
PERlODICA POLYTECHSICA SER. EL. ESG. VOL. 42, XO. 3, PP. 311-335 (1998)

NEW ALGORITHM FOR BEHAVIOURAL TEST
GENERATION l

Balazs BEl'YO

Department of Measurement and Information Systems
Technical University of Budapest

H-1521 Budapest, Hungary
Fax: +36 1 4632 057, E-mail: benyo@mit.bme.hu, galett.bme.hu .

Received: Dec. 10, 199.5; Revised: Aug. 8, 1998

Abstract

Significant efforts of the test design community have addressed the development of high
level test generation algorithms in the last decade. The main problem originates in the
insufficiently low gate level fault coverage of test sets generated at the behavioural or
functional levels due to oversimplifications which result from the application of highly
abstract and technology-independent fault models.

In this paper a novel behavioural level test generation algorithm is presented effec­
tively utilizing information on the circuit structure, which is extracted from the high level
synthesis process.

Experimental results shmv that the gate level fault coverage of the test sets gen­
erated by the new algorithm is similar to those assured by the gate level test generation
algorithms.

J(eywords: automatic test generation, behavioural level digital circuit synthesis, path
testing, VHDL.

1. Behavioural Level Automatic Test Generation

The radical growth in the size and complexity of VLSI systems results in
significant problems for automatic test generation (ATG), Gate level test
generation for complex digital circuits - containing hundreds of thousands
of gates - is impossible due to the huge computational complexity.

ATG for these complex systems requires the use of high level circuit
descriptions such as those at a behavioural or functional level - in the
test generation process. The recognition of this problem \,'as the first factor
triggering the development of the behavioural level ATG algorithms.

The other factor radically accelerating research was the development
of automated synthesis systems generating the circuit layout directly from
a behavioural specification. Both in the bottom-up or in the top-duwn

lThis research was sponsored by the Hungarian National Scientific Foundation, grant
W 015411. The research project has additional support from the research grant of the
European Community, FUTEG project No. 9694.

312 B. BESYO

synthesis approaches the circuit is described at varying levels of abstraction.
At the different phases of the design process designers have to generate tests
to validate their actual design models.

1.1. Application Fields of High Level Test Generation

The goal of the test generation at the behavioural level depends on the
intended application of the test vectors. Behavioural test vectors (e.g. test
vectors generated from the behavioural description of the digital circuit) are
basically used for two purposes:

<IJ validation and
<IJ final test of the circuit.

In the case of validation the test set is used for testing the functional
equivalence of different descriptions of the same circuit. thus validating the
transformations between bvarious levels of abstraction. The most common
application area of validation - as mentioned earlier - means the high level
automated synthesis systems [2].

The other potential field of application of behavioural txest vectors is
their use for final testing of manufactured circuits. This is the traditional
application field of the test vectors '1vhen the tester intends to discover man­
ufacturing faults by test sets.

The main problem in this second field is that the physical fault cm·­
erage of the behavioural test set is generally lOlL'. The fault coverage of a
behavioural test set even though it hardly depends on the tested circuit -
is typically around .sOYc of the 10'l\'-level faults [4],

1.2. Quality Criteria for the Test Set

The evaluation of the quality of the test vector set may be based either on

<IJ the traditional low level quality criteria. e.g. the gaie le uel fault cov­
erage and the length of the test set or

<IJ other criteria defined at more abstract digital circuit modelling levels.

:\. typical example for such a special criterion is the so-called path
coverage. In the case of control flow graph (CFG) based test generation
each test vector traverses a particular path in it. The path coverage defines
the ratio of the traversed paths and all paths in the CFG.

The type of the actually used criterion depends on the intended appli­
cation of the test vectors. Validation takes place typically at the higher levels
of abstraction. Accordingly, criteria defined at high levels of abstraction are
applied in the case of validation [.s] [10].

BEHA\'IOuR.4L TEST GE.'iERATIO.'i 313

The applied test quality criterion for manufacturing tests cannot be
more coarse than the gate level fault coverage as this is the highest level
still providing a proper model for faults originating in the technology.

1.2.1. Gate Leuel Fault Coverage

The measurement of gate level fault coverage is based on the stuck-at fault
model. This is the most \videly accepted fault model of the test design
community since the early sixties [7]. Even though the stuck-at model IS

one of the simplest fault models it has some basic advantages:

@ Realistic proper model of the physical failures for the majority of
static defect mechanisms.

@ Easy to handle - it is simple and appropriate for simulation and mod­
eling.

@ It is widely used allowing a comparative analysis of effectiveness of
the different test generation algorithms.

The correlation between the gate level and the physical fault coverages
is usually so high that they can be considered as approximately identical ones
from the practical point of vie\v. The advantage of the use of the gate level
fault coverage as test quality measure in the face of physical fault coverage
is that its estimation is essentially easier as it requires only the knowledge
of a gate level logic model instead of the much more detailed transistor or
layout level model. Correspondingly, gate level fault coverage is commonly
used as the evaluation criterion of manufacturing test sets.

