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Abstract 

Significant efforts of the test design community have addressed the development of high 
level test generation algorithms in the last decade. The main problem originates in the 
insufficiently low gate level fault coverage of test sets generated at the behavioural or 
functional levels due to oversimplifications which result from the application of highly 
abstract and technology-independent fault models. 

In this paper a novel behavioural level test generation algorithm is presented effec­
tively utilizing information on the circuit structure, which is extracted from the high level 
synthesis process. 

Experimental results shmv that the gate level fault coverage of the test sets gen­
erated by the new algorithm is similar to those assured by the gate level test generation 
algorithms. 

J(eywords: automatic test generation, behavioural level digital circuit synthesis, path 
testing, VHDL. 

1. Behavioural Level Automatic Test Generation 

The radical growth in the size and complexity of VLSI systems results in 
significant problems for automatic test generation (ATG), Gate level test 
generation for complex digital circuits - containing hundreds of thousands 
of gates - is impossible due to the huge computational complexity. 

ATG for these complex systems requires the use of high level circuit 
descriptions such as those at a behavioural or functional level - in the 
test generation process. The recognition of this problem \,'as the first factor 
triggering the development of the behavioural level ATG algorithms. 

The other factor radically accelerating research was the development 
of automated synthesis systems generating the circuit layout directly from 
a behavioural specification. Both in the bottom-up or in the top-duwn 

lThis research was sponsored by the Hungarian National Scientific Foundation, grant 
W 015411. The research project has additional support from the research grant of the 
European Community, FUTEG project No. 9694. 
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synthesis approaches the circuit is described at varying levels of abstraction. 
At the different phases of the design process designers have to generate tests 
to validate their actual design models. 

1.1. Application Fields of High Level Test Generation 

The goal of the test generation at the behavioural level depends on the 
intended application of the test vectors. Behavioural test vectors (e.g. test 
vectors generated from the behavioural description of the digital circuit) are 
basically used for two purposes: 

<IJ validation and 
<IJ final test of the circuit. 

In the case of validation the test set is used for testing the functional 
equivalence of different descriptions of the same circuit. thus validating the 
transformations between bvarious levels of abstraction. The most common 
application area of validation - as mentioned earlier - means the high level 
automated synthesis systems [2]. 

The other potential field of application of behavioural txest vectors is 
their use for final testing of manufactured circuits. This is the traditional 
application field of the test vectors '1vhen the tester intends to discover man­
ufacturing faults by test sets. 

The main problem in this second field is that the physical fault cm·­
erage of the behavioural test set is generally lOlL'. The fault coverage of a 
behavioural test set even though it hardly depends on the tested circuit -
is typically around .sOYc of the 10'l\'-level faults [4], 

1.2. Quality Criteria for the Test Set 

The evaluation of the quality of the test vector set may be based either on 

<IJ the traditional low level quality criteria. e.g. the gaie le uel fault cov­
erage and the length of the test set or 

<IJ other criteria defined at more abstract digital circuit modelling levels. 

:\. typical example for such a special criterion is the so-called path 
coverage. In the case of control flow graph (CFG) based test generation 
each test vector traverses a particular path in it. The path coverage defines 
the ratio of the traversed paths and all paths in the CFG. 

The type of the actually used criterion depends on the intended appli­
cation of the test vectors. Validation takes place typically at the higher levels 
of abstraction. Accordingly, criteria defined at high levels of abstraction are 
applied in the case of validation [.s] [10]. 
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The applied test quality criterion for manufacturing tests cannot be 
more coarse than the gate level fault coverage as this is the highest level 
still providing a proper model for faults originating in the technology. 

1.2.1. Gate Leuel Fault Coverage 

The measurement of gate level fault coverage is based on the stuck-at fault 
model. This is the most \videly accepted fault model of the test design 
community since the early sixties [7]. Even though the stuck-at model IS 

one of the simplest fault models it has some basic advantages: 

@ Realistic proper model of the physical failures for the majority of 
static defect mechanisms. 

@ Easy to handle - it is simple and appropriate for simulation and mod­
eling. 

@ It is widely used allowing a comparative analysis of effectiveness of 
the different test generation algorithms. 

The correlation between the gate level and the physical fault coverages 
is usually so high that they can be considered as approximately identical ones 
from the practical point of vie\v. The advantage of the use of the gate level 
fault coverage as test quality measure in the face of physical fault coverage 
is that its estimation is essentially easier as it requires only the knowledge 
of a gate level logic model instead of the much more detailed transistor or 
layout level model. Correspondingly, gate level fault coverage is commonly 
used as the evaluation criterion of manufacturing test sets. 

1.3. Classification of Behauioural Leuel Test Generation Algorithms 

The very first functional level test generation algorithms were developed at 
the beginning of the eighties [8] [9] [11J [12] [13J [14]. Several behavioural 
level test generation methods have been developed since that time. 

Low level ATG algorithms were classified at the end of the eighties 
according to the fault model applied [1] . .\ow, a similar classification of the 
high level ATC algorithms will be given. There are three major classes of 
high-level ATG algorithms: 

@ Behauioural fault model based algorithms define an own fault model 
for test generation. For instance. these fault models describe phys­
ical faults as incorrect executions of a statement in the behavioural 
description of the circuit. The test generation process is divided into 
t\\·o phases: model perturbation and propagation of the effect of the 
fault to the output. The advantages of these fault models are their 
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easy implementation and the flexibility during simulation. The basic 
weakness of these fault models is the incorrect correspondence to the 
physical faults. thus the fault model is not realistic [3]. 

