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Abstract

Conventional radio direction finding methods suffer a lack in performance under certain
configurations of the radio frequency environment. A typical example is the case of two
or more transmitters spaced closely in terms of azimuth angle. Several adaptive algo-
rithms have been introduced to enhance the angular resclution and accuracy of radio
measurement. Compared to the traditional methods these algorithms provide consider-
ably higher accuracy in determining the direction of arrival and higher grade of radiating
source separation can be achieved. In this paper a brief overview of conventional and two
adaptive estimation methods is provided as a literature summary, which is followed by a
qualitative analysis and comparison of these three methods in terms of dynamic range and
resolution as new results. Finally software simulation results are presented to demonstrate
the advantages of adaptive methods as well as their sensitivity to versatile performance
degrading conditions.

Keywords: adaptive signal processing, spectral estimation, antennas, radar.

1. Introduction

To distinguish the different adaptive approaches it is necessary to under-
stand the common principle of the radio direction measurement. We assume
that a linear antenna array is located in the electromagnetic environment to
be measured. [t is also assumed that this system is operating under aperture
far field conditions, which means that the receiver array is spaced distant
enough from all the transmitters so that the incident field can be estimated
as a superposition of plane waves (see Fig. 1).

Under the above conditions there is a strong parallelism between the
well known time ¢ frequency domain and spatial frequency « angular do-
main, that is widely exploited in antenna theory and design. The most spec-
tacular example for this relationship is linear antenna array design, where
the design of the array, a spatial filter, is derived from conventional filter
design methods. In this approach the transfer function of a frequency do-
main filter corresponds to the antenna characteristics in the angular domain.
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Fig. 1.

There is a clear evidence that radio direction finding raises basically the same
questions as spectrum analysis. That is why the techniques discussed below
are commonly referred to as adaptive spectral estimation methods. The
dualism of time and spatial domain is summarized below.

Analogies
Time domain Spatial domain
time distance, displacement
frequency spatial frequency
correlation spatial correlation
spectrum spatial spectrum
frecuency domain filter | spatial filter

The main point of radio direction finding is determining the direction
of arrival (DOA} of the radiating sources. This can be done by determining
the spatial spectrum of the input process, i.e. the incoming signal vector of
the individual array elements. The power spectrum of any stochastic pro-
cesses can be derived from its auto-correlation function, as they are Fourier
transform pairs. Finally the correlation can be calculated by the convolu-
tion of the time domain signal vector coming from all antenna elements.
The summary of this processing flow is shown here:

EM Environment — | Antenna| — | Autocorrelation | — | Spatial
Superposition of incident signals matrix R spectrum |
plane waves

Similarly to any real measurement situation the available data covers
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a finite time and spatial span rather than the infinite time period and/or
spatial range required by definition of any correlation function. In this case
the spatial domain is sampled at the antenna element positions, and the
time domain is limited to discrete samples of a finite interval, too, which
explains the word “estimation’ in both spectral and spatial sense.

After having drawn the rough skeleton of the successive steps in the
data flow we give a more detailed description of each phase.

1.1. Mathematical Model [1] [3] [5] [6]

In the mathematical model we assume a linear antenna array of N elements,
M different interfering sources and thermal noise. The antenna elements are
equally spaced and the distance is not greater than half of the wavelength
of the incident field {Shannon’s sampling law). The antenna elements are
isotropic or omnidirectional. The interfering sources are sinusoidal. The
effects of non-zero bandwidth will be taken into consideration later in this
paper. The thermal noise is Gaussian white noise with zero mean value, o?
variance and is uncorrelated with all the interfering sources. The signal of
a single antenna element can be written in the following form:

M
26(t) = 0k () + D P () gu(Qo ) =m 7k, k=1, . ,N. (1)

m=1

Where ny is the thermal noise component; p,, is the power density of the m-
th source at the array’s position; g is the gain in the direction of the source
- this value is actually independent of ©. as we assumed omnidirectional
or isotropic antenna elements. The exponential component needs further
explanation: w,, is the spatial frequency, and x is the distance of a given
antenna element, measured in wavelength units from the end of the array
d" i .