1.3. Classification of Behauioural Leuel Test Generation Algorithms

The very first functional level test generation algorithms were developed at
the beginning of the eighties [8] [9] [11J [12] [13J [14]. Several behavioural
level test generation methods have been developed since that time.

Low level ATG algorithms were classified at the end of the eighties
according to the fault model applied [1] . .\ow, a similar classification of the
high level ATC algorithms will be given. There are three major classes of
high-level ATG algorithms:

@ Behauioural fault model based algorithms define an own fault model
for test generation. For instance. these fault models describe phys­
ical faults as incorrect executions of a statement in the behavioural
description of the circuit. The test generation process is divided into
t\\·o phases: model perturbation and propagation of the effect of the
fault to the output. The advantages of these fault models are their

314 B. BENYO

easy implementation and the flexibility during simulation. The basic
weakness of these fault models is the incorrect correspondence to the
physical faults. thus the fault model is not realistic [3].

€I Implicit fault model based algorithms aim at the use of a very gen­
eral fault model instead of a particular one. This implicit fault model
assumes the occurrence of any permanent fault in the system with
the exception of those which increase the number of the states in the
system. Test generation is performed exhaustively based on a math­
ematical model of the circuit such as the CFG or the state transition
diagram [.5] [1.5].
These algorithms efficiently test the control sequence of the digital
circuit but do not cover the faults of the other parts of the circuits
within practical run-time limits. In the cases of the control dominated
circuits, the fault coverage of the test set is high even if measured in
terms of 10\\' level faults - but in circuits containing arithmetic logic,
data storage. or manipulation parts the fault coverage is low. Another
drawback of this approach is a potential over-testing, generating tests
for hypothetical faults not appearing even in the low level fault model.

€I A.d-hoc algorithms do not assure a general solution to the test gener­
ation problem, as these deliver only ad hoc solutions in the case of
existence of some kind of special conditions. For example several set­
ups of the hierarchical test generation or the random test generation
belong to this category [4] [6].

1.3.1. A.lgorithms Csing Behauioural Fault Model

The Behavioural Test Generator developed at the Virginia Technical C ni­
versity is one of the characteristic representatives of the ATC algorithms
using behavioural fault model.

A subset of VHDL is allO\\'ed for modelling the behavior of the circuits
in this approach. Both control and data fault models are developed which
perturb the operation of the language constructs. All of the possible faults
of the circuit are injected into the behavioural model once. The test vectors
are estimated by searching for an input vector propagating the effecl of the
actually injected fault to a primary output of the circuit.

The major classes of faults injected are as follows:

€I .\1icro-operation fault - instead of the execution of a basic VHDL state­
ment another one is executed. e.g. OR statement instead of A\"D
statement.

€I A.ssignment control fault the assignment of some new value to a
variable or to a signal is not executed.

€I Dead-clause fault In the case of a conditional branch statement like
a CASE statement the selected branch is not executed.

Such an algorithm is implemented in a constraint based ATG environment.

BEHAVIOURAL TEST GEi\'ERATIOS 315

1.3.2. Implicit Fault lVIodel Based Test Generation by the Example oJ Path
Testing

The class of the implicit fault model based test generation algorithms will
be illustrated by the path testing algorithm, originally developed for soft­
ware validation. For software validation the CFG of the tested program is
extracted at first and subsequently the operation of the program is validated
by executing the program statements along several paths of the CFG and
by comparing the effect of the executed operations on the output variables
with the specification.

The behavioural level model describes the function of the circuit under
test by means of sequential statements in a similar program-like way so the
CFG of this description can be extracted as well. The validation of the
hardware is similar to the software validation: the operation of the circuit
is tested by simulation applying the input vectors causing the traversal of
the different paths in the CFG. Accordingly, the goal of this ATG approach
is the estimation of an input vector sequence traversing all the paths in the
CFG of the behavioural circuit description.

The algorithm is typically implemented in a constraint based form.
The conditions of the execution of a particular path are translated into con­
straints. The solution of the several constraint sets defines the input vectors
traversing the current path. The test set consists of these input vectors.
The path testing algorithm \vill be introduced in detail in Section 4.3.

2. Automated Digital Circuit Synthesis

)'lodern computer aided design environments for digital circuits synthesis
accelerate the design process by automating several phases of the design flow,
\"owadays some manufacturers offer automated synthesis systems designing
the digital circuit layout directly from the behavioural specification of the
circuit without any kind of human interaction. The most common features
of the recently developed automated synthesis systems are as follows:

III Top-dou'n design flou'
The design process is divided into several independent phases. An
increasingly detailed description of the digital circuit is developed
through stepwise model refinement during the synthesis process. The
abstraction level of the developed descriptions decreases by each step
of the model refinement process.

@) Library-based synthesis
The synthesis system contains a component library including the de­
scription of the most frequently used circuits. The design system com­
poses the designed circuit of multiple instances of these predefined
circuits. The design system binds the current design to the library

316 B.BENYO

components and implements them as many times as they need. Sub­
sequently. the final part of the synthesis is connecting the registers
according to the bindings.

