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Abstract 

The paper concerns the time-optimal control of objects described by a differential equation 
representing the second law of :\"ewtonian mechanics and taking into account a discon­
tinuous model of resistances to motion. Such a task has broad technical applications, 
especiaily in robotics. A fuzzy approach is used to design a suboptimal closed-loop con­
trol structure, convenient in practice thanks to its many advantages, especially in respect 
to robustness. 
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1. Introduction 

Consider the following differential equation: 

j)(t) = h(·) +u(t) . (1 ) 

Ifu represents a control and y denotes the position of an object, then the 
above dependence expresses the second law of ;,'\ewtonian mechanics, with 
the model of resistances to motion given by the function h. Thus, an equa­
tion of type (1) provides a useful basis for the analysis of an exceptionally 
broad class of technical devices often encountered in engineering practice, 
particularly industrial manipulators and robots. The time-optimal control 
that yields the minimum operation time for such plants has a direct impact 
on their efficiency. 

In this paper a concept based on fuzzy logic (KACPRZYK, 1986; KLIR 

and FOLGER, 1988) is introduced. The function h will be proposed in a 
form inspired by the physical perspective: 

h(-) = - V sgn (fJ(t)) . (2) 

The sgn mapping describes the discontinuous nature - with respect to ve­
locity - of friction phenomena: however, the fuzzy set V regards - as a fuzzy 
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uncertainty - the dependence of motion resistances on a number of factors, 
e.g. position, also velocity, or even temperature and disturbances. which are 
usually omitted in the traditional approach due to the necessity to simplify 
the model. By its very nature, the fuzzy approach offers the possibility to 
describe a complex reality with a precision that exceeds classical modelling 
techniques. Allowing for a certain discomfort resulting from the uncertainty 
introduced into the model, one may achieve a characteristic that is essential 
in modern engineering: robustness of the designed control system. 

Finally, let: 

(A) [xo, YoV E R2 and [XT, YTV E R2 represent initial and target states. 
respectively: 

(B) Il denote a fuzzy set with a support such that supp(I/) C [0,1): 
(C) the difference equation 

Xj+l 

Yj+l 
Xj + Yj, 
Yj - y'sgn (Yj) + Uj 

\vith the initial condition 

[ Xo] [ Xo ] 
Ya Yo 

for j = 0,1, ... 
(3) 
(4) 

(5) 

describe the dynamics of a system with the fuzzy state [Xj, YjV, sub­
mitted to a control Uj with values limited to the interval [-1, 1]. 

The goal of this paper is to design a useful suboptimal (in respect to time) 
feedback controller, whose values due to practical requirements - directly 
depend only on the valid state of the object, obtained by a real-time mea­
surement process. 

2. SOIne Auxiliary Considerations 

In the following section, an auxiliary task will be considered, Let at this 
point the fuzzy set 'V be reduced to a real number, denoted hereafter by lE, 

Due to assumption (B), U' E [0, I), 
Suppose that [x+, Y+V and [;L, Y-V are unique solutions 

(Kl'LCZYCKL 1996) of the ordinary differential equation related to system 
(3)-(4): 

y(t) , 
u(t) le sgn (y(t)) , 

(6) 

(7) 

with the condition [.1'+(0), y+(O)V = [x_ (0), y-(O)V = [;1'y, yyV, defined 
on the interval (-x,O], and generated by the controlu == +1 or u == -1, 
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respectively. Moreover. consider 

{[x+(t), y+(t)f for t < O} , 

{[x-(t), y_(t)]T for t < O} ; 
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(8) 

(9) 

therefore, these are the sets of all states \vhich can be brought to the target 
[XT, YTV by the control u == +1 oru == 1, respectively. Let also: 

R+ = {[ ~] such that there exists [~:] E K , 

with x < XX and y = yx} , 

{ [ Y
x ] such that there exists 

') 

with x > XX and y = yXf' 

(10) 

(11) 

\vhere l( = lC U {[XT, YTV} U K+. The time-optimal control is expressed 
by the following formula (KGLCZYCJ<L 1992): 

{

-I if [:c(t), y(t)V E (R_ U lC) , 

u(t) = ll r (.r(t), y(t)) = I 0 ~f [x~:), Y(:)l~ = ~XT' YT]~ , 
-d If [:t:\L), Y(i)] E \R+ U 1\+) , 