€I Implicit fault model based algorithms aim at the use of a very gen­
eral fault model instead of a particular one. This implicit fault model 
assumes the occurrence of any permanent fault in the system with 
the exception of those which increase the number of the states in the 
system. Test generation is performed exhaustively based on a math­
ematical model of the circuit such as the CFG or the state transition 
diagram [.5] [1.5]. 
These algorithms efficiently test the control sequence of the digital 
circuit but do not cover the faults of the other parts of the circuits 
within practical run-time limits. In the cases of the control dominated 
circuits, the fault coverage of the test set is high even if measured in 
terms of 10\\' level faults - but in circuits containing arithmetic logic, 
data storage. or manipulation parts the fault coverage is low. Another 
drawback of this approach is a potential over-testing, generating tests 
for hypothetical faults not appearing even in the low level fault model. 

€I A.d-hoc algorithms do not assure a general solution to the test gener­
ation problem, as these deliver only ad hoc solutions in the case of 
existence of some kind of special conditions. For example several set­
ups of the hierarchical test generation or the random test generation 
belong to this category [4] [6]. 

1.3.1. A.lgorithms Csing Behauioural Fault Model 

The Behavioural Test Generator developed at the Virginia Technical C ni­
versity is one of the characteristic representatives of the ATC algorithms 
using behavioural fault model. 

A subset of VHDL is allO\\'ed for modelling the behavior of the circuits 
in this approach. Both control and data fault models are developed which 
perturb the operation of the language constructs. All of the possible faults 
of the circuit are injected into the behavioural model once. The test vectors 
are estimated by searching for an input vector propagating the effecl of the 
actually injected fault to a primary output of the circuit. 

The major classes of faults injected are as follows: 

€I .\1icro-operation fault - instead of the execution of a basic VHDL state­
ment another one is executed. e.g. OR statement instead of A\"D 
statement. 

€I A.ssignment control fault the assignment of some new value to a 
variable or to a signal is not executed. 

€I Dead-clause fault In the case of a conditional branch statement like 
a CASE statement the selected branch is not executed. 

Such an algorithm is implemented in a constraint based ATG environment. 
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1.3.2. Implicit Fault lVIodel Based Test Generation by the Example oJ Path 
Testing 

The class of the implicit fault model based test generation algorithms will 
be illustrated by the path testing algorithm, originally developed for soft­
ware validation. For software validation the CFG of the tested program is 
extracted at first and subsequently the operation of the program is validated 
by executing the program statements along several paths of the CFG and 
by comparing the effect of the executed operations on the output variables 
with the specification. 

The behavioural level model describes the function of the circuit under 
test by means of sequential statements in a similar program-like way so the 
CFG of this description can be extracted as well. The validation of the 
hardware is similar to the software validation: the operation of the circuit 
is tested by simulation applying the input vectors causing the traversal of 
the different paths in the CFG. Accordingly, the goal of this ATG approach 
is the estimation of an input vector sequence traversing all the paths in the 
CFG of the behavioural circuit description. 

The algorithm is typically implemented in a constraint based form. 
The conditions of the execution of a particular path are translated into con­
straints. The solution of the several constraint sets defines the input vectors 
traversing the current path. The test set consists of these input vectors. 
The path testing algorithm \vill be introduced in detail in Section 4.3. 

2. Automated Digital Circuit Synthesis 

)'lodern computer aided design environments for digital circuits synthesis 
accelerate the design process by automating several phases of the design flow, 
\"owadays some manufacturers offer automated synthesis systems designing 
the digital circuit layout directly from the behavioural specification of the 
circuit without any kind of human interaction. The most common features 
of the recently developed automated synthesis systems are as follows: 

III Top-dou'n design flou' 
The design process is divided into several independent phases. An 
increasingly detailed description of the digital circuit is developed 
through stepwise model refinement during the synthesis process. The 
abstraction level of the developed descriptions decreases by each step 
of the model refinement process. 

@) Library-based synthesis 
The synthesis system contains a component library including the de­
scription of the most frequently used circuits. The design system com­
poses the designed circuit of multiple instances of these predefined 
circuits. The design system binds the current design to the library 
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components and implements them as many times as they need. Sub­
sequently. the final part of the synthesis is connecting the registers 
according to the bindings. 

The typical structure of a top-down digital circuit design process is 
illustrated in Fig. 1. The input of the design process is the behavioural 
specificaiion of the circuit. During the design flO\\' in each design phase 
a new. more detailed circuit description is generated at the lower level of 
abstraction. In the figure three abstraction levels are outlined: 

III Register level 
III Gate level 
III Layout level 

In the case of fault-free design process the generated specifications are func­
tionally equivalent descriptions of the same digital circuit. 

c:::::- BehavioralleveI specification ~ 

. .. ············t·····:·:···········_······:··::···········::····~·~···:···iiighi;;~i·~j~t&;-ii~· .. ··· .. 

. I . Behavioral design. . . ~ster lib~ 
:::." ........ :.: .. :m ... :.~ •. :.: .. : .. ::c:c.:"~ ..... : ............ :,:: ........ f:.;:.: ... -~".::.: .... :, .. , ... ,: .... , .• :: ...... ~ .. : .. : .. :-.... ~.:.:.: .• : ..... :: .... : .. : ... ~........ . ................................ . 

c:::: Register ievel design description ~ 

......... " .. " ... ' •• H ................... ,." .. , ••• 

Register1evelsynthesis 

Register level design 

............... m ........... m .... l.: ............... :.: ............ m .. mm •• mm •••••••• 

. .. 
................ --.--- .. --_ .... ------_. 

Gate level design description 

··.Lcwievel S}'ntliesis 

~outlibr~ 
~~----~~--~~~--~~--~~--~. 