The typical structure of a top-down digital circuit design process is
illustrated in Fig. 1. The input of the design process is the behavioural
specificaiion of the circuit. During the design flO\\' in each design phase
a new. more detailed circuit description is generated at the lower level of
abstraction. In the figure three abstraction levels are outlined:

III Register level
III Gate level
III Layout level

In the case of fault-free design process the generated specifications are func­
tionally equivalent descriptions of the same digital circuit.

c:::::- BehavioralleveI specification ~

. .. ············t·····:·:···········_······:··::···········::····~·~···:···iiighi;;~i·~j~t&;-ii~· .. ··· ..

. I . Behavioral design. . . ~ster lib~
:::." :.: .. :m ... :.~ •. :.: .. : .. ::c:c.:"~ : :,:: f:.;:.: ... -~".::.: :, .. , ... ,: , .• :: ~ .. : .. : .. :-.... ~.:.:.: .• : :: : .. : ... ~........

c:::: Register ievel design description ~

......... " .. " ... ' •• H ,." .. , •••

Register1evelsynthesis

Register level design

............... m m l.: :.: m .. mm •• mm ••••••••

. ..
................ --.--- .. --_ ------_.

Gate level design description

··.Lcwievel S}'ntliesis

~outlibr~
~~----~~--~~~--~~--~~--~.

-....r--'----"-.................... --'-~--'--~-----.. ---

c::= _________ M_~ __ k_Ja~yo_u_t ____ ---==:>
Fig. 1. Basic scheme of the top-down design process

2.1. Synthesis Libraries

The design libraries contain the description of the most commonly used
circuit components at the different levels of abstraction. The description
of these circuits is special in the aspects that they describe the circuits in

BEHA VIOURAL TEST GEi':ERA TIOi': 317

terms of the input bit-width. This description technique is necessary in order
to decrease the size of the library.

At the higher levels of abstraction this description technique of the
circuits does not cause any problem. The recently developed hardware de­
scription languages include this modelling feature like the VHDL contains
the possibility of the definition of the generic statement.

The structural description of a digital circuit parametrized by the bit­
width of the circuit is much more difficult at the lower levels of abstraction.
Only a small part of the digital circuits can be described in this \vay, called
bit-sliced designs.

The bit-sliced circuits are built up by the chain of equal sub-circuit
components (which can be called a slice). Each component processes one
single bit of the input and generates one or more output bits belonging to
the current input bit. The components are connected by signals but only the
links between two subsequent components are allmved. These connections
make the bit-sliced design similar to the chain.

Because of this easy application of these circuits in the automated
synthesis systems the importance of these circuits has radically increased in
the last few years.

2.2. Behavioural Let'el Synthesis

The very first phase of the digital circuit synthesis is the behaL'ioural (high)
leL'el synthesis, generating a register-transfer level model of the actual circuit
based on its behavioural specification.

The cardinal difference bet\wen these t\\·o descriptions is that while
in a behavioural description data path and control statements can appear
mixed, at the register transfer level they are already separated. The main
function of the beha\'ioural design phase is the decomposition of the current
circuit into controller and data part (Fig. 2). These two parts of the circuit
are handled separately in each phase of the design process after behavioural
synthesis. Even the manufactured digital circuits can be di\'ided into these
two main parts:

<iI Controller

<iI Data part consisting of the arithmetic logic and data storage

The arithmetical and data storage elements cover the evaluation of the
data part of the RT description. The control part of the circuit corresponds
to the controller in the RT description.

318 B, BE:-;YO

Input signals

RTL Design

Data Path

Output signals

Fig, 2, Structure of the register transfer level design

3. New Approach of the Behavioural Test Generation

The gate level fault coverage of the test sets generated by traditional be­
havioural level ATG algorithms is insufficient for a thoroughgoing test of
circuits, especially in the case of arithmetics intensiv€ circuits, The novel
algorithm proposed in this chapter generates test sets of a high fault cover­
age even for this class of circuits,

Implicit fault model based algorithms generate high fault co-verage tests
for control intensive circuits as described in SEction 1.3. The new ATG
algorithm incorporates a modified version of the path testing algorithm to
generate test -vectors for the control part of the circuit.

Howe\'er. a good test qualit:v for the arithmetic logic and data storage
elements necessitates as first step the definition of a realistic fault model.
Since previous experiments from the literature have clearl)' shown that a
realistic description of the ph~'si(al faults at the highest. beha\'ioural level
is impossible. a version of the gate' level stuck-at fault model is used for test
generation in the arithmetical. data storage and manipulation parts. In
library based systems the components in the data part are substituted by
macros from the librar:-', The basic idea of the novel ATG algorithm is to
generate elementar~' test" corresponding to the components in the library
and using a back-annoi"t1 inn i echnique to embed them into the behavioural
level test generation]>1'0('0:':',

The advanta£;r~ of the' solution is th;,' the fault model applied can
exactly describ0 the "ffens of technology-related defects in the data part.
while omitting cli! O\'f,'i-dc'lililed modelling of the physical faults in the control
part of the circllit.

