = 1 and the sampling time is h = 0.2 sec. The training 
of the model for this plant has been carried out using one hidden layer 
including six neurons in it. The activation function of the hidden neurons 
is tangent hyperbolic, while the activation function of the output neuron 
is linear. 1000 patterns have been used for training randomly between -1 
and 1. 'The training method is the quasi-Ne\vton algorithm. Using the delta 
transform as shown in section 3 .. 5 better results are obtained. 

1 
~~ ________________ ~u 

ll,y 

0 
/\ 

Y 

-0.5 

-1 

I 
0 200 400 600 800 1000 1200 

number of steps 

Fig. 12, Square impulse response using the shift operator 

The simulation results of identification based on the shift operator are 
shown in Fig. 12. In Fig. 12 the real system output, the estimated output 
and the input are shown. The difference between the real and estimated 
output is approximately 0.42. It is correct since the identification error in 
the used working point is 0.002 and according to Eq. (19) the network error 
is 218 times the identification error. The results of the identification based 
on the shift operator in this case are very bad. 
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U,Y 

800 1000 

number of steps 
Fig. 13. The sinusoidal response using the delta operator 

o 1\ U,Y 

Y,Y 
-0.5 

-1 

-1.5'-----'----'-----'----'----..J 
o 200 400 600 800 1000 

number of steps 
Fig. 14. The square impulse response using the delta operator 

The simulation results of identification based on the delta operator 
are shown in Figs. 13 and 14. In the figures the real system output, the 
estimated output and the input signals are shm\"ll. The real system output 
and the output of the neural network almost completely cover each other. 
The results of identification based on delta operator are very good. In this 
case the used neural network learnt the nonlinear plant \\'ith an excellent 
accuracy. The results of the two examples verify the effectiveness of the 
proposed structure. 
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5. Conclusion 

In this paper a new structure is proposed and described to solve nonlinear 
identification problems. Simulation studies are presented to demonstrate 
the effectiveness and feasibility of the approach. As it has been shown by 
examples using the delta transformation in an identification task makes the 
neural networks more effective tools. The shift operator form is not useful to 
some extent. Assuming the same environment (initial value, network size, 
etc.) the delta transformation model gives superior results. The examples 
shown above demonstrate the effectiveness of this thesis. The delta transfor­
mation structure prod uces the same results for another type of nonJinearity, 
as well. 

The problem to design a controller which generates the desired control 
input is based on a good model of the process to be controlled. To have 
a good control behaviour it is necessary to have a model of good accuracy. 
The more accurate an identified model is, the better control can be achieved. 
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