(12) 

and the set K constitutes a switching curve (Fig. 1,2). 
In the time-optimal feedback controiler equations, i.e. formulas (8)­

(12), the parameter1.L' inten'enes, because it influences the form of the tra­
jectories [x+, Y+V, [x_, Y-V and therefore also the shape of the switching 
curve K, But in the fuzzy system, its value is of course not uniquely de­
fined. The analysis of the s?stem sensitivity to the value of the parameter 
(KULCZYCJ<L 1992), which is briefly presented in the following, will then 
be of great importance. Thus, the value of the parameter w occurring in 
the object is still denoted as w; however. the value assumed in feedback 
controller equations will be marked by li'. 

The case where the second coordinate of the target state is equal to 
zero, i.e. with YT 0, will be considered first. 

If vV =w, the control is time-optimal (Fig. 1). The state of the system 
is brought to the s\vitching curve, and being permanently included in this 
curve hereafter, it reaches the target in a minimal and finite time. 

The trajectory representative for the case lV > w is shown in Fig. J. 
As a result of its having oscillations around the target, over-regulations occur 
in the system. The target is reached in a finite time. 
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1 
Fig. 1. Feedback controller and representative trajectories in the case YT = 0 

K~ 

Fig. 2. Feedback controller and representative trajectories in the case YT =f. 0 

Fig. 4 shows trajectories representative for the case W < w. After the 
switching curve is crossed, the sliding trajectories (SLOTI:-;'E and LEE. 1991) 
appear in the system. Here, too, the target is reached in a finite time. 

In both of the last two cases, i.e. with VV f. w, the time to reach 
the target increases from the optimal more or less proportionally to the 
difference between the values lV and w. 
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Pi 

Fig. 3. Trajectory representative for VV > w in the case YT = 0 

t'tJ 

j 
) I 

sliding ~ [XT] 
trajectories-~ 1'1 \ 

~~sliding 

I \ trajectories 

I ;- ~ 
- / 

K. 

Fig. 4· Trajectories representative for W < w in the case YT = 0 

The remaInIng case Yr i= 0 will be presented now. Let in particular 
Yr > 0; investigations for Yr < 0 can be made analogously. 

If Hi = w (Fig. 2), the considerations are identical as before for YT = O. 
In the case W > w (Pig. 5), the trajectories occurring in the system 

create a limit cycle: the target is not reached. 
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Finally. in the case l·V < u; (Fig. 6) only some of the trajectories 
(marked on Pig. 6 with arrows) reach the target in a finite time. Other 
trajectories attain only the end point [XE, YE]T, which is the intersection of 
the axis x and the switching curve; the state does not reach then the target. 
Sliding trajectories occur on the s\yitching curve. 

( 

!)] 
I 

Fig. 5. Trajectories representative for ~F > 11., in the case YT i=- 0 

3. Sub-Optimal Feedback Controller for a Fuzzy System 

In this section the fuzzy system (3)-(.5). \vhich is the subject of the present 
paper, will be considered. The parameter w. introduced ill the pre,'ious 
section, happens to be a fuzzy set in the problem worked out here. A fuzzy 
set naturally cannot be used directly to define a control in a rea! system. 
For this reason, some elements of fuzzy decision theory (KACPRZ'y·K. 1986) 
will be used. Its aim is to make the optimal selection of one element from 
all possible decisions on the basis of a membership function. 

Let the following be given: a fuzzy set Z (with the membership func­
tion flZ : R --7 [0, x)) representing the state of reality. a non-empty set D 
of possible decisions and a loss function 

I : D x R --7 R U {±x} , (13) 

where the values l(d, z) can be interpreted as losses occurring in the hypo­
thetical case when the fuzzy set Z is reduced to the real number z. and the 
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PI ~sliding 
I j \ trai\tories 

)' !---

I / [~~l 

\ 
Fig. 6. Trajectories representative for H- < lL in the case YT :f. 0 

decision d has been made. Denote by lm : D -+ R U {±x} the minimax 
loss function 

I m (d) = sup I ( d, z) . (14) 
zE supp (Z) 

If additionally for every dE D the integral I l(d, Z)/lZ(Z) dz exists, suppose 
R 

also the Bayes loss function 10 : D -+ R U {±oc} defined as 

lb(d) = J l(d, z)/lz(z) dz .. 
R 

Every element dTn E D such that 

inf lm (d) 
dED .. 