BEHAVIOL"RAL TEST GE:-'"ER"4TIOX 319

3.1. Fault ;1f odel Generation

The fault model can be generated for any library based synthesis system. As
first step a thoroughgoing test set is generated from the gate level description
of the components in the design library using the gate level stuck-at fault
model. The gate level descriptions of the elementary library components of
a modern design system are typically scaleable, i.e. they are parametrized
by the bit-\yidth of the function to be implemented,The generated test set of
the library components has to be described in terms of the bit width of the
function as "vell in order to save the scaleability for the ATG. In this case the
gate-level ATG has to be executed for several instances of the registers and
subsequently a parametrized form of the test vector set is to be estimated,
This phase of the test generation involves human interaction but it should
be performed only once for each synthesis system.

These scaleable abstract test vector sets consist of the symbolic list of
input values sensitizing the component for stuck-at faults. This set of 'sensi­
tiye' values on the input ports of the library components can be considered
as an equivalent of their register level fault model.

After this definition of the register le\"el fault model, the register level
faults have to be 'back-annotated' to the behavioural level by performing the
inverse transformation of the design process. In more detaiL the variables
in the beha,,"ioural description are to be identified which are transformed to
input ports of the components during the design process.

After assigning the 'sensiti\"e' values to the variables ATG reduces
to a \yell-known beha\"ioural level justification problem. The fault model
generation method corresponding to a top-down design system is sho\\"n in
Fig . .J.

The de"i;elopmem of the behavioural fault model in the .\Iulticompo­
rlent Synthesis S~"stem is described in detail in the next chapter.

4. Direct Component Testing

A new test pattern generation algorithm, called Direct Component Testing
(DeT), has been de\"eloped based on the idea introduced ill the chapter
abm"e. In this algorithm. the circuit is modelled at the behacloumlleL'el (i.e.
the test generation process deals with behavioural level objects) but the \\"ell
known stud-Clt fault model is used for modelling the physiccll failures of the
components of the digital circuit.

The low complexity of DCT originates in generating test \"ectors based
on the behavioural model of the circuit. The high fault coverage of the
generated test set is guaranteed by using the stuck-at fault model.

Test pattern generation is possible by DCT for circuits designed by a
library-based digital circuit synthesis system, i.e. standard components are

320 B. BEYfO

c::: Behaviorallevei fault model :==>
;'~:S7 ••. ,."~~~·m,,,:~~,,,,,,.::,,,"".m"".~:.":~m:"t:::-" .. ·,:" .. " ... ~ :'C":., m~~,.":"".,.--".-... ,." ::"..,""_ .. ".m" ,,"':':'''''''1

.1 "Inverse" behavioral synthesis Highk;:::!f:!d:ft::waet I
:;.,LtL:,., ~.~ " ... ,.:: ": ,.,, ... ,."' .. :~..:.:::.L_., c" ... :":, :~." .. "" ... , ,., ,:":,, .. ,, .. ,,_., .. :~ ... ,: :".L " ".L.,.1

c:::: Register levelfauU model ~

•.. ,'. '_ .. ____ ' _m_m ___ ' __
I

C::::Gate level description of the registerC:>

Fig. 3. Fault model generation at the behavioural level

used in the circuit and the data path description of the register transfer level
design is available.

The test generation algorithm according to DCT can be divided into
two phases:

® Synthesis system dependent installation phase
® Target circuit dependent test generation phase

The main difference bet\yeen these t\\'O phases lies in the frequency of
execution. The synthesis system dependent installation phase is executed
just once, in the installation of the test generation system or in the case of
changing the design library of the synthesis system. Actions belonging to
the target circuit dependent phase are executed when generating each test
vector.

The DCT algorithm consists of the follOi,Ying actions:

® Synthesis system dependent installation phase:

1. Generate general test sets for the components of the design library of
the synthesis system.

® Target circuit dependent test generation phase:

2. Take the behavioural description of the circuit under test and enumer"
ate the feasible paths of CFG of the behavioural model.

3. Recognize the components used and their interconnection in the im­
plementation of the circuit based on the Register Transfer Level (RTL)
descri ption.

BEHAVlOt:HAL TEST GESEH.-\TIOS 321

4. Extract the mapping between the carriers in the behavioural descrip­
tion and the components in the RTL description.

5. Generate input vectors for each feasible path warranting the compo­
nent test vectors on the input ports of the components in the path.

All t he listed phases will be described in detail in later sections.
There were other practical considerations during the implementation

which have to be mentioned. As almost all the modern integrated synthesis
systems use scalable design library components by the input-bit width of
the components, the ne\\' test generation algorithm has been developed sup­
posing that the test generator incorporates such a synthesis system even if
it is not a necessary requirement for the application of the DCT algorithm.

4.1. Direct Component Testing Algorithm Description

In this section, a detailed description of the digital circuit testing algorithm,
called Direct Component Testing: will be given. During the description a
constraint based implementation environment is assumed.

