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Abstract

Most industrial systems are nonlinear. In these applications the conventional identification
and control techniques are effectively used if the nonlinearity of the system is known. When
the system contains unknown nonlinearities, however, the conventional techniques exhibit
poor performance. To tackle this problem a neural network is proposed to use. The ability
of neural networks to approximate nonlinear relationships makes them prime candidate
for applications in nonlinear system identification. Simulation results show that if the
conventional nonlinear system description is used the modelling error may be significant,
but using the delta transformation this error can be reduced. This paper demonstrates the
difference between the shift and delta model and verifies the effectiveness of the structure
of the delta transformation. Simulation results demonstirate this difference.

Keywords: neural networks, delta transformation, delta operator, shift operator, identifi-
cation.

1. Introduction

In the past three decades many identification and control design techniques
have been established. These techniques are efficient for linear systems
and for those nonlinear systems in which the nonlinearity is known. If the
nonlinearity is unknown, however, then the task is very difficult. The ability
of neural networks to learn any nonlinear mapping between input and output
data makes them useful and efficient tools to solve this problem.

The Neural Networks (NN) are parametrised nonlinear functions. The
parameters in the NN are its weights. Learning simply means parameter
estimation. It is well known that the fundamental properties of Neural Net-
works make them useful as approzimators of nonlinear mapping.

The Kolmogorov theorem gave insight into the capabilities of multi-
layered neural nets. As explained by LippMany (LiPPMANN, 1987) this
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theorem states that any continuous function of N variables can be com-
puted using only linear summations and nonlinear but continuously increas-
ing functions of only one variable. Actually the theorem states that a three
layered net with V(2N +1) neurons using continuously increasing nonlineari-
ties can approximate any continuous function of NV variables. Unfortunately,
the theorem does not indicate how the weights and the nonlinearities in the
net should be selected.

2. System Identification

System modelling (i.e. its mathematical representation) and identification
are fundamental problems in system theory, where it is often required to ap-
proximate the behaviour of a real system with an appropriate mathematical
model given by a set of input-output data. The identification problem is to
find relationships between past input-output data and future outputs. To
identify nonlinear systems it is necessary to define nonlinear models, whose
parameters have to be estimated to represent the system. One condition to
obtain good identification results is that the input of the plant should be
adequately ‘rich’ in order to capture the system dynamics accurately. For
example, to identify the steady state gain an input signal of small frequency
is required. On the other hand, the identification of the time constants re-
quires another frequency region in the input signal. If the identification is
accomplished only in a subspace of the possible inputs, the results produced
by the network could be poor outside this subspace. The importance of the
inputs used to train learning systems is widely appreciated. In the Neural
Network literature the input and output data are called training data or
training patterns. The main task of the identification is to determine the
parameters of the assumed model (Fig. 1).

[—@ Plant

Uy

Model

Fig. 1. The structure of identification

For linear time-invariant systems model structure selection and iden-
tification problem is well established and the literature abounds with many
useful methods, algorithms and application studies (NARENDRA, 1990).
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Eq. (1) represents a (SISO) linear time-invariant causal system structure:

n—1 m—1 '
Yip1 = Z Yt + Z biug_j, (1)
1=0 =0

where a;, b; are the unknown parameters. Two identification models are
often used (NARENDRA, 1990).

1. Parallel model (Fig. 2) for linear or linearized nonlinear systems:

-1 m—1
Upp1 = Z a;Ge—i + Z bius_; . (2)
1=0 7=0
u, .| Nonlinear Yt
v plant
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Fig. 2. Parallel identification model

Here the feedback is taken from the output of the estimated model.
2. Series-parallelmodel (Fig. 3) for linear or linearized nonlinear systems:

n—1 m—1
Yrp1 = Z aiYr—i + Z bius_j . (3)
=0 =0

Here the feedback is taken from the plant output. The TDL in the
figures denotes a tapped delay line (Fig. ) where ¢! is the backward
shift operator.