-....r--'----"-.................... --'-~--'--~-----.. ---

c::= _________ M_~ __ k_Ja~yo_u_t ____ ---==:> 
Fig. 1. Basic scheme of the top-down design process 

2.1. Synthesis Libraries 

The design libraries contain the description of the most commonly used 
circuit components at the different levels of abstraction. The description 
of these circuits is special in the aspects that they describe the circuits in 
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terms of the input bit-width. This description technique is necessary in order 
to decrease the size of the library. 

At the higher levels of abstraction this description technique of the 
circuits does not cause any problem. The recently developed hardware de­
scription languages include this modelling feature like the VHDL contains 
the possibility of the definition of the generic statement. 

The structural description of a digital circuit parametrized by the bit­
width of the circuit is much more difficult at the lower levels of abstraction. 
Only a small part of the digital circuits can be described in this \vay, called 
bit-sliced designs. 

The bit-sliced circuits are built up by the chain of equal sub-circuit 
components (which can be called a slice). Each component processes one 
single bit of the input and generates one or more output bits belonging to 
the current input bit. The components are connected by signals but only the 
links between two subsequent components are allmved. These connections 
make the bit-sliced design similar to the chain. 

Because of this easy application of these circuits in the automated 
synthesis systems the importance of these circuits has radically increased in 
the last few years. 

2.2. Behavioural Let'el Synthesis 

The very first phase of the digital circuit synthesis is the behaL'ioural (high) 
leL'el synthesis, generating a register-transfer level model of the actual circuit 
based on its behavioural specification. 

The cardinal difference bet\wen these t\\·o descriptions is that while 
in a behavioural description data path and control statements can appear 
mixed, at the register transfer level they are already separated. The main 
function of the beha\'ioural design phase is the decomposition of the current 
circuit into controller and data part (Fig. 2). These two parts of the circuit 
are handled separately in each phase of the design process after behavioural 
synthesis. Even the manufactured digital circuits can be di\'ided into these 
two main parts: 

<iI Controller 

<iI Data part consisting of the arithmetic logic and data storage 

The arithmetical and data storage elements cover the evaluation of the 
data part of the RT description. The control part of the circuit corresponds 
to the controller in the RT description. 
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Input signals 

RTL Design 

Data Path 

Output signals 

Fig, 2, Structure of the register transfer level design 

3. New Approach of the Behavioural Test Generation 

The gate level fault coverage of the test sets generated by traditional be­
havioural level ATG algorithms is insufficient for a thoroughgoing test of 
circuits, especially in the case of arithmetics intensiv€ circuits, The novel 
algorithm proposed in this chapter generates test sets of a high fault cover­
age even for this class of circuits, 

Implicit fault model based algorithms generate high fault co-verage tests 
for control intensive circuits as described in SEction 1.3. The new ATG 
algorithm incorporates a modified version of the path testing algorithm to 
generate test -vectors for the control part of the circuit. 

Howe\'er. a good test qualit:v for the arithmetic logic and data storage 
elements necessitates as first step the definition of a realistic fault model. 
Since previous experiments from the literature have clearl)' shown that a 
realistic description of the ph~'si(al faults at the highest. beha\'ioural level 
is impossible. a version of the gate' level stuck-at fault model is used for test 
generation in the arithmetical. data storage and manipulation parts. In 
library based systems the components in the data part are substituted by 
macros from the librar:-', The basic idea of the novel ATG algorithm is to 
generate elementar~' test" corresponding to the components in the library 
and using a back-annoi"t1 inn i echnique to embed them into the behavioural 
level test generation ]>1'0('0:':', 

The advanta£;r~ of the' solution is th;,' the fault model applied can 
exactly describ0 the "ffens of technology-related defects in the data part. 
while omitting cli! O\'f,'i-dc'lililed modelling of the physical faults in the control 
part of the circllit. 
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3.1. Fault ;1f odel Generation 

The fault model can be generated for any library based synthesis system. As 
first step a thoroughgoing test set is generated from the gate level description 
of the components in the design library using the gate level stuck-at fault 
model. The gate level descriptions of the elementary library components of 
a modern design system are typically scaleable, i.e. they are parametrized 
by the bit-\yidth of the function to be implemented,The generated test set of 
the library components has to be described in terms of the bit width of the 
function as "vell in order to save the scaleability for the ATG. In this case the 
gate-level ATG has to be executed for several instances of the registers and 
subsequently a parametrized form of the test vector set is to be estimated, 
This phase of the test generation involves human interaction but it should 
be performed only once for each synthesis system. 

These scaleable abstract test vector sets consist of the symbolic list of 
input values sensitizing the component for stuck-at faults. This set of 'sensi­
tiye' values on the input ports of the library components can be considered 
as an equivalent of their register level fault model. 

After this definition of the register le\"el fault model, the register level 
faults have to be 'back-annotated' to the behavioural level by performing the 
inverse transformation of the design process. In more detaiL the variables 
in the beha,,"ioural description are to be identified which are transformed to 
input ports of the components during the design process. 

After assigning the 'sensiti\"e' values to the variables ATG reduces 
to a \yell-known beha\"ioural level justification problem. The fault model 
generation method corresponding to a top-down design system is sho\\"n in 
Fig . .J. 

The de"i;elopmem of the behavioural fault model in the .\Iulticompo­
rlent Synthesis S~"stem is described in detail in the next chapter. 

4. Direct Component Testing 

A new test pattern generation algorithm, called Direct Component Testing 
(DeT), has been de\"eloped based on the idea introduced ill the chapter 
abm"e. In this algorithm. the circuit is modelled at the behacloumlleL'el (i.e. 
the test generation process deals with behavioural level objects) but the \\"ell 
known stud-Clt fault model is used for modelling the physiccll failures of the 
components of the digital circuit. 

