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Abstract 

Neural network models that became well known and popular in the 80's have been success­
fully applied to solve tasks in several domains. These systems seem to offer fast and robust 
solutions for several difficult problems. The comparison of the results often shows similar 
achievements for neural networks and conventional methods. There is nothing surprising 
in it, if we consider that the different types of artificial neural systems accomplish the 
same or similar procedures as the different search algorithms and other methods. Most of 
the neural networks realize a modification of previously known algorithms on an intrinsic 
parallel system. Although the underlying methods are similar. the parallel structure and 
the nonlinear processing elements offer us a new, more efficient method. 

In this paper we present how to map a constraint satisfaction problem to achieve 
fast, optimal or near optimal solution. The application task, which has been solved, is the 
Radio Link Frequency Assignment Problem (RLFAP). In this problem we have to assign 
frequencies from a finite domain to several radio connections in such a way that the result 
should meet numerous constraints. 

The first section briefly describes the neural network model we have used to solve 
the problem. The second part introduces the RFLAP task in more detail. In the following 
two sections first we show a possible method to map the problem to the neural network 
and after this we present and evaluate the achieved results. In the fifth part we finish the 
paper with some conclusions. 

J(eywords: combinatorial optimization, neural networks, simulated annealing, Boltzmann 
machine. 

1. Boltzmann Machines 

The RLFAP application task that will be presented in the next section, is a 
constraint satisfaction problem. In order to take advantage of the features 
of connectionist machines we mapped the problem to a Boltzmann ma-
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chine. This neural network is a stochastic extension of the Hopfield model 
(HOPFIELD, 1982). 

The structure of the network is a very simple, one-layer recurrent 
model. Each unit in the layer is binary and fully connected to other units. 
It was shown that the system is asymptotically stable if the matrix of the 
connection strengths (weights) is symmetric. The dynamic behavior of the 
deterministic network can be described with the states of the units: 

(1) 

where 11i is the value of unit i and Wij is the connection strength between 
uniti and j and g is the step function: 

( ) _ {+1 if 11 ~ 0 } 
g 11 - 0 if 11 < 0 . (2) 
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Fig. 1. Structure of the Hopfield type neural network 

Solving the RLFAP task we use the advantageous feature of the network that 
we can assign an energy function to the system. The important property 
of an energy function or a Ljapunov function is that it always decreases (or 
remains constant) as the system evolves according to its dynamic rule. So 
as it was also shown in the paper of Hopfield that the network converges to 
a local minimum of the energy function. The function can be written as: 

E := - :Z=:Z= WijUiUj . (3) 
J 
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Theoretically it is equivalent to minimize the energy function or to simulate 
the processing of the network) but from the point of view of our application 
using the energy function is more natural, so in the following we will focus 
on this approach. 

The performance of the deterministic network is often not sufficient as 
it stuck in a local minimum that sometimes belongs to a high-energy state. 
In order to find the global minimum or at least a 'low energy state' local 
minimum we use the stochastic extension of the network. the Boltzmann 
machine (HINTON, 1983). The idea is to get out of spuriou~ local minimum 
by using simulated annealing. We add 'thermal' noise to the process that 
makes units to change their value following a probability rule instead of 
the deterministic one. A chosen unit changes its state with the following 
probability: 

1 
P CUi -+ 1 - Ui) = ----:--,,;- (4) 

l+e 
where (in case of binary units): 

6.E = E(l - Ui) - E( U'i) (.5) 

and T is the 'temperature' parameter that controls the cooling process. It 
was proven (AARTS and KORST, 1989) that using a sufficiently high start­
ing temperature and a sufficiently slow cooling schedule the system can 
reach global minimum. Although the known theoretical results do not help 
in practice to choose optimal parameters for the annealing process, using 
heuristically determined parameters the network usually stabilizes in the 
global or 'near global' local minimum. 

Final success of the simulation depends strongly on the parameters 
of the annealing process. Although there are theoretical results about ap­
propriate cooling schedules, the choice of parameters is mainly based on 
heuristic decisions. The most important parameters can be divided into 
three groups: 

Ill> starting temperature 
• speed of the annealing 
Ill> stopping criterion 

The starting temperature should be chosen such that the network be­
haves almost random at the beginning. The parameter itself is determined 
by the magnitude of the coefficients (weight values) of the simulated system. 

The speed of the annealing process should be set as slow as possible. 
Theoretically an infinite slO\'/ annealing results to settle the system in the 
optimal solution. This way the speed of the annealing is constrained by the 
time limit of the simulation. 