The input data used in the DCT algorithm are as follows:

@ Behavioural level description: B
@ Gate level description: G
@ Bit width dependent description of the test sets of the components in

the design library: TestSetDescription(Si: :2',) (for component called
Si : :2'i is the bit width of the component).

The algorithm is diyided into several parts:

Algorithm A: Generation of Path Predicate Constraint Set for
Feasible Paths

\'ote that this algorithm is very similar to the Path testing algorithm,
Given input data is the behavioural level description of the digital

circuit noted by B.

STEP 1. Extract the control fto\\' graph (GB) of the behavioural descrip­
tion B. GB = (VB:EB), GB = cfg(B).

STEP 2. Enumerate the C FG paths by traversal. The complete set of
paths is denoted by Pr, = {P1,P2 :. ",Ps}, \\'here Pi are paths in GB,
According to the definition of the path P; is a vector consisting of
vertices:

P = [START.lh, 10·2.·", L'i ... ,.

and

322 B. BESYO

STEP 3. Generate constraint sets called path predicate constraint set for
each C FG path. P Pi = (Xi, Ci) denotes path predicate constraint set
belonging to path Pi. Xi is the set of variables and C; is the set of con­
straints. Variables in Xi are carriers (ports, signals. variables) used in
behavioural description B or variables derived from these behavioural
carriers. (In the case of sequential circuits, variables can take different
values in different time frames, thus, multiplied instances of carriers
are used in the constraint sets.)

STEP 4. Generate the set of these path predicate constraint sets:
PP'E, := {PP;}.

STEP 5. Generate the set of feasible paths and the corresponding path
predicate constraint sets. Constraint solver can be used for this.
Denote Pj the set of feasible paths. P Pj the set of corresponding path
predicates.
Pi E P'E" Pi E Pr if and only if there exists at least one solution of
PPi . .

PPi E PP'E" PPi E PPj if and only if Pi E Pj.

Algorithm B: Constraint Set Generation Describing Components
Test Sets

Given input data are as follows:

@) Behavioural level description of the digital circuit denoted by B:
® Gate-level description denoted by G
® Bit width dependent description of the test sets of the design library

components
TestSetDescription(Si, :rJ denoting the description of the test set of
component called Si .. ri is the bit \\·idth of the component.

STEP 1. Extract the library components used in the gate level description
G. Let us denote the set of library components by L
= {L 1 • L2• Le}· Li is defined by the name of the component and
the actual bit \\-idth: Li = (:Yi : bIc;J.

STEP 2. Identify the signals connected to the input ports of the compo­
nents in gate level description G_ The description of the components
is completed by the name of connected signals:
L · - (Y·b?"·) ---'-.. L'- (Y·b'L···{S··')· l - ~ ~~ LVl -7 i - ~ l~ L 1~ IJ·

STEP 3. Generate constraint set noted by (Xi. C;)R describing the test
set of the used components.
Li = (Ni: bUi: Si) :::} (Xi, Ci) where Xi := {Si},
Ci :=TestSetDescription(Ni, bWi)
Thus (Xi: Ci)R := ({ S;}:TestSetDescription(Si. bUi)).

BEHAVIOURAL TEST GESERATIOS 323

STEP 4. Identify the carriers corresponding to the gate level signals in the
behavioural description comparing the behavioural level description B
and gate level description G. The result will be couples of behavioural
carriers (Ri) and register level signals (Si): Ri = corresponding(S;).
(The couples are described in the form of a function.)

STEP 5. Substitute the variables in the component testing constraint sets
according to the function defined above:
(Xi, C;)R := ({SJ,TestSetDescription(Xi , bWi)) =?

(Xi. C'i)B := ({ corresponding(Si) }.TestSetDescription(Xi , bWi))

The version of the algorithm described above is the most general in
the sense that this variation of the algorithm can be applied in each design
system. Hm;;ever. the majority of synthesis systems allow modifications
radically simplifying the previously described general algorithm.

The usage of RTL description is not necessary since most of the syn­
thesis systems are rule-based design systems driven by cost functions (e.g.
the design process is not heuristic). The RTL level description of the digital
circuit is used for the identification of the library components and for the
definition of the bit-\\'idth of the used components. High confidence esti­
mation can be made regarding this information considering the design rules
and the behavioural specification of the designed circuit in the majority of
synthesis systems.

In the declarative part of the behavioural description, the bit-width of
the used carriers is defined. Generally these features remain unchanged dur­
ing the high-level design. i.e. the bit-width of the components implementing
the gi\"en carrier can be estimated based on the behavioural specification of
the circuit.

The used components can be predicted easily in the case of arithmetical
instructions occurring in the behavioural description as the mapping of these
instructions is generally \\"ell-defined by design rules. Since the algorithm
deals basically \\"ith the data path this estimation gives sufficient result for
the prediction of the used components. (:\ote t:lat the estimation of the
structure of the controller part is a much more difficult task. Fortunately.
this problem is out of the scope of this algorithm as the controller part is
tested implicitly by the execution of each CFG path.)