The low complexity of DCT originates in generating test \"ectors based 
on the behavioural model of the circuit. The high fault coverage of the 
generated test set is guaranteed by using the stuck-at fault model. 

Test pattern generation is possible by DCT for circuits designed by a 
library-based digital circuit synthesis system, i.e. standard components are 
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c::: Behaviorallevei fault model :==> 
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:;.,LtL:,., ..... ~.~ ............ " ... ,.: ... .: .... ": ..... ,.,, ... ,."' .. :~..:.:::.L_., .... c" ... :":, .... :~." .. "" ... , ..... ,., ..... ,:":,, .. ,, .. ,,_., .. :~ ... ,: ........ :".L .... " ......... ".L.,.1 

c:::: Register levelfauU model ~ 

•.. ,'. '_ .. ____ ' _m_m ___ ' __ 
I 

C::::Gate level description of the registerC:> 

Fig. 3. Fault model generation at the behavioural level 

used in the circuit and the data path description of the register transfer level 
design is available. 

The test generation algorithm according to DCT can be divided into 
two phases: 

® Synthesis system dependent installation phase 
® Target circuit dependent test generation phase 

The main difference bet\yeen these t\\'O phases lies in the frequency of 
execution. The synthesis system dependent installation phase is executed 
just once, in the installation of the test generation system or in the case of 
changing the design library of the synthesis system. Actions belonging to 
the target circuit dependent phase are executed when generating each test 
vector. 

The DCT algorithm consists of the follOi,Ying actions: 

® Synthesis system dependent installation phase: 

1. Generate general test sets for the components of the design library of 
the synthesis system. 

® Target circuit dependent test generation phase: 

2. Take the behavioural description of the circuit under test and enumer" 
ate the feasible paths of CFG of the behavioural model. 

3. Recognize the components used and their interconnection in the im­
plementation of the circuit based on the Register Transfer Level (RTL) 
descri ption. 
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4. Extract the mapping between the carriers in the behavioural descrip­
tion and the components in the RTL description. 

5. Generate input vectors for each feasible path warranting the compo­
nent test vectors on the input ports of the components in the path. 

All t he listed phases will be described in detail in later sections. 
There were other practical considerations during the implementation 

which have to be mentioned. As almost all the modern integrated synthesis 
systems use scalable design library components by the input-bit width of 
the components, the ne\\' test generation algorithm has been developed sup­
posing that the test generator incorporates such a synthesis system even if 
it is not a necessary requirement for the application of the DCT algorithm. 

4.1. Direct Component Testing Algorithm Description 

In this section, a detailed description of the digital circuit testing algorithm, 
called Direct Component Testing: will be given. During the description a 
constraint based implementation environment is assumed. 

The input data used in the DCT algorithm are as follows: 

@ Behavioural level description: B 
@ Gate level description: G 
@ Bit width dependent description of the test sets of the components in 

the design library: TestSetDescription(Si: :2',) (for component called 
Si : :2'i is the bit width of the component). 

The algorithm is diyided into several parts: 

Algorithm A: Generation of Path Predicate Constraint Set for 
Feasible Paths 

\'ote that this algorithm is very similar to the Path testing algorithm, 
Given input data is the behavioural level description of the digital 

circuit noted by B. 

STEP 1. Extract the control fto\\' graph (GB) of the behavioural descrip­
tion B. GB = (VB:EB), GB = cfg(B). 

STEP 2. Enumerate the C FG paths by traversal. The complete set of 
paths is denoted by Pr, = {P1,P2 :. ",Ps}, \\'here Pi are paths in GB, 
According to the definition of the path P; is a vector consisting of 
vertices: 

P = [START.lh, 10·2.·", L'i ... ,. 

and 
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STEP 3. Generate constraint sets called path predicate constraint set for 
each C FG path. P Pi = (Xi, Ci) denotes path predicate constraint set 
belonging to path Pi. Xi is the set of variables and C; is the set of con­
straints. Variables in Xi are carriers (ports, signals. variables) used in 
behavioural description B or variables derived from these behavioural 
carriers. (In the case of sequential circuits, variables can take different 
values in different time frames, thus, multiplied instances of carriers 
are used in the constraint sets.) 

STEP 4. Generate the set of these path predicate constraint sets: 
PP'E, := {PP;}. 

STEP 5. Generate the set of feasible paths and the corresponding path 
predicate constraint sets. Constraint solver can be used for this. 
Denote Pj the set of feasible paths. P Pj the set of corresponding path 
predicates. 
Pi E P'E" Pi E Pr if and only if there exists at least one solution of 
PPi . . 

PPi E PP'E" PPi E PPj if and only if Pi E Pj. 

Algorithm B: Constraint Set Generation Describing Components 
Test Sets 

Given input data are as follows: 

@) Behavioural level description of the digital circuit denoted by B: 
® Gate-level description denoted by G 
® Bit width dependent description of the test sets of the design library 

components 
TestSetDescription(Si, :rJ denoting the description of the test set of 
component called Si .. ri is the bit \\·idth of the component. 

STEP 1. Extract the library components used in the gate level description 
G. Let us denote the set of library components by L 
= {L 1 • L2 ....• Le}· Li is defined by the name of the component and 
the actual bit \\-idth: Li = (:Yi : bIc;J. 