\/u.; =27sin0, wp = I;T ) One sample of all antenna elements at a given
A

instant can be expressed as follows:

Tal ] [oove ] g (1)
bozo(t) : : : X pa(t) nig(t)
2 = + (2)
Zz\v(t) *‘ UN1 UN2 R UNM J p M ({> L n’.’\'(t)

The z 1s the input signal vector, each vector element corresponds to an an-
tenna element. The ¥ matrix contains the gains multiplied by the phase
difference of the single elements, thus this depends on both the antenna
array configuration and the electromagnetic environment, each column cor-
responds to an interfering source, each row to an antenna element. The
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incident power at the array is represented by the p vector and n is the noise
vector.

Until now we set up the model for the electromagnetic environment.
Now the first step of processing has to be done with this data. Determining
the autocorrelation matrix of the incoming signals can be done as follows:

R = E{a(t,6)2" (1,6}, (3)

where E{} is the ensemble averaging operator which — for ergodical processes
- is equal to the time average.

Using the V matrix shown above and exploiting the fact that noise
and interference are uncorrelated, this equation can be rewritten:

R=VE{p(tOp" (.0} VI + E{nt.on"(tO}. @

We introduce the following notation
P=pE{p(t,p" (1.9}, (5-2)
E{n(t, e (t,6)} = 0’1 (5-b)

Now we can rewrite (4) in a shorter form, that will be used in this paper:
R=E {z(i,g)zH(Lf)} = VPVH 4 o1 (6)

The mean value should be calculated on an infinite interval of time. In real
systems this is impossible, only a certain number of samples can be used,
thus the autocorrelation matrix can only be estimated. During practical
tests it turned out that about 100 samples result in sufficient accuracy.
There is, however, another limiting factor in real EM environments for the
number of samples: the stationarity of the observed process is not always
satisfied, as the autocorrelation function is a slowly varying function of the
time. This means that the time interval required to take the samples for the
measurement has to be within the time constant of the quasistationarity.

2. Principles of Different Spectrum Estimating Methods
2.1. Conventional Beamforming [1] [2] [3] [5]

Conventional beamforming estimates the spatial spectrum by making a
Fourier transform on the incoming z(t) signal’s correlation matrix after ap-
plying a triangle window. This is what we call Bartlett estimation. The
‘triangle’ is because the weighting coefficients are |wi| =1, k=1, ..., N
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and therefore the incoming correlation series (estimating the correlation
function) will be multiplied by a triangle window. In the spatial frequency
domain our antenna array will have a ‘sinc’ pattern. The problem is that
this pattern has a high sidelobe level. We can suppress these sidelobes by
selecting another windowing function, but then the mainlobe’s beamwidth
increases and the angular resolution decreases. Note that low sidelobe level
and narrow main lobe contradict each other.

If we vary the weighting coefficients’ phase linearly, we get to the elec-
tronically scanned beam antenna. We sum the incoming smnals from the
individual elements (make the ¥ = wlz product) with a phase delay re-
flecting the current direction of arrival (DOA). This complex output voltage
is a maximum, if the mainlobe and DOA match. Such a system can be seen
on Fig. 2.

The w(@) weighting (here: scanning) vector has the following form:

wy = e EmEE k=1, ..., N. (7)
According to our analogy the scanning main lobe equals to a filter having

a ‘sinc’ transmission function shifting in spatial frequency domain. If the
beam points to @ direction, the system’s output power is:

Pe)=TrT. (8)
As we already know,
Y =wl(0)s, (9)
so the power spectrum is the following:
1
Pepr(0) = 57w (O)Rw(9), (10)

where the {} operator is the transponate-conjugate operator; R is the
incoming signal series’ correlation matrix.
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The Rayleigh limit is valid for the systems resolution, which means
that two targets can be separated only if they have a distance which is
equal to the distance of the first null from the main beam’s peak. The
angular resolution’s value is the half of the main beam’s width:

where D is the linear antenna array’s length: A is the incoming plane wave’s
wavelength. We can increase the resolution, if we increase the electrical
length of the array. As this always results in increasing the N number of
elements, we run into practical limits.

Advantages:

Low computational needs;
Area under the spectral curve corresponds to the power of the incom-
ing signal.

.
1
+

Drawbacks:

- High sidelobe level, which means lower dynamic range;
— Flat main beam (hard to find DOA);
2.2. Mazimum Signal-to-Noise-Interference Algorithm [1] [3] [7]

This method was introduced by Capon in 1969. This adaptive algorithm
could be described by a changing FIR filter in the spatial domain, which

) Signal
alters at every frequency to produce a maximum of the s
’ ! Y P Noise -+ Interterence
ratio. (That gives the name Maximum Signal-to-Noise-Interference Ratio -

MSINR.)