The speed of the cooling is controlled by two parameters: the number 
of iterations on a given temperature and the temperature decay rate. \Ve 
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have used exponential cooling schedule that isthe most simple and common 
method (AARTs and KORST, 1989). At each temperature ION iteration was 
made, where N is the number of units in the Hopfield type neural network, 
and the parameter was decreased by a factor of 0.9. . 

Stopping criterion is determined in a way that the criterion is met 
\V·hen the network does not change its state any more. In asynchronous 
simulation this parameter is usually set to be 3N - ION iteration. 

2. Presentation of the Radio Link Frequencies Assignment 
Problem 

As a matter of fact there are several kinds of RFLAP according to the kinds 
of constraints, which have to be taken into account and to the optimization 
criteria (if there is one). 

The basic problem is only a constraint satisfaction problem. Let L be 
the radio links (L1' L2 , ... , L3 ) and Fi be the set of frequencies (fl, ... , f/') 
which can be assigned to Li given the kind of devices v;hich provide the 
radio link L i . 

The frequencies assigned to the links must meet mainly three kinds of 
constraints (let Vi be the value of the frequency assigned to Li): 

1.) Equality constraints. 
!Vi-Vjl=d. 

In fact this kind of constraints has to be met for t\VO iinks providing 
a t\\."o ways radio contact. Thus variable v, must meet at most one 
such a constraint (and in most cases every variable must meet such a 
constraint). 

11.) Inequalities constraints. 

iv: - I.:J:I > d, . 
I • .J 

The inequality constraints come from the computation of the electro­
magnetic waves propagation according to the landscape of the area 
where the related links have to be established. According to other 
criteria these constraints are split into several su bsets which have dif­
ferent priorities. These constraints are in fact soft constraints \vhich 
may be violated if there is no solution for an assignment meeting all 
constraints. 

IlL) unary constraints. 
Vi = vp . 

This means that some devices providing the radio links are already 
tuned to a given frequency and should not be modified when \\·e solve 
the problem. 
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The RLFAP can be described in a very general way as follows: 
Find a solution meeting all constraints and minimizing additional cri­

terion F(Vi) and if there is no solution minimize a criterion based on the 
violation of the constraints. Additional criterion is different for the prob­
lem instances, but in most cases we should minimize the number of used. 
different frequencies or the maximal used frequency value. 

The purpose of the project was to prove the viability of using Bolti­
mann Machine for solving the RLFAP. Therefore we have solved several 
instances of the problem, so called sceni (i = 1, ... ,4), by the neural net­
work approach. To be able to compare both qualities of the obtained solu­
tions and the needed processing time for solving them, these problems have 
already been solved by constraint programming approach. 

3. Mapping the Problem to Boltzmann Machine 

We presented the RLFAP constraint satisfaction task as an optimization 
problem, where the primary aim of the optimization is to meet all the con­
straints. Let us consider first the basic problem where there are no other 
optimization criteria than the above mentioned one. In this case we can use 
the number of violated constraints as the cost function of the problem. The 
solution to be found can be characterized by a finite set of discrete variables 
(radio links) V = {VI, ... , vn }, that should take a value from a finite domain 
(frequencies) D = {Jl, ... , Jp}. To use a Boltzmann machine for solving the 
problem generally we have to accomplish the following two steps: 

a.) \Ve should convert the optimization task into a 0-1 programming 
problem. In order to do it. instead of using real valued variable (1.',) \ve 
assign new binary variables for each possible link-frequency pair. So we 
create a variable .r ij for each (c';, fj) dou ble. Let: 

1.: ij 1 if c'; = fJ 
;rij 0 if Vi 

! Jj r 

Then we obtain our net\\'ork, such that the stille of each unit 11), determines 
the value of exactly one variable x i.i' (This mapping can be writ LeT! as Uk = 
m(xij) or U = J\lJ(X).) So each possible state vector uf the network units 
contributes to a given (correct or not correct) solution of the optimization 
problem. 

b.) In the second step we should define the connections of the network. 
the weight matrix (TV) such that the energy fu ndion of the network and 
the cost function of the optimization problem should be feasible and order 
preserving. This means that the global minimum of the energy function 
should correspond to thp optimal solutio;, the problem and the functions 
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should also satisfy the following condition: 

(6) 

where E is the energy function. F is the cost function and Cm = .i,J(Xp). 
[:n = !v1(Xo)' 