STEP 2. Identify the signals connected to the input ports of the compo­
nents in gate level description G_ The description of the components 
is completed by the name of connected signals: 
L · - (Y·b?"·) ---'-.. L'- (Y·b'L···{S··')· l - ~ ~~ LVl -7 i - ~ l~ L 1~ IJ· 

STEP 3. Generate constraint set noted by (Xi. C;)R describing the test 
set of the used components. 
Li = (Ni: bUi: Si) :::} (Xi, Ci) where Xi := {Si}, 
Ci :=TestSetDescription(Ni, bWi) 
Thus (Xi: Ci)R := ({ S;}:TestSetDescription(Si. bUi)). 
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STEP 4. Identify the carriers corresponding to the gate level signals in the 
behavioural description comparing the behavioural level description B 
and gate level description G. The result will be couples of behavioural 
carriers (Ri) and register level signals (Si): Ri = corresponding(S;). 
(The couples are described in the form of a function.) 

STEP 5. Substitute the variables in the component testing constraint sets 
according to the function defined above: 
(Xi, C;)R := ({SJ,TestSetDescription(Xi , bWi)) =? 

(Xi. C'i)B := ({ corresponding(Si) }.TestSetDescription(Xi , bWi)) 

The version of the algorithm described above is the most general in 
the sense that this variation of the algorithm can be applied in each design 
system. Hm;;ever. the majority of synthesis systems allow modifications 
radically simplifying the previously described general algorithm. 

The usage of RTL description is not necessary since most of the syn­
thesis systems are rule-based design systems driven by cost functions (e.g. 
the design process is not heuristic). The RTL level description of the digital 
circuit is used for the identification of the library components and for the 
definition of the bit-\\'idth of the used components. High confidence esti­
mation can be made regarding this information considering the design rules 
and the behavioural specification of the designed circuit in the majority of 
synthesis systems. 

In the declarative part of the behavioural description, the bit-width of 
the used carriers is defined. Generally these features remain unchanged dur­
ing the high-level design. i.e. the bit-width of the components implementing 
the gi\"en carrier can be estimated based on the behavioural specification of 
the circuit. 

The used components can be predicted easily in the case of arithmetical 
instructions occurring in the behavioural description as the mapping of these 
instructions is generally \\"ell-defined by design rules. Since the algorithm 
deals basically \\"ith the data path this estimation gives sufficient result for 
the prediction of the used components. (:\ote t:lat the estimation of the 
structure of the controller part is a much more difficult task. Fortunately. 
this problem is out of the scope of this algorithm as the controller part is 
tested implicitly by the execution of each CFG path.) 

Algorithm C: Constraint Sets Composition 

Gi\"en input data are as follows: 

® Component testing constraint sets (in terms of behavioural variables): 
(Xi. C';)B is the constraint set for the component number i. 
C'· - {C'l C'2 c't} "I, IC'"' - t // - I" • • • •• z ,\\ lere I ,1-· 

@ Path predicate constraint sets: PPj = {PPl . PP2 ." ... PP,}. where 
iPPjl = s. 
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Suppose that there were m components in the circuit. 

STEP 1. For loop (j = 1: j <= s: j + +) do (for each path predicate 
constraint set) 

STEP 2. For loop (k = 1; k <= m: k + +) do (for each component) 
STEP 3. For loop (l = 1: I <= t; 1+ +) do (for each constraint in the test 

description set) 
STEP 4. Generate final constraint set (denoted by P pfl): 

ppkl '- {PP Cl} 
J'- J, m 

STEP 5. Solve the constraint set by constraint solver. The values of the 
variables symbolizing the input ports of the circuit define the test 
vectors. 

STEP 6. END loop / END loop / END loop 

In test generation of a certain digital circuit the Algorithm A and 
Algorithm B are executed first. These steps can be executed simultaneously. 
The Algorithm C is executed after the end of the first t\yO steps. 

4-1.1. Completeness and Correctness of DCT 

As it has been declared above, the primary goal of the DCT algorithm is 
to generate test vectors for all feasible CFG paths and the secondary aim is 
to force the previously generated test vectors to the input port of the used 
components. 

The first question to be posed is whether or not the algorithm finds a 
test vector for a feasible path. The answer to the question is unfortunately 
negative. The path predicate constraint set describes the necessary condi­
tions of the traversal of a particular CFG path. Since the DCT algorithm 
adds further constraints to the path predicate constraint set, it is possible 
that the constraint set can be satisfied before ~he modification and cannot 
be satisfied aft"?r. 

Fortunately, correction of this problem is simple. The path predicate 
constraint set has to be solved by the constraint solver without any modifi­
cation in addition to those described above. Note that this step is exactly 
the same as the task of the classic path testing algorithm. In this case, the 
DCT algorithm subsumes the path testing algorithm. e.g. the test vectors 
generated by the DCT will include the test vectors generated by path testing 
algorithm. In this 'way, the testing of each feasible path is ensured. 

The reason why this step is not included in the original algorithm de­
scription is simple. In practice, all the component test vector description 
constraint sets are completed by an additional general constraint which can 
be satisfied by any value of used variables. Since this constraint does not 
restrict the solution of the original path predicate constraint set, the solu­
tion of this constraint set is the same as the solution of the path predicate 
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constraint set. l.e. the output is equal to the output of the path testing 
algorithm. 

Completion of the secondary goal of the test generation is obvious. In 
each case when a constraint set is passed to the constraint solver it contains 
the path predicate constraint set describing the necessary requirement of 
the path traversal and a single additional constraint describing the occur­
rence of one of the previously generated test vectors on the input port of 
the corresponding component. Since both constraint sets to be merged are 
minimal in the sense that they do not contain unnecessary constraints. the 
resulting union of the constraint sets \vill be minimal. too. i.e. a solution 
will be found if the described conditions can be satisfied. 