We can also call this method Minimum Variance’ as the aim is to hold
the Y outgoing power originating from noise and interference at minimum
level at every direction (spatial frequency), while the currently examined
direction is put through with unity gain. This is like a fictive scanning main
lobe antenna array, which has unity signal gain and is producing an antenna
pattern which minimizes the effect of all other interference sources. If we
scan in such a way through the entire angular interval, tuning our filter by
the algorithm given above, the SINR will be the lowest at the places where
the interference and the fictive source are matching. That is the way we can
estimate the spectral distribution function from the incoming correlation
matrix.

Let us see how we can get the power spectral density. As we know:

}_4
™

P{O) = w(©)Rw(0). (
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We can compute the SNR of the fictive signal (s vector) and the noise +
interference sources {n vector):

|‘2 ! 2
N

Noise 4+ Interference lwlzf? ~ wHRw'

(13)

We know that the optimum value for w to achieve the highest possible SINR
is:

w(0) = uR™1s7(0), (14)

where s(0) is the weighting vector which would turn a classical beamformer’s
main lobe into © direction (that’s why it is often called steering vector); p is
a complex constant — the main beam unity gain can be achieved by properly
choosing this. The maximized SNR is:

< 2
Signal nf?sTR 15"
max T = } = \ i
{.\mse + Interference (i sTR-1)R (pR~1s%)

=sT(O)R"1s7(0),

(15)
MSINR =57 (@)R™1s7(0) = s7(©)R1s(0).

T

The gain is unity if s w = 1, so y is:

-1

= sT(ORTIs(O)] . (16)

We substitute the constant into (12), then we have the spatial spectrum,
which gives the reciprocal value of the SINR (since we scaled p for unity
gain):

1
sH(©)R-1s(0)°

Pyusinr(©) = (17)

Advantages:

+ High angular resolution;

-+ Wide dynamic range:

+ The peak’s maximal value corresponds to the incoming power from ©
direction;

+ Low sidelobes.

Drawbacks:

- High computational performance required:
— Bandwidth-sensitive:
~ Correlation-sensitive.
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2.3. Mazimum Entropy Method [1] [3] [4] [5]

This method is also called Howells-Applebaum (HA). The method is strongly
coupled to the linear prediction algorithm, and - in case of a one-dimensional
antenna array — the two methods give the same Power Spectral Density
(PSDj). The linear prediction method operates on a FIR filter’s coefficients
to minimize the error signal at the output. This can be done by removing all
the deterministic components (increase the entropy) from the output signal
so it looks like a Gaussian white noise — that is what we call whitening.
The ADPCM coding mechanism used in speech encoding works just the
same way — only the output (white noise-like) and the filter coefficients are
transmitted. .

The HA method’s approach is to use only really measured data, but
this data must be utilized fully - in contrast to the Fourier methods, where
data is being lost (windowing function) and violated by using false data
(estimating O-s at the unknown places). The HA method wants to estimate
the unknown points in the less determinant (maximal entropy) way, or with
other words, to continue the function in the most probable way.

The MEM methods spectrum can be described by the following formula
in a vectorial form (derivation omitted for shortness):

1

Puem(©) = 2 2’
Z\IET\I( ) %SH(G\,R—LCS!“iS(@)!..

i
where:

e R is the autocorrelation matrix;

e ¢ is a steering vector, usually defined for a linear array in the following
way: 6T =[1 0 -+ 0]

Advantages:

-+ Provides higher angular resolution than MSINR;
+ Great dynamic range;

-+ Low sidelobe ripple.

Drawbacks:

- High computational performance required:
~ Bandwidth-sensitive;

~ (Correlation-sensitive.
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3. Qualitative Analysis and Comparison of the Described
Methods [5]

In this section the dynamic range and resolution of the previously described
methods will be calculated in the simplest possible case of radio direction
finding environment. The applied model is a special, simple case of the one
described in section 1.1:

e linear antenna array consisting of N isotropic elements spaced A/2
from each other

e one signal source with power Fyj; at ©g azimuth angle (distant enough
to apply the plane wave model) and Gaussian white noise with 0 mean
value and og.