Algorithm C: Constraint Sets Composition

Gi\"en input data are as follows:

® Component testing constraint sets (in terms of behavioural variables):
(Xi. C';)B is the constraint set for the component number i.
C'· - {C'l C'2 c't} "I, IC'"' - t // - I" • • • •• z ,\\ lere I ,1-·

@ Path predicate constraint sets: PPj = {PPl . PP2 ." ... PP,}. where
iPPjl = s.

324 B.BE:-;YO

Suppose that there were m components in the circuit.

STEP 1. For loop (j = 1: j <= s: j + +) do (for each path predicate
constraint set)

STEP 2. For loop (k = 1; k <= m: k + +) do (for each component)
STEP 3. For loop (l = 1: I <= t; 1+ +) do (for each constraint in the test

description set)
STEP 4. Generate final constraint set (denoted by P pfl):

ppkl '- {PP Cl}
J'- J, m

STEP 5. Solve the constraint set by constraint solver. The values of the
variables symbolizing the input ports of the circuit define the test
vectors.

STEP 6. END loop / END loop / END loop

In test generation of a certain digital circuit the Algorithm A and
Algorithm B are executed first. These steps can be executed simultaneously.
The Algorithm C is executed after the end of the first t\yO steps.

4-1.1. Completeness and Correctness of DCT

As it has been declared above, the primary goal of the DCT algorithm is
to generate test vectors for all feasible CFG paths and the secondary aim is
to force the previously generated test vectors to the input port of the used
components.

The first question to be posed is whether or not the algorithm finds a
test vector for a feasible path. The answer to the question is unfortunately
negative. The path predicate constraint set describes the necessary condi­
tions of the traversal of a particular CFG path. Since the DCT algorithm
adds further constraints to the path predicate constraint set, it is possible
that the constraint set can be satisfied before ~he modification and cannot
be satisfied aft"?r.

Fortunately, correction of this problem is simple. The path predicate
constraint set has to be solved by the constraint solver without any modifi­
cation in addition to those described above. Note that this step is exactly
the same as the task of the classic path testing algorithm. In this case, the
DCT algorithm subsumes the path testing algorithm. e.g. the test vectors
generated by the DCT will include the test vectors generated by path testing
algorithm. In this 'way, the testing of each feasible path is ensured.

The reason why this step is not included in the original algorithm de­
scription is simple. In practice, all the component test vector description
constraint sets are completed by an additional general constraint which can
be satisfied by any value of used variables. Since this constraint does not
restrict the solution of the original path predicate constraint set, the solu­
tion of this constraint set is the same as the solution of the path predicate

BEHAVIOURAL TEST GESERATIOS 325

constraint set. l.e. the output is equal to the output of the path testing
algorithm.

Completion of the secondary goal of the test generation is obvious. In
each case when a constraint set is passed to the constraint solver it contains
the path predicate constraint set describing the necessary requirement of
the path traversal and a single additional constraint describing the occur­
rence of one of the previously generated test vectors on the input port of
the corresponding component. Since both constraint sets to be merged are
minimal in the sense that they do not contain unnecessary constraints. the
resulting union of the constraint sets \vill be minimal. too. i.e. a solution
will be found if the described conditions can be satisfied.

Here we have to note that. by using this feature of DCT, the algorithm
can be extended. It is not necessary to use constraint sets strictly describing
test sets of components for adding it to the path predicate constraint sets.
If there are any further values which is preferred to occur on the input ports
of components and the description of these values is possible by constraints,
then this constraint set can be used instead of the component test description
constraint sets. The DCT algorithm in this case \\-ill generate input vectors
of the circuit thus forcing the preferred values on the input port of the
corresponding component.

.\Iany test generation algorithms use restrictions regarding the logical
values occurring on the internal nodes of the tested circuit. If these restric­
tions can be described by constraints, then DCT algorithm can potentially
be used to implement these test generation algorithms. In this way. for in­
stance. interesting comparisons can be made between different algorithms.

4.2. Implementation of the DCT Algorithm in Constraint Enc-imnment

In recent years. the theory of the constraint satisfaction problem has rad­
ically improved and some efficient algorithms and systems have been de­
veloped [17] . The constraint environment is found to be suitablez for
the description of test generation problems [19] . The implementation of
the DCT algorithm is also done in a constraint environment. .:VIoreover. the
common advantages of the constraint en\-ironment meant there \vas a spe­
cial reason for this selection. In the DCT algorithm. entitles from different
levels of abstraction (e.g. bit variables and integer variables) have to be
uniformly managed. The constraint environment proved itself to be flexible
in this sense.

The phases of the DCT algorithm described above can be implemented
in the constraint environment by the following steps:

8 Synthesis system dependent phase

General component test set generation for the library elements

326 B. BE!'iYO

e Target circuit dependent phase

Constraint set development for path predicates
- Constraint set development for component testing
- Constraint set composition and solving

The test generation of the actual circuit is preceded by the synthesis
system dependent installation. During this process, the scalable test set of
the library components is generated. This process is described in detail in
[22] .