Here we have to note that. by using this feature of DCT, the algorithm 
can be extended. It is not necessary to use constraint sets strictly describing 
test sets of components for adding it to the path predicate constraint sets. 
If there are any further values which is preferred to occur on the input ports 
of components and the description of these values is possible by constraints, 
then this constraint set can be used instead of the component test description 
constraint sets. The DCT algorithm in this case \\-ill generate input vectors 
of the circuit thus forcing the preferred values on the input port of the 
corresponding component. 

.\Iany test generation algorithms use restrictions regarding the logical 
values occurring on the internal nodes of the tested circuit. If these restric­
tions can be described by constraints, then DCT algorithm can potentially 
be used to implement these test generation algorithms. In this way. for in­
stance. interesting comparisons can be made between different algorithms. 

4.2. Implementation of the DCT Algorithm in Constraint Enc-imnment 

In recent years. the theory of the constraint satisfaction problem has rad­
ically improved and some efficient algorithms and systems have been de­
veloped [17] . The constraint environment is found to be suitablez for 
the description of test generation problems [19] . The implementation of 
the DCT algorithm is also done in a constraint environment. .:VIoreover. the 
common advantages of the constraint en\-ironment meant there \vas a spe­
cial reason for this selection. In the DCT algorithm. entitles from different 
levels of abstraction (e.g. bit variables and integer variables) have to be 
uniformly managed. The constraint environment proved itself to be flexible 
in this sense. 

The phases of the DCT algorithm described above can be implemented 
in the constraint environment by the following steps: 

8 Synthesis system dependent phase 

General component test set generation for the library elements 
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e Target circuit dependent phase 

Constraint set development for path predicates 
- Constraint set development for component testing 
- Constraint set composition and solving 

The test generation of the actual circuit is preceded by the synthesis 
system dependent installation. During this process, the scalable test set of 
the library components is generated. This process is described in detail in 
[22] . 

The description of the development of the several constraint sets and 
solving algorithms \vill be presented in subsequent sections. 

Prior to detailed description of different phases of the algorithm, the 
data flow diagram of the DCT algorithm is presented in Fig . • {, giving an 
overview of the algorithm. The elliptical boxes represent the data entities 
and the rectangular boxes the processes. The arrows show the connections 
between the processes and the data entities. 

{3. Constraint Set Development for Path Predicates 

Test generation for behavioural VHDL models is a problem similar to the 
software test generation regarding the fact that the behavioural description 
of the circuit consists of sequential instructions similar to any programming 
language. 

Testing the software by traversing all the branches in the program is a 
.. vell-known idea in software testing. The path testing algorithm is based on 
this idea. In the path testing algorithm the Control Flo\\" Graph (CFG) of 
the program is first extracted, the paths in the graph are enumerated, and 
then one in pu t vector of the program is generated, one for each path. This 
input vector will cause the traversal of the corresponding path in the CFG 
during the circuit operation [20]. 

The path testing algorithm has already been applied to hardware test­
ing and has been proven an efficient algorithm for the generation of design 
verification tests as mentioned in the literature survey [5] [21]. 

In the DCT algorithm the path testing algorithm is applied to develop 
the predicates of the CFG paths. These predicates are describ8d in the 
form of constraints. The predicates of the unfeasible paths are eliminated 
by recognizing the contradictions in the constraint sets by the constraint 
solver. 

A simple path testing example is shown in Fig. 5. At the top of the 
figure, the CFG of the behavioural description is shown. The description is 
at the bottom left part of the figure. There are two CFG paths in the model. 
On the right, the predicates of the traversal of the paths are presented. The 
arrows sho\\" the correspondence between the behavioural model and the 
constraints. 
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Fig. 4. Data flow Diagram of the DeT algorithm 

4.4. Constraint Set Composition and Solving 

In this phase, the separately generated constraint sets are mergeci and passed 
to the constraint solver. This final phase of the test generation is found to 
be very sensitive \\'ith regard to the efficiency of the DCT algorithm. Several 
constraint set generation methods are tested during the development of the 
algorithm. 

Which algorithm is most efficient depends on 

@ the structure of the circuit and 
@ the used constraint solving algorithm. 
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The following algorithm is found to be efficient in all circuit structures even 
if, in the case of some special circuit structures, there are more efficient meth­
ods. 

wait on inst 

CFG graph 

entity Alu is 0 <= A <= 15 
port( A: in BiC Vector(3 donut 0); 0 <= B <= 15 

B: in Bit_ y;~e,c=t=or~(3=-=d=ow=n:to~0~)~; ~~~~~~::::::.:"~ __ inst E{O, I} 
inst: in bit; - inst = 1 
res: out Bit_ Ve res=A+B 

. end AIu; 

architecture Behavior of AIu is 
begin ~ 
alu: process begin ~ / 

if inst =' l' then 
res <= A + B; 0 < = A <= 15 

else 0 < = B <= 15 
-::-:;:A.~-=--------_~ inst E{O, I} res <= A - B; ---_________ =>- inst"'" 1 

end if; >- res=A-B 
wait on inst; 
end process; 

end Behavior; VHDL model 
(b) Constraint set corre­

sponding to the else path 

Fig. 5. Constraint sets generated by the path testing algorithm 
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The goal of DCT algorithm is to generate those input vectors \vhich 
force the component test vectors generated in the initial phase of DCT 
installation to the input ports of arithmetical components. 

The constraint generation algorithm implements directly the above 
idea in the constraint environment: 

Firstly: it takes the constraint set describing one path predicate, then 
takes one component and one test vector from the corresponding component 
test set. The final constraint set is composed by the path predicate constraint 
set and a further constraint forcing the chosen test vector to the input port 
of the arithmetical unit. 