As the parallel model under training may cause a divergent result -
during the training phase the series-parallel model, after the training the
parallel model is used. Notice that in the series-parallel identification model



178 H. CHARAF and I. VAJK

u, . ‘Nonlinear yi
v plant |

¥
TDL

|

Fig. 3. Series-parallel identification model

U, B %ut—l
q
q -1 : »ul‘—2
: U,
-1 -

q

Fag. 4. The tapped delay line

a feedforward, while in the parallel identification model a recurrent neural
network is used. The objective of the identification is to determine the a;
and b; parameters that guarantee minimal error between the real output
and its estimated value.

g -yl <e. (4)

Most systemns encountered in industry are nonlinear. To model nonlinear
systems, nonlinear system descriptions have to be applied. Nonlinear Auto
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Regressive Moving Average (NARMA) description has been shown to pro-
vide a very useful unified representation for a wide class of nonlinear systems:

Ye+r1 = f[yfr'":yf—n+l:uf:"'%uf—m+l] . (5)

Here f[.] is a nonlinear function which is rarely known a priori and can be
very complicated. Nevertheless, nonlinear system identification is a complex
and difficult task.

The problem of identifying a model structure and its associated pa-
rameters can be related to the problem of learning a mapping between a
known input and output space. In this paper a neural network is used to
solve this problem.

An immediate problem is how large the variables n and m should be
in Fq. (5). From a practical viewpoint they should be as small as possible
to reduce the complexity of the network, and the number of the parameters.
In this case the task of determining the parameters of the network is easier
and the learning procedure is shorter. On the other hand, these variables
should be large enough to model the significant dynamics of the nonlinear
plant (WARWICK, 1992).

3. Neural Networks

The literature is rich in definitions of neural networks. A neural network is
a set of simple elements (neurons) which are connected together organised
into layers to form either one single layer or multiple ones. Each neuron
has multiple inputs and one output. In each input there is a weight by
which the input signal is multiplied. Each neuron has a self weight (bias).
Each neuron sums all its weighted inputs and performs a nonlinear function
operation on it. This nonlinear function is called the activation function of
the neuron.

3.1. Neural Network Architecture

A typical multiple-layer feedforward neural network consists of an input, an
output and one or more hidden layers. If a network contains some delayed
outputs or delayed internal states as inputs then that network is a recur-
rent or dynamic network which has useful properties in dvnamic system
identification and control.

Key questions are: -how many layers of hidden units should be used,
and how many units are required in each layer? What is the smallest posstble
number of neurons in a hidden layer for best possible operation?
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3.2. Neural Networks as Universal Continuous Mapping Approzimators

Using Neural Networks is just a way of curve fitting to data. They have
excellent approximation properties. Due to the Kolmogorov’s theorem any
continuous function f of several variables defined in space (I™ = [0, 1]™;
n > 2) can be represented in the form :

0= (So).

where x;, ¥;; are continuous functions of one variable and #;; are monotone
functions which are not dependent on f.

A lot of theorems demonstrate the ability of a neural network to
approximate nonlinear functions (HECHT-NIELSEN (1987), GALLANT and
WHITE (1988), CYBENKO (1989), HORNIK et al (1989), FunaHasHI (1989)).
In (FuNaHASHI, 1989) the following theorem was proved:

Let ¢(z) be a nonconstant, bounded and monotone increasing con-
tinuous function. Let K be a compact subset (bounded closed subset) of
R™ and f(zy,Z32,...,2,) be a real value continuous function on K. Then
for an arbitrary € > 0, there exists an integer N and real constants ¢;,
6;(i=1,...,N),w;;(e=1,...,N,7=1,...,n) so that:

N n
f(z , Tr) Z ciw Z (wi;z; — 0;) (6)

satisfies :

maxlf( 1,...,$n)—f(:n1,...,$n)‘<€. (7)

zeK
In other words, for an arbitrary £ > 0, there exists a three-layer network
(one-hidden layer) whose transfer functions for the hidden layer are o(z)
and for input and output layers are linear and which has an input-output
function f(zi,...,zn) which satisfies Eg. (7). The theorem does not say
that a single hidden layer is optimum in the sense of learning time or ease
of implementation.