The description of the development of the several constraint sets and
solving algorithms \vill be presented in subsequent sections.

Prior to detailed description of different phases of the algorithm, the
data flow diagram of the DCT algorithm is presented in Fig . • {, giving an
overview of the algorithm. The elliptical boxes represent the data entities
and the rectangular boxes the processes. The arrows show the connections
between the processes and the data entities.

{3. Constraint Set Development for Path Predicates

Test generation for behavioural VHDL models is a problem similar to the
software test generation regarding the fact that the behavioural description
of the circuit consists of sequential instructions similar to any programming
language.

Testing the software by traversing all the branches in the program is a
.. vell-known idea in software testing. The path testing algorithm is based on
this idea. In the path testing algorithm the Control Flo\\" Graph (CFG) of
the program is first extracted, the paths in the graph are enumerated, and
then one in pu t vector of the program is generated, one for each path. This
input vector will cause the traversal of the corresponding path in the CFG
during the circuit operation [20].

The path testing algorithm has already been applied to hardware test­
ing and has been proven an efficient algorithm for the generation of design
verification tests as mentioned in the literature survey [5] [21].

In the DCT algorithm the path testing algorithm is applied to develop
the predicates of the CFG paths. These predicates are describ8d in the
form of constraints. The predicates of the unfeasible paths are eliminated
by recognizing the contradictions in the constraint sets by the constraint
solver.

A simple path testing example is shown in Fig. 5. At the top of the
figure, the CFG of the behavioural description is shown. The description is
at the bottom left part of the figure. There are two CFG paths in the model.
On the right, the predicates of the traversal of the paths are presented. The
arrows sho\\" the correspondence between the behavioural model and the
constraints.

BEHAVIOURAL TEST GESER.~TIO.v 327

Fig. 4. Data flow Diagram of the DeT algorithm

4.4. Constraint Set Composition and Solving

In this phase, the separately generated constraint sets are mergeci and passed
to the constraint solver. This final phase of the test generation is found to
be very sensitive \\'ith regard to the efficiency of the DCT algorithm. Several
constraint set generation methods are tested during the development of the
algorithm.

Which algorithm is most efficient depends on

@ the structure of the circuit and
@ the used constraint solving algorithm.

328 B. BESYO

The following algorithm is found to be efficient in all circuit structures even
if, in the case of some special circuit structures, there are more efficient meth­
ods.

wait on inst

CFG graph

entity Alu is 0 <= A <= 15
port(A: in BiC Vector(3 donut 0); 0 <= B <= 15

B: in Bit_ y;~e,c=t=or~(3=-=d=ow=n:to~0~)~; ~~~~~~::::::.:"~ __ inst E{O, I}
inst: in bit; - inst = 1
res: out Bit_ Ve res=A+B

. end AIu;

architecture Behavior of AIu is
begin ~
alu: process begin ~ /

if inst =' l' then
res <= A + B; 0 < = A <= 15

else 0 < = B <= 15
-::-:;:A.~-=--------_~ inst E{O, I} res <= A - B; ---_________ =>- inst"'" 1

end if; >- res=A-B
wait on inst;
end process;

end Behavior; VHDL model
(b) Constraint set corre­

sponding to the else path

Fig. 5. Constraint sets generated by the path testing algorithm

BEHAVIOliRAL TEST GE;{ERATIO;{ 329

The goal of DCT algorithm is to generate those input vectors \vhich
force the component test vectors generated in the initial phase of DCT
installation to the input ports of arithmetical components.

The constraint generation algorithm implements directly the above
idea in the constraint environment:

Firstly: it takes the constraint set describing one path predicate, then
takes one component and one test vector from the corresponding component
test set. The final constraint set is composed by the path predicate constraint
set and a further constraint forcing the chosen test vector to the input port
of the arithmetical unit.

The algorithm is illustrated by an example. In Fig. 6 the constraint
composition of the example introduced in Fig. 5 is shown. The selected
path is the 'then' path in the CFG and the actual port is 'A'. At the top
of the figure there are two constraint sets describing the path predicate of
the 'then' path and the test vectors for the components connected to the
port ·A'.

From the path predicate constraint set as many constraint sets are
derived as many test vectors exist in the actual test set. In each derived
constraint set an extra constraint is inserted forcing one test vector to the
ports of the adder.

In the derived constraint set there can be a contradiction which means
that the CFG path \vith the given condition is not feasible. The constraint
solver discovers this situation. As the test generation for this circuit under
the given conditions is not possible, the constraint set will be eliminated.

If there is no contradiction. the constraint solver generates a solution
for the constraint set. The value of the constraint variables representing the
input ports of the circuit defines the searched test vector.