(1.5 ) 

( 16) 

is called a minimax decision. and analogously, every element db E D such 
that 

lb(db) = inf lb(d) (17) 
dED 

is called a Bayes decision. The above procedures for obtaining these elements 
are said to be minimax and Bayes rules, respectively. The main difference 
between the above rules is in their interpretation. This results directly from 
the forms of the functions lm and 10: the 'pessimistic' minimax rule assumes 
the occurrence of the most unfavorable state of reality and counteracts it, 
while the Bayes rule is more flexible. 
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In the problem of a time-optimal control investigated here, the param­
eter \iV E D C [0,1) assumed in the feedback controller equations will be 
treated as a decision, while the number 1/ occurring in system (3)-(4), as 
the fuzzy state of reality. The loss function is defined for (W, w) E D x R, 
and its values are related to the time to reach the target, if in the feedback 
controller equations the parameter n; was assumed, but hypothetically in 
the object the value w is occurring. 

Again the case YT = 0 will be considered first. The following sugges­
tions for the determination of the value of the parameter ~1l result from the 
analysis of the auxiliary problem presented in the previous section. 

If over-regulations can be allowed, it is worthwhile using the Bayes 
rule with real values for the loss function. Such a choice is possible because 
the determination of the parameter \iV value that is either smaller, equal, 
or greater than wallows the system state to be brought to the target in a 
finite time. (HO\vever, this time increases more or less proportionally to the 
difference between the values W' and w.) 

If over-regulations are not allowed, this determination should be car­
ried out on the basis of the minimax rule, assuming infinite values of the 
loss function for Hr > It·. This enables the over-regulations to be avoided, 
because they occur only if VV > lE. 

Let now YT f O. The case YT > 0 will be considered; investigations for 
YT < 0 are analogous. 

The case H1 = lE is impossible to obtain in practice. However, the 
determination of the parameter \iV value that is either greater or smaller 
than w precludes reaching the target from any initial state, because of the 
occurrence of the cycle (Fig. 5) or existence of the end point (Fig. 6). In 
the proposed feedback controller, the switching curve I( will be divided into 
three parts. The division points \Vill be the target and the point of inter­
section with the axis x. For every part there will be differently determined 
values of the parameter'IV. which for particular parts are defined in the 
follmying as HT

1 , Wz and \iV3. 
The value of the parameter lVl, i.e. the one which defined the part of 

the switching curve I( . or I( for y E [YT, x) also Fig. 8), should be 
determined using the minimax rule with infinite vaiues of the loss function 
for 1V > w. This choice is made in order to avoid the generation of a limit 
cycle, which appears when the value of the parameter vV1 is greater than lE. 

If, however, this value is smaller than U', the state of the system is brought 
to the target in a finite time. 

For the determination of the value of the parameter n;2 defining the 
part K+ for Y E [0, YT], it is necessary to apply the minimax rule \vith infinite 
values of the loss function for l'V <wo This is because an overly large yalue 
of the parameter VV2 allows the state to be brought to the part defined by 
the parameter VV1 , which, as was demonstrated above, can be successfully 
determined. An overly small one. however, causes the occurrence of the end 
point, whose existence is not admissible from the point of view of utility. 
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Finally. the value of the parameter }V3 defining the part 1(+ for 
y E (-x, 0] can be obtained using the Bayes rule with real values of the 
loss function. Both overly small and large val ues of this parameter are ac­
ceptable, because this allows the state to be brought to the parts defined by 
the parameters H'j and IF2 , which can be successfully determined as shown 
above. 

Suppose. as an example. that the fuzzy set F has the support of the 
form supp(V) = [u.:x. wx] C [0,1), and moreover. let its membership function 
/.LV be continuous and positive in the interval (lL' x , u,.X). The loss function 
(13) \\'ill be described by the following formula: 

I 1'1'. w = . ..-
. ' {-pOV - w) if IV - w < 0, 

( .) q(W w) If W - w > 0 , (18) 

\vhere p, q E R u {x}; however, only one of them can be infinite. In this 
case. let x . 0 = O. 

According to the above assumptions. it is accepted that D = [wx. u· x

]. 