In general, one-hidden layer neural network with a nonlinear mono-
tone increasing (e.g. sigmoidal) nonlinear hidden neuron transfer function
can approximate any continuous function with an arbitrary accuracy. The
transfer function is usually sigmoid, tangent hyperbolic or saturation.

3.3. Learning Algorithms

Learning for Neural Networks simply means parameter (weights) estima-
tion. But the model is nonlinear in the parameters. In each neural network
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application learning is a critical question. The objective is to determine an
adaptive algorithm or rule which adjusts the parameters (weights) of the
network based on a given set of input-output pairs. The collected data are
used as training data for the learning process of the neural network.

The problem of determining the network weights can be considered es-
sentially as a nonlinear optimisation task. The simplest optimisation tech-
nique uses the objective function (cost function) to determine the search
direction. It is well-known that gradient search for the minimum is ineffi-
cient, especially close to the minimum. It is better to use another search
technique. The quasi-Newton (variable metric) and the conjugate gradient
search techniques are very efficient solving this task.

The main feature of the quasi-Newton method is that it makes a se-
quence of progressive estimates of the inverse Hessian (second derivative of
the cost function) matrix, based only on the first derivatives. The approxi-
mated matrix is updated in each iteration step, supposing that the function
can be calculated at all points and the gradients can be determined analyt-
ically at each point or can be estimated from the differences of values of the
function to be minimised.

The conjugate gradient algorithm generates a conjugate direction as
a linear combination of the current gradient and the previous search direc-
tion. The current parameter vector is a linear combination of the previous
parameter vector and the current conjugate direction (CHARAF et al, 1995).

3.4. The Problem of the Ideniification Based on the Shift Operator

Let us assume that a nonlinear system is defined by E¢. (5). A neural
network is used to identify the nonlinear behaviour of the system. Under
training the series-parallel model is used (Fig. 3). The neural network ap-
proximates function f (£g. (5)) by f. The training task is to minimise the
square error between the real system output and the output of the network.
The remained identification error is defined as follows:

6‘:‘2_1 = f(y cee s Ytenaels Up oy Ut—m+1} - f[yt« s Yrends U,y - 'auf—m-%-l] .

(8)
After the training the parallel model is used. The output of the network
(which contains e° error) is fed back. The error of the network can be
significant. This error (Fig. 2) is defined as follows:

eil = f[yz~ o Pty Uty e U] = flys Ytond1s Uz oo oy Utom1] s
(9)

where X
gt—;‘l - f[;z;’i;"':g‘c‘—n-%-l:ui:" ‘>uf—m+1] (10)

supposing that the function f is continuous and differentiable around the
working point. f can expanded to Taylor series. The network error is
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calculated as follows:

9f
P S 4 .
€i41 ™ G141 T Oy by (J¢ — ye)+
of X of

? Ye—1 = Y1) T EY Utentl = Yton . 11

* 50 Y(yt 1= Yi-1) + Tgemiily (Jt-nt1 = Yt—ns1),  (11)
where

Y = [yiz ces Yionga, Us, 'fuf_m_:‘l] .

The Eq. (11) can be written in other form:

ew—l = 644-1 Zaz i— i1 (12)

where of
= gl (13)
Yi—it1ly
Since in the steady state the following equalities are available:
S (14
and N
et:ef_lz...:e}j, (15)
it can be shown that the network error in this case will be:
P €~ )
¢ = ———. 16
1 + '?:1 a; ( )
For example in the case of a first order system
s
P € -
e = . 17
T a (17)
This means that if @ = —0.99, then the error of the network in a given

working point is 100 times bigger than the identification error remained after
training (Example 1 in section 4.) In the case of a second order system:

y: — 1.8561 y;—; + 0.8607 y;—2 = 0.0024 u;_; + 0.0023 u;> . (18)
According to Eg. (16) the network error is as follows:

P e e’

¢ Q ol
© T lTata  I-L8561508607 0 € (19)
These examples demonstrate that the shift operator form has a lot of dis-
advantages. In case of higher order systems this error grows very fast.
Numerical examples verify that in some cases this form is not useful. It is
necessary to find another structure which guarantees the smaller error. The
proposed structure uses the delta transformation.
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3.5. Delta Transformation