In order to calculate the minimal necessary signal-to-noise ratio we
exploit the fact that the minimal dynamic range must be at least 3 dB in
order to fulfil the Rayleigh resolution limit.

The autocorrelation matrix is as follows under the above conditions:

R = 031+ P.gs (90) s (99) . (19)
where
: o AN 1 \
sT(@) = { 1 e ez emimfaz(N-1) ] : fa= /\—sin 0. (20
- 0
3.1. The Conventional Method (Bartlett Estimation)

The power spectrum of the Bartlett estimation is

1 .
Pepr(Q) = T‘Q‘WF(@)RW(@) (21)

Substituting the current autocorrelation matrix (19) into this equation we
obtain

1 i o \
Fepr (@) = ~{,—?—: igawH (@)IW(@) T Psing(@)S (@Q) sH (@0) W(@)j[ =
= <5 03N + Pagn (©)s (80) s” (60) w(®)] . (22)

this expression has its maximum at © = Qy:

1 ) o
Fepr (@o) = ':\.—2 [O’SJ\" -+ Kigi\fzJ . (23)
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The estimated mean power in the direction of arrival of the signal:

2
O‘“ ; -
Fear (Og) = % + Fg. (24)

At angles different from ©g the magnitude of Py, = w7 (0)s (0g) s” (0g) w(0)

2
. . o5 . ‘ , .
rapidly decreases, whereas the noise power — remains constant. The min-
s -

. . . O - . . .
imal estimated value is =2. Now the minimal SNR necessary to obtain a

dynamic range of the required 3 dB will be determined.

Al =20 N (25)
PCBFmin(G) 0'_(')2 ’
dB
(is;g) 4 :% (isgg> S =-101g . (26)
0 7 min b 0 7/ min

While determining the dynamic range of the conventional or Bartlett esti-
mation the sinc-like shape of the Bartlett window’s Fourier transform has to
be taken into consideration. We chose the level of the first sidelobe’s peak of
the sinc envelope as the lower reference of the estimation’s dynamic range.
[ts relative level is:

i,
5
(gl
TN
3]
~—
|
9
—
]
=

thus the dynamic range:

o2 1 Py
Pegr (Og) ~ T Feig N2
Acpr = CBF1T0) A - - - i
Poor @) " L (2 h, Lo (2) B
N T\ 37 &N T\ 37/ of
1 | Py
T TS
dB ! 95 og
AfZp = 101g E gp' (28)
; . sig
N \37> ol
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3.2. The MSINR (Capon) Method

The MSINR power spectrum was derived in the 2nd section (17)

1 \
Pustvn () = FEIR-15(0) .

where R is the current autocorrelation matrix (19), now its inverse is needed:

s H
R = 5|1 B, 290 (O] ) (30)
(o o 4N Psig

By substituting R™! into the denominator of the MSINR spectrum (30)

1 ,t{ -1 N
—_— = W (O)RTwW(O)=
Pusine (9] @) '
1| H ; w"(0)s (0g) s (8) w(©)
= — (W (0)Iw(0Q) — Py, - - ~ -
ol W O)Iw(®) *'E 0§ + N FPyg
1 i HO 1 sH .
= = {‘\ _ Psiﬂ'w \ )S (?0/ S' (60) W(Q)} ) (31)
oo ° g5+ N Fag '
At © = ©O¢ angle, thus in the direction of arrival the power density is:
1 1] N2
—_—— = — (N + B, (32)
Pusive(©) ~ o3 | T T T¥0R+ N PsigJ ’ R
so the MSINR power estimation in the signal source’s direction:
o2
Pusing (©o) = ~\Q* + Pl (33)

At azimuth angles different from (@g) the value of w(@)s (©y) s (0g) w(0O)
o

. g5 . . -

rapidly decreases, whereas the —\Q noise power remains constant. Thus the

9
. . . g . . . .
estimated minimum value is —TO The dynamic rapge of the estimation can

now be derived:

02
- L.p, >
Avsmn = Pusing (©0) N 7 S8 . \_[sig
Pyusinemin(©) 03 I
5

,P'o’
A = 10lg (1‘ A ji’—b> '

g
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The lowest possible signal-to-noise ratio required to achieve the required
minimal dynamic range of 3 dB can be calculated.