The algorithm is illustrated by an example. In Fig. 6 the constraint 
composition of the example introduced in Fig. 5 is shown. The selected 
path is the 'then' path in the CFG and the actual port is 'A'. At the top 
of the figure there are two constraint sets describing the path predicate of 
the 'then' path and the test vectors for the components connected to the 
port ·A'. 

From the path predicate constraint set as many constraint sets are 
derived as many test vectors exist in the actual test set. In each derived 
constraint set an extra constraint is inserted forcing one test vector to the 
ports of the adder. 

In the derived constraint set there can be a contradiction which means 
that the CFG path \vith the given condition is not feasible. The constraint 
solver discovers this situation. As the test generation for this circuit under 
the given conditions is not possible, the constraint set will be eliminated. 

If there is no contradiction. the constraint solver generates a solution 
for the constraint set. The value of the constraint variables representing the 
input ports of the circuit defines the searched test vector. 

.{5. Testability of the Bit-Sliced Design 

The synthesis library components as already mentioned - are bit-sliced cir­
cuits. However, this class of circuits suffers from some testability problems. 
The core of this problem is that all sub-circuit components and connections 
in the bit-sliced design are uniform. The cascade inputs of the very first com­
ponent in a chain of cascaded bit-sliced components are unused and they 
are inacti\'ated by connecting them to a constant voltage (ground or power 
supply) depending on the actual logical function of the input. Because of 
this input bit of the circuit is uncontrollable, this still redundant part of 
the circuit remains naturally untestable. Fortunately. such untestable parts 
form less than 109( of the entire circuit in practice, 
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o <= A <= 15 
o <= B <= 15 

inst E{O,I} 
inst = 1 

res=A+B 
Path predicate constraint 

set 

······1····'·· •• ··,·· 
o <= A <= 15 
o <= B <= 15 

inst E{O,1} 
inst = 1 

res=A+B 
(A,B)=(O,O) 

Derived constraint set 1 

JI 
o <= A <= 15 
o <= B <= 15 

inst E {O,l} 
inst = 1 

res=A+B 
(A,B)=(l,l) 

constraint set :2 

+ 
~ ~: ~~:yl~ 

instE{O,l} 
inst = 1 

res=A+B 
(A,B)=(2,2 

Derived constraint set :3 

B. BESYO 

0001 

0010 

set - The test vectors 

Fig. 6. Constraint set composition and test vector generation by the DCT 
algorithm 

5. Results 

The efficiency of DCT algorithm is evaluated by test pattern generation 
experiments \vhile the analytical evaluation of the computational complexity 
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of the algorithm is a rather difficult and time-consuming process. 
The correct experimental evaluation of the efficiency requires the com­

parison of the new algorithm to a gate-level test generation algorithm. In our 
case, the well-kno\\"n PODE:.:r algorithm [16] is selected as reference. This 
algorithm is considered one of the most efficient gate level test generation 
algorithms. 

In the efficiency analysis both the behavioural and gate-level circuit 
models of the same circuit are used. The test generation experiments had 
to be preceded by a benchmark circuit selection process. Since no standard 
benchmark set fulfilling the above requirement is publicly available a speciaL 
self-developed benchmark circuit set is used for our experiments. 

As a part of the efficiency evaluation process the experiments' aim is to 
determine the dependency of the computation complexity of DCT algorithm 
from the size of the circuit. 

For this purpose two basic classes of benchmark circuits are developed 
representing different types of arithmetic intensive digital circuits. Each 
circuit belonging to the same class has the same structure and same function 
but the input bit width of the circuits is different. These circuits served as 
a test bed for estimating the dependency of the computation complexity of 
the test generation and the size of the circuit. 

The ALe 4. ALe 8. and ALe 16 are arithmetical logical units with four 
instructions: add, subtract. reset, compare. These benchmarks represent 
the circuits with components connected parallel. In these circuits several 
arithmetical units are connected parallel having the same input and output 
port. The arithmetical units used in these circuits are a comparator. a 
subtractor and an adder. 

The SERIAL 4 and SERIAL 8 circuits have four inputs called: A,B,C, 
D. The output value of the circuits is equal to AC+AD+BC+BD. These 
benchmarks represent the circuits with arithmetical units which are con­
nected sequentially. T\\·o adders and a multiplier are used in these circuits. 

Basic parameters of benchmark circuits can be seen in Table 1. In this 
table the number of input \·ectors, number of design library components 
used in the RTL level design and number of gates in the gate level design 
are listed. Remember that the number of input vectors lS equal to the 
number of test vectors in the case of exhaustive testing. 

5.1. Results of Test Pattern Generation E:rperiments 

The results of the test generation are presented in Table 2 and Table 3. Ihe 
test generation parameters of DeI and PODE:\I are sho\\·n in a common 
table in order to facilitate comparison. The goal of the test generation by 
PODEM algorithm was, in each case, the generation of a complete test 
set. Thus, the fault coverage belonging to PODE)'I algorithm (except for 
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Table 1. Benchmark circuits - series 

11 ALU 4 I ALU 8 I ALU 16 SERIAL 4 SERIAL 8 
:\0. of input 

11 
210 218 234 216 232 

vectors 
:\"0. of library 

11 
3 3 3 :3 3 components 

.\"0. of gates 11 212 392 752 421 1373 

cases when the predefined time limit of the generation is exceeded) is the 
proportion of potentially testable faults. It has to be outlined (especially in 
the case of real circuits) that the proportion of non-testable faults is often 
very high. The reason for this is the usage of bit-sliced components where 
many input ports of the components are not controllable, i.e. the component 
is not completely testable. 