The shift operator g is often used to describe discrete systems. The definition
of the forward shift operator is

qT: = Tyt - : (20)

Using this operator the discrete state space model of a system can be written
as
qr: = F(‘rf:uf) s

v = Gz u), 21)

where z;, u;, y; are the state, the input and the output of the process, re-
spectively. :

Another equivalent description of the system can be obtained by using
the delta operator. This operation is defined as

Lyt — Ty _ l(th*‘:—h)—l‘(tn)
h B h

5‘17t

i

(22)

where h is the sampling time (MIDDLETON et al, 1987). The relationship
between the ¢ and ¢ operators is a simple linear function:

§=2"". (23)

This guarantees the same flexibility in the modelling of dynamic systems as
does the shift operator. Using the ¢ operator the discrete state model can
be described by

Sy = F'(z;,us),
b 2 Dleoue (24)

(Rt Uf) .

One way to determine the discrete delta mode! form is to find a shift model
form and then to substitute

g=1-+hé. (‘25)

Though this transformation method is technically correct, this is not the best
way to derive the delta model. A better method is based on the selection
of the state variables which are used in the continuous time state space
equation.

To demonstrate the transformation we present the discrete description
of a second order linear system. Consider the following continuous input-
output model:

y(t) + y(t) = ult) . (26)
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If we discretize this system assuming a zero order holding at the input and
a sampling period of 0.1 sec, the following input-output model is obtained
in the shift form:

(¢* — 1.856 ¢ + 0.8607)y; = (0.002379 ¢ + 0.002263)u; . (27)
The equivalent form of the above system in delta form is
(2.1556% +3.1016 + 1)y; = (0.05125 6 + 1)u;

or by eliminating the operator the obtained model is:

s Ut = 22U T Y
J9

2.15 =2 4 g1 dimt T Y2

= T e

= 0.05125'&3;——-: g (28)

We can see that the coeflicients in the delta model show a close similarity to
the corresponding coefficients of the continuous model. Another advantage
of the delta model is that the numerical properties of the delta models are
superior to those of shift operator model in practice. This fact will be
presented in the next section. Here the nonlinear behaviour of the system is
approximated by a neural network and the dynamics of the system is taken
into consideration by a network containing only discrete integrators. This
realisation is the special case of Eg. (24). Fig. 5 shows the structure which
is used for modelling the nonlinear system.

u

51 5 oy
u ——=
- NN >
y :
5}1—1}/
hq hq™ -
1-q7 1-q”

Fig. 5. The structure of delta operator
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4. Numerical Results

To verify the feasibility of the proposed structure a number of examples
has been studied by simulations. In this section the results of two simple
examples are presented. In the first example a first order system, in the
second one a second order system with deadzone nonlinearity is identified.
The examples are to demonstrate the difference between the two structures.

ExampLE 1 A first order nonlinear model is given in Fig. 6.

A

ut —O.Zl / v, _ 1
/ l +0.2
iy
i "
q-1
q'*
1
1 ~
U, Y

Fig. 6. The identification process
The model is described by the following equation:
Y — 0.99 Yi—1 = 0.01 Vi1

with

YT wr — 0.2 sign (ug) otherwise [ -

The nonlinearity represents a dead zone. The training of the model for this
plant has been carried out using one hidden layer including two neurons in
it. The transfer function of the hidden neurons is tangent hyperbolic. The
transfer function of the output neuron is linear. The system equations above
show that y; will be a function of y,—; and u;_;. Using inputs in the [—1;1]
interval at —1, —0.8,...,1 and assuming the same set for y;_; a pattern of
121 values results in a surface of the y; due to the system equations. The
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Fig. 7. The step response of the trained neural network using the shift operator

used input signal guarantees the persistent excitation. The training method
is the quasi-Newton algorithm.

The simulation results of identification based on shift operator are
shown in Fig. 7. The difference between the real and the estimated output
is approximately ef = 0 12. The identification error in this working point
(u=0.8,y=20.6)is e = 0.0012. According to Eq. (17) the network error
numerically is 100 times bigger than the menuﬁcauon error.