In our case to accomplish these conditions we have to consider both 
the constraints of the original problem and the constraint coming from the 
assignments of the variables Xij: that creates the ne .. ,' condition: 

"\,, ... = 1 L-t .L,] - . (7) 

In order to make the problem easier for the network we modify the structure 
and hardwire the second condition in it. \Ye use the l-of-K encoding for the 
units that was introduced by [Pet89]. It means that \ye force the network 
tlut among the units that contribute to the yariables :['11. :1:;2.· .': .[:ir there 
should be always exactly one unit ,yith the value of 1. This also causes that 
\ye should consider at the evaluation of the energy function that if a unit 
changes 0 -'T 1 then anot her unit changes 1 -'T 0 in the same time. In this 
case the asynchronous behavior of the net\\'ork is modified in the sense that 
always two units change values (vice-versa) synchronously. 

After this to find a solution that meets all the constraints of the RLFAP 
task we can choose the weights of the network in the following way: 

tL' pq = 1. if the assignment variables l'c = Jj and l.'.~ = it does not \'iolate 
a constraint. where m.(x) and uq m(:cu), 

o. othenyise. 

It can be seen then easily that the energ~' function: 

r;' - ""' ~L' ("1' ..' • L_--J -u:;'.J)Ur,tl~7 
L-..-d '" 1:" • 

is feasible and order preserving. 
So far we presented hO\,' to map the basic RLL\P problem to Cl neural 

network. In our case we had to complete another task. too. Among the 
possible solutions \\'e \,"antecl to find an optimal one. where the optimization 
criterion \\'as to minimize the number of used different values (frequencies). 

To accomplish this ta.sk we extended our model with ne\\' neuron-like 
elements and also completed \\'ith a second term the energy function. For 
each value in the domain \\"e haw an integer elemenl (t,.) that outputs the 
number of variables currently taking the value. The best energy function 
term we found for this problem is: 

D D 

E2 = -cLLt,to' (9) 
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where D is the number of values in the domain and c is a sufficiently small 
factor to keep this term less than 1. (The reason to use c is that the primary 
criterion is still not to violate the constraints.) This term is feasible. and al­
though not generally order preserving (if \\"e c~nsider the cost function to be 
the number of used values). but it keeps local order preserving feature for all 
possible two consecutive states that is sufficient when we use asynchronous 
updating. So the energy function was used to find optimal solution is the 
following: 

4. Results 

The described method was tested on 7 different CELAR databases (see 
TablE 1). For all the investigated problems correct solutions were found. 

To obtain a solution for the basic problem (where the only criterion is 
to meet all the constraints) the usage of the deterministic network (T 0) 
was sufficient. In this way the time needed to find a solution was some 
seconds (if we do not count the data-loading phase). The size of the network 
varied from 2000 units up to .s000 units for the diff"erent problems. 

Table 1. Data and results of the tested RLFAP problems 

Problem ~;umber of ::\umber of \'iolated Cost of the ::\ umber of used 
I 

\'ariables constraints constraints violated values in 
III solution constraints solution 

scellO 1 916 5548 0 0 20 
scen02 400 ::760 0 0 14 
scen03 200 12:35 (. 

J 0 l4 
scen04 680 39'.,7 0 0 46 
scen06 :,WO IJ~2 IGJ --1870 46 

46 

To get correct \'ahle assignments for the variable \\"ith using minimal 
number of different \"alues. v;c should have to use simulated annealing. The 
necessary cooling schedule was different for the problems but for all of them 
a starting temperature Tu = 10 and a cooling of T := 0.9 x T after each 
three times the number of uIlits cycle gave good results. The processor time 
used for solving the problems was in each case less than an hour on a Sun 
Sparcstation 10 machine. 

For all the tested problems the quality of the solution was good. The 
achieved results are better or the same that have been recei\"ed with other 
methods (see details in the table). The Boltzmann machine prayed to be 
a robust and reliable method for solving the problem. There are several 
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possibilities for further investigations. We plan to test different cooling 
schedules, polynomial (AARTS and VAN LAARHOVEN, 1985) and logarithm 
cooling (HAJEK, 1988) strategies and the algorithm \vili be implemented on 
a 100 processor parallel machine that can increase the speed very much. 

The presented work shows that Boltzmann machines offer an efficient 
method for solving constraint satisfaction tasks in case when suitable map­
ping of the problem can be accomplished. 
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