Pusixg (Qo) % p
MSINR (Yo N 518 .
A =2= = 35
Nishn PMsiNRmin (©) a3 (35)
N
P’si‘T 1 Psig dB ,
= = = —101lg V. 30
() w (5F), = o
3.3. The MEM Method
We use the MEM estimation of the power spectrum described in 2.3
Pyieni(0) = — . (37)
MEN T s s 37
T N W T o) R8P ‘
where R equals (19) and 6T =[1 0 ... 0]

Substituting the same R~! matrix as in MSINR case (30) into the
power spectrum estimation (37) we obtain

wT(©R™16 = = |wT(0)15 - Psi(,WT(@)i (@‘?),SH (o) 5} . (38)
o ° o5+ NPy
which gives
Togr e Liv p } _ L 3y
g ! cof + NPFe 0§ + N Psig

at © = Qq, thus in the direction of the incident wave, which results in the
MEM power estimation in the DOA in:

ot 1 _ |8+ NP |05, i /
Pueat (8o) = 75 sT(©)R-15]* N? N 'T'Fs‘gi - 40)
At angles different form (Qg) w’(©)s (€0)sf (Og) ¢ tends to zero rapidly
52|

again, whereas the value of |—| related to the noise power remains con-

)

. .. . 1T
stant. Thus the estimated minimum of Pyem(©) is ——7\?
N
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Now the dynamic range of the estimation can be derived:

02 ?
0
ey + Ps‘g
AMEM = SueM (©o0) _ L\" l ] - [1+ F\r_PS_i%r
o SvEM(©) o217 Tz
I
Py
ARy = 2010g [1+ N 02@] : (41)
0

The lowest acceptable signal-to-noise ratio required to achieve the required
minimal dynamic range of 3 dB can be calculated similarly to the previous

cases.
2

0.2
AMB L _ 9 Pvem (©o) _ T? + Feig
Pyem(©) ot
N
<i_g.> _V2-1 <Ps-,g)d8 e V2! )
98 / MEMmin N 02/ \Ermin & - 2

3.4. Summary and Comparison

Table 1 summarizes the required minimal signal-to-noise ratio and the dy-
namic range as a function of the SNR and the number of antenna elements
for the three discussed methods.

Table 1.
CBF MSINR MEM
Py 2 —
(é’-%) ~10lg N ~10lg N 10lg ‘/:,\. !
"0 . N
3dB v fsig s
A 10lg | —— T8 10lg [ 1+ N5 20lg 1+ N8
F+(F) 2 i )
%5

Fig. 3 shows the dynamic range as a function of the SNR in the case of a 10
element antenna array, Fig. 4 shows the angular resolution versus the SNR
with 2 elements. The relative angular resolution is defined as follows:
O34
OCcBF.3dB’
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where the numerator is the 3 dB angular resolution of the given method, and

the bdenominator is the angular resolution of the CBF method at infinite
SNR.
70

Dynamic range [dB]

-20 -18 16 -14 12108 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20
SNR [dB] N=10

Fuig. 3.

The following characteristics can be observed on Fig. 3 and Fig. 4:

e the CBF and the MSINR methods have the same minimal SNR,
whereas the MEM has significantly lower SNR requirement for the
3 dB dynamic range.

e the resolution of the CBY does not increase with the input SNR above
a certain level, whereas the MEM and MSINR methods are linear
functions of the SNR at higher values, with MEM having twice the
slope of MSINR,

e the strong relationship of resolution of dynamic range.

4. Performance Reducing Effects
4.1. Bandwidth
In the mathematical model we assumed an unmodulated carrier. In practi-

cal applications this assumption is never met. Transmission of information
requires a certain bandwidth, that is characteristic for the data transmitted
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and the modulation process. In many cases, however, the relative bandwidth
is fairly small, many telecommunication applications occupy a narrow band
around the carrier. On the field of mobile communications for example the
relative bandwidth of the NMT 450 system is roughly 25 kHz/450 MHz
= 5.5-107°, in radar applications 2 MHz/1.5 GHz = 1.33- 1073, for CB
and military short wave radios it is 12.5 kHz/30 MHz = 4.1 -107%. The
effect of narrowband signals will be shown in the part describing computer
simulation results.