To illustrate the advantages of the delta transform model, now the
same network with the same ir mzal weights is trained using the delta oper-
ator model. This system is equivalent with a dlSCIGUZ&tIOH of a continuous
time system where the steady state gain is K = 1, the time constant is
T = 1 sec, and the sampling time is A = 0.01 sec. A normalisation proce-
dure is performed on the output values to scale the output interval to the
[—1, 1] interval.

The simulation results of identification based on the delta operator are
shown in Figs. 8, 9. In Fig. 8 the square impulse responses, in Fig. 9 the
sinusoidal responses of the trained network and the real system are shown.
The used neural network learnt the given plant with an excellent accuracy.
As a matter of fact the real system output and the output of the neural
network almost completely cover each other. The parallel model is used
to test the validity of the training. The dotted line is the output of the
network and the solid line is the desired signal. Figs. 10, 1] represent the
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Fig. 8. Square pulse response using the delta operator

sl u=0.8%sin(0.002*step)

0 500 1000 1500 2000 2500 3000 35.00 4000
number of steps

Fig. 9. Sinusoidal response using the delta operator
final output of the network and of each hidden neuren alone in 3-D.

ExaMpLE 2 Consider a second order nonlinear model described by the fol-
lowing:

y: — 1.9825y51 +0.9841 y;_2 = 0.0007956 v;; + 0.0007914 v;_»
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Fig. 10. The outputs of the hidden neurons.

Fig. 11. The output of the network.
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with
Uy = u — 0.2 Sign (ut)’ otherwise

The nonlinearity represents a dead zone. This system is equivalent with a
discretized second order continuous time system, where the two poles are
s; = —0.04+0.1965 1/sec and s; = —0.04 — 0.1965 1/ sec, respectively, the
steady state gain is K’ = 1 and the sampling time is A = 0.2 sec. The training
of the model for this plant has been carried out using one hidden layer
including six neurons in it. The activation function of the hidden neurons
is tangent hyperbolic, while the activation function of the output neuron
is linear. 1000 patterns have been used for training randomly between —1
and 1. The training method is the quasi-Newton algorithm. Using the delta
transform as shown in section 3.5 better results are obtained.

1k ]
N u
g \/\N _
u,y
0 v 1
N\
-0.5¢ /\\/\/\‘:

7, _

0 200 400 800 800 1000 1200

number of steps

Fig. 12. Square impulse response using the shift operator

The simulation results of identification based on the shift operator are
shown in Fig. 12. In Fig. 12 the real system output, the estimated output
and the input are shown. The difference between the real and estimated
output is approximately 0.42. It is correct since the identification error in
the used working point is 0.002 and according to Eg. (19) the network error
is 218 times the identification error. The results of the identification based
on the shift operator in this case are very bad.
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u=0:8*sin((i.008*s£ep
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Fig. 13. The sinusoidal response using the delta operator
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The simulation results of identification based on the delta operator
are shown in Figs. 13 and 74. In the figures the real system output, the
estimated output and the input signals are shown. The real system output
and the output of the neural network almost completely cover each other.
The results of identification based on delta operator are very good. In this
case the used neural network learnt the nonlinear plant with an excellent
accuracy. The results of the two examples verify the effectiveness of the

proposed structure.

number of steps

Frg. 14. The square impulse response using the delta operator
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5. Conclusion

In this paper a new structure is proposed and described to solve nonlinear
identification problems. Simulation studies are presented to demonstrate
the effectiveness and feasibility of the approach. As it has been shown by
examples using the delta transformation in an identification task makes the
neural networks more effective tools. The shift operator form is not useful to
some extent. Assuming the same environment (initial value, network size,
etc.) the delta transformation model gives superior results. The examples
shown above demonstrate the effectiveness of this thesis. The delta transfor-
mation structure produces the same results for another type of nonlinearity,
as well.

The problem to design a controller which generates the desired control
input is based on a good model of the process to be controlled. To have
a good control behaviour it is necessary to have a model of good accuracy.
The more accurate an identified model is, the better control can be achieved.
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