\Vith the fixed value of the parameter H', from the definitions of min-
imax and Bayes loss functions (14) and (1.5) the follmving results, re-
spectively: 

m ax ( { - p (IV - le x ) , q (IV - U' x)}) . (19 ) 
W u J q(T .. V -u·)p.v(w) dIe - J p(TV - W)Jiv(w) du·. (20) 

w. \j' 

If p = x. then from Eq. (19) it can be obtaineu that the infimum of 
the function IrE on the set D is realized by 

(21 ) 

and if q = x. then this infimum is assumed for 

(:22) 

The values TV indicated by formulas (21) and (22) constitute the desired 
minimax decision with infinite values of the loss function for IV < 1L' and 
H' > lC, respectively. 

However. \\'ith real positive values p and q. the function 10 is differ­
entiable in the set (u'x, W

X

): therefore one obtains (RCD!:";, 1974: Theorem 
6.20): 

\\' IF 

1~(W) = p J fi'v(w) dw + q J Ji\;(w) du,·. (23) 
U·· 
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and analogously 

Ib'(vV) = (p+ g)f-1V(W). (241 , / 

Using formula (2:3), the equivalence of the following conditions can be proved 
by elementary transformations: 

0, (25) 
H' w* 

J flv(W) du' (26) 
'lL':II 

Formula (24) implies that the function lb' is posltl\'e in the set eu'x, u'X): 
therefore, the function lo is here strictly convex. Because 0 < ufo < 1, . , . 
Eg. (26), equivalent to condition (2.5), is fulfilled only in one point: in this 
point, then, the function ID assumes its minimum. global in the set D = 
[lUx, wx] due to the continuity of this function in the points u'x and LC X

• 

The value VV that fulfills condition (26) constitutes the desired Bayes 
decision \vith real values of the loss function. To obtain its value one can 
us€ t.he kernel estimators technique. according to the algorithm presented 
in papers (KCLCZYCh:] and SCHI0LER. 1994: SCHl0LER and Knczych:l, 

1997) . 
To summarize. in accordance with the considerations stated before, if 

the values of the parameters IF or W1 . IV]. W3 should be determined due 
to the minimax rule with infinite values of the loss function for TV < u; or 
IV > lC, or the Bayes rule with real values of this function. then they can 
be obtained from formulas (21), (22) and (26). respectively. 

If one possesses the obtained values 11' or lr1• IT> H'3. the feedback 
conlroller equations can be calculated. Thus. the equations of the switching 
curw [".- take on the form 

. r for y c .x) . (27) 

.) 

.r 
1)- -
. , +.q' 

2(1 - \\2) 
for i) c [0 .. !JTj . (28) 

" y-
for y ~ ( :x; , 0] , (29) 

2(1 + IV}) 

ill the case UT > O. (Forrnulct (:27) definf's the set K _. while dependencies 
(28) and (29). the set K+.) For i)T < O. the equations are analogous, If 
iJT = 0, one should substit ute. in formulcts (27) and (:29). n' = H'I = 11'3 
(dependence (28) has no meaniIli!, here). The sets IL and R-!- constitute 
adequate areas resulting from the section of the plane R2 lly the curve [(. 
according to formulas (10) (tne! (11). For the sets [\' . [\'+. IL. IL obtained 
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Fig. 1. Fuzzy feedback controller and empirically obtained trajectories III the 
case YT = 0 

Fig. 8. Fuzzy feedback controller and empirically obtained trajectories In the 
case YT -:j=. 0 
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above. the value of the control is simply defined by equation 

-1 
o 

+1 

if the state of the object belongs to the set R_ u le , 
if the state of the object equals [XT. YTV . 
if the state of the object belongs to the set R+ U 1(+ . 

(30) 
Figs. 7 and 8 provide an illustration of the results obtained above. 

4. Conclusions 

In this paper a fuzzy approach to solve the time-optimal control problem has 
been investigated. Theoretical considerations led to the design of a closed­
loop control system, convenient in engineering practice. A large number 
of completed empirical examinations confirmed the presented material, and 
proved the correct operation of the system (see Fig. 7 and 8). The tar­
get state \\'as reached in every case \yith the assumed precision of the scale 
0.1-0 . .sYc of the initial state norm. If it \\'as assumed that over-regulations 
were unacceptable. they did not occur during the control process. The 
constructed control system turned out to be only slightly sensitive to the 
inaccuracy resulting from identification and the occurrence of perturbations. 
This should be emphasized as a very valuable property of uncertain. espe­
cially fuzzy. control systems. 
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