4.2. Correlation

Correlation is one of the weaknesses of all adaptive methods described in this
paper. Correlated signals occur very often in free space propagation envi-
ronment as a consequence of multipath effects. The reflected and the direct
wave have a correlation coefficient close to unity if the modulation band-
width is small compared with the reciprocal value of the time delay caused
by the reflection. Unfortunately, this practically important phenomenon has
quite a dramatic effect on the performance of the adaptive methods to be
described. A representative simulation result will also be shown to demon-
strate the performance reduction. To overcome this problem correlation
destruction methods can be applied, but this subject exceeds the coverage
of this paper.
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4.3. Number of Antenna Elements

The most important restriction for the number of elements in the array is
that it must exceed the number of interference sources at least by one. Oth-
erwise the system has not enough degree of freedom to be able to determine
the spatial spectrum. Reflected signals of multipath propagation cause the
number of interfering sources to increase, furthermore the effect mentioned
above has an unpleasant consequence. Even in the case of relatively few in-
terfering signals the increase of the antenna element number will culminate
in better angular resolution as the correlation matrix will be greater and
better conditioned. Based on better set of data, the estimation process will
do a better job as well.

1. 2 :|3 4a S
TeBFI—=
v 7 ) \
< 7
MSINR ~
N i
" A \ /
TMEM < Enota
‘9b “E‘D -30 a 3’0 S‘O’ 9’0
Fug. 5

5. Computer Simulation Results

After the theory let us see some results which demonstrate the better perfor-
mance of the adaptive algorithms. Fig. 5 shows 5 sources with increasing
amplitude, and the result of the three (Direct, MSINR and MEM) algo-
rithms trying to find all the sources.

The two adaptive algorithms were able to find the sources with a wide
dynamic range, while the direct method failed. The first source’s SNR was
below the minimal limit of the MSINR method. The figure clearly shows
that the MEM method has a very wide dynamic range, and is able to find
even the smallest source.

Fig. 6 shows the case of closely spaced sources with increasing angular
distance.
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The result again is that the adaptive methods can achieve higher peaks
and therefore separate the sources. The best is again the MEM method, but
the MSINR is also supplying useful data.

Now let us see the drawbacks of the two adaptive methods. The first
performance limiting effect was the bandwidth. Fig. 7 shows the effect of
the increasing relative channel bandwidth in two steps. The direct method
is practically insensitive to the bandwidth, while the other methods suffer
a decrease in performance. It can, however, be stated that the adaptive
methods are not subject to such performance degradation even in this case,
which would result in a resolution poorness comparable to the conventional
method.

The next reducing effect was the correlation. This is one of the most
important factors as will see from Fig. 8, where the correlation is switched
off and totally on between the two sources. The picture shows the greatest
drawback of the MEM method: the correlation sensitivity. If the sources are
correlated, both methods produce weak results. Therefore, if using adap-
tive methods, we must usually use decorrelation or correlation-destroying
algorithms like Spatial Smoothing Process (SSP) or Modified SSP. These
algorithms are able to decorrelate the correlation matrix, but have the ef-
fect of decreased resolution, as they use some samples for the decorrelation.

The last problem is the effect of the Gaussian noise present in the
environment. Fig. 9§ shows one case, where the noise level was set to —50 dB
and then to 0 dB. The adaptive methods show again significant decrease in
performance at SNR= 0 dB, the MEM shows even increasing sidelobes (note
that these sidelobes are still lower than those of the direct method).
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6. Concluding Remarks

The elaborated program gave us a powerful tool for further experimentation
on this field, by creating various simulated electromagnetic situations and
compare the results with our expectations. Similarly, it can be used in
the education of subjects concerning wave propagation, antennas and radio
measuring systems. We also got an idea of the computational performance
and numerical stability required during our experience with the program.
The coverage of the program could be extended by implementing an-
other very promising method, the so-called MUSIC algorithm. According
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to the papers studied this method gives the highest accuracy among all
mentioned here.

Practical experience can only be gathered by using hardware imple-
mentation. As the basic theory described in the first section cannot only
be applied on radio frequency and electromagnetic waves, the easiest and
cheapest test configuration can be constructed at the ultrasonic frequency
region using acoustic waves. With acoustic models, however, one has to be
very careful, as this range is heavily loaded with noise of different origin.
A possible radio frequency application is surveying channel usage within a
single cell of NMT 450 or GSM network, in order to determine optimal base
station placement.
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