Belo\\' the listed parameters of the test generation process are shO\\'n: 

<11 Test generation time: The CPl- time of the test vector generation. 
(For the experiments se:\" SPARC station 20 with 64:0,1 main memory 
and SunOS .5 . .5 is used.) 

@ Number of test L:ectors: The number of generated test vectors by the 
current algorithm. 

@ Fault coverage: Gate-level fault coverage of the generated test set, i.e. 
the proportion of the covered stuck-at faults and the total number of 
stuck-at faults (including the non-testable faults). 

Comparison of the fault coverage of the DCT and PODE:"I algorithms 
shows a very favorable picture. The fault coverage of the test sets gener­
ated by DeT approached and sometimes even reached the fault cOL'erage of 
the PODEJiI-generated test sets. This feature was independent of the pro­
portion of non-testable faults. (It is demonstrated in SERIAL -± '\vhere the 
proportion of non-testable faults \\-as quite high (about 20%) and in the case 
of ALC_16 \\'here almost all the faults \\'ere testable.) This is an important 
feature which allo\\'s the application of DeT algorithm in manufacturing 
testing. 

The increase of the test generation time can be estimated based on the 
experiments by the ALC and SERIAL circuits. The DCT algorithm showed 
an exponential nature as expected but the gro\\·th of the test generation 
was significantly lo\\-er than the increase of the test generation time of the 
PODE:,,'I algorithm. This advantage is seen in the case of the synthesis 
example circuits when the test generation time of the DCT algorithm was 
much 100ver than the test generation time of PODEM. 

The DCT algorithm is found to be more efficient in parallel target 
circuit structure, i.e. when the circuit components are connected parallel. 
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Table 2. Test generation for ALU 4, ALU 8, and ALU 16 by DCT and PODEyF 

Benchmark circuit ALU 4 
1 

ALU 8 ALU 16 

Number of test vectors 160 3.52 736 

Test generation time 127.07 277.88 679 . .5 

Fault coverage (%) 90.81 % 9.5.11% 97.48% 

PODEM algorithm 

l\ umber of test vectors 
1 

.54 102 197 

Test generation time 9 . .52 82.38 more than 20.507b 

Fault coverage (%) I 91.4.5% 9.5.4.5Yc I 97.6.5% 

a. The time is measured in seconds. 

b. The test generation is interrupted as it exceeded the given time limit. 

This can be seen by comparing the experiments \\'ith SERIAL and ALC 
circuits. The ALC circuits have a parallel structure. The fault coverage 
of the test sets of DCT algorithm in this case almost reached the fault 
coverage of the PODEM generated test sets. In sequentially structured 
SERIAL circuits, the fault coverage approached the fault coverage of the 
PODENI generated test set but did not reach it. 

Table 3. Test generation for SERIAL 4 and SERIAL 8 by DCT and PODE~la 

I 
Benchmark circuit SERIAL 4 SERIAL 8 

:\ umber of test vectors 64 142 

Test generation time 46.:33 94.61 

Fault coverage (%) 64.68Yc 74.81 % 

PODE:YI algorithm 

:\ umber of test vectors I 6:3 86 I 
I ! 

Test generation time 
11 

6819 more than 21410b I 
Fault coverage (%) 80 .. 54% 8:3.78% 

a. The time is measured in seconds. 

b. The test generation is interrupted as it exceeded the given time limit. 

This \vas an expected result as in sequential circuit structure many dif­
ferent components are activated during the traversal of a certain CFG path. 
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The operation of components results in several ne\\' constraints regarding 
the processed data which is reflected in complex path predicate constraint 
sets. Because of this, the chance of the infeasibility of the path predicate 
constraint set completed by the additional constraint forcing a particular 
logical value to the input port of a component is considerably higher than 
in the case of parallel target circuit structure where the path predicate con­
straint set is in general much simpler. 

In practice, the structure of the circuit is not homogeneous, i.e. both 
parallel and sequential connections of components occur in the same circuits. 
Because of this, the efficiency of DCT algorithm in general is expected to 
fall between the results seen above. 

5.2. Conclusion 

A ne\\" high-level constraint based test generation algorithm has been devel­
oped which can be an alternative way of generating test vectors not only for 
design verification testing but also for manufacturing testing. 

Through Direct Component Testing, i.e. combining CFG path predi­
cate constraint sets with constraint sets describing the effective test set of 
the components, a new possibility of using structural information for the 
behavioural level test generation is introduced. The described algorithm is 
an efficient method of information compaction which regards the structure 
of the designed circuit and extracted from the s:vnthesis roles of the design 
system. 

The introduced description formalism for test set representation of bit­
sliced digital circuit - i.e. test set description in terms of the bit \\'idth of 
the digital circuit is a new idea in the field of digital circuit testing. 

Experimental results sho\\' a sufficiently .J.igh degree of gate-level fault 
coverage of the test sets generated by the ne\\" algorithm. The test gen­
eration time of the new algorithm is found to be significantly lower than 
the test generation time of the PODE:\:1 algorithm. The DCT algorithm 
is proven to be more efficient for circuits with components connected par­
allel based on the experimental result. Path predicate constraint sets for 
circuits with sequentially connected components result in strict conditions 
\vith regard to the path traversal. These strict conditions potentially frus­
trate the forcemeat of candidate test vectors to the component input ports. 
e.g. the improper controllability of sequentially connected circuit structures 
potentially inhibits the generation of a high fault coyerage test set. 

The developed special benchmarks parametrized by the bit-width of 
the circuits served as a perfect test bed for estimating the dependency of the 
computation complexity of the test generation and the size of the circuit. 
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