.{5. Testability of the Bit-Sliced Design

The synthesis library components as already mentioned - are bit-sliced cir­
cuits. However, this class of circuits suffers from some testability problems.
The core of this problem is that all sub-circuit components and connections
in the bit-sliced design are uniform. The cascade inputs of the very first com­
ponent in a chain of cascaded bit-sliced components are unused and they
are inacti\'ated by connecting them to a constant voltage (ground or power
supply) depending on the actual logical function of the input. Because of
this input bit of the circuit is uncontrollable, this still redundant part of
the circuit remains naturally untestable. Fortunately. such untestable parts
form less than 109(of the entire circuit in practice,

330

o <= A <= 15
o <= B <= 15

inst E{O,I}
inst = 1

res=A+B
Path predicate constraint

set

······1····'·· •• ··,··
o <= A <= 15
o <= B <= 15

inst E{O,1}
inst = 1

res=A+B
(A,B)=(O,O)

Derived constraint set 1

JI
o <= A <= 15
o <= B <= 15

inst E {O,l}
inst = 1

res=A+B
(A,B)=(l,l)

constraint set :2

+
~ ~: ~~:yl~

instE{O,l}
inst = 1

res=A+B
(A,B)=(2,2

Derived constraint set :3

B. BESYO

0001

0010

set - The test vectors

Fig. 6. Constraint set composition and test vector generation by the DCT
algorithm

5. Results

The efficiency of DCT algorithm is evaluated by test pattern generation
experiments \vhile the analytical evaluation of the computational complexity

BEHAVlOt:RAL TEST GE:-;ERATlO:-; 331

of the algorithm is a rather difficult and time-consuming process.
The correct experimental evaluation of the efficiency requires the com­

parison of the new algorithm to a gate-level test generation algorithm. In our
case, the well-kno\\"n PODE:.:r algorithm [16] is selected as reference. This
algorithm is considered one of the most efficient gate level test generation
algorithms.

In the efficiency analysis both the behavioural and gate-level circuit
models of the same circuit are used. The test generation experiments had
to be preceded by a benchmark circuit selection process. Since no standard
benchmark set fulfilling the above requirement is publicly available a speciaL
self-developed benchmark circuit set is used for our experiments.

As a part of the efficiency evaluation process the experiments' aim is to
determine the dependency of the computation complexity of DCT algorithm
from the size of the circuit.

For this purpose two basic classes of benchmark circuits are developed
representing different types of arithmetic intensive digital circuits. Each
circuit belonging to the same class has the same structure and same function
but the input bit width of the circuits is different. These circuits served as
a test bed for estimating the dependency of the computation complexity of
the test generation and the size of the circuit.

The ALe 4. ALe 8. and ALe 16 are arithmetical logical units with four
instructions: add, subtract. reset, compare. These benchmarks represent
the circuits with components connected parallel. In these circuits several
arithmetical units are connected parallel having the same input and output
port. The arithmetical units used in these circuits are a comparator. a
subtractor and an adder.

The SERIAL 4 and SERIAL 8 circuits have four inputs called: A,B,C,
D. The output value of the circuits is equal to AC+AD+BC+BD. These
benchmarks represent the circuits with arithmetical units which are con­
nected sequentially. T\\·o adders and a multiplier are used in these circuits.

Basic parameters of benchmark circuits can be seen in Table 1. In this
table the number of input \·ectors, number of design library components
used in the RTL level design and number of gates in the gate level design
are listed. Remember that the number of input vectors lS equal to the
number of test vectors in the case of exhaustive testing.

5.1. Results of Test Pattern Generation E:rperiments

The results of the test generation are presented in Table 2 and Table 3. Ihe
test generation parameters of DeI and PODE:\I are sho\\·n in a common
table in order to facilitate comparison. The goal of the test generation by
PODEM algorithm was, in each case, the generation of a complete test
set. Thus, the fault coverage belonging to PODE)'I algorithm (except for

332

Table 1. Benchmark circuits - series

11 ALU 4 I ALU 8 I ALU 16 SERIAL 4 SERIAL 8
:\0. of input

11
210 218 234 216 232

vectors
:\"0. of library

11
3 3 3 :3 3 components

.\"0. of gates 11 212 392 752 421 1373

cases when the predefined time limit of the generation is exceeded) is the
proportion of potentially testable faults. It has to be outlined (especially in
the case of real circuits) that the proportion of non-testable faults is often
very high. The reason for this is the usage of bit-sliced components where
many input ports of the components are not controllable, i.e. the component
is not completely testable.

Belo\\' the listed parameters of the test generation process are shO\\'n:

<11 Test generation time: The CPl- time of the test vector generation.
(For the experiments se:\" SPARC station 20 with 64:0,1 main memory
and SunOS .5 . .5 is used.)

@ Number of test L:ectors: The number of generated test vectors by the
current algorithm.

@ Fault coverage: Gate-level fault coverage of the generated test set, i.e.
the proportion of the covered stuck-at faults and the total number of
stuck-at faults (including the non-testable faults).

Comparison of the fault coverage of the DCT and PODE:"I algorithms
shows a very favorable picture. The fault coverage of the test sets gener­
ated by DeT approached and sometimes even reached the fault cOL'erage of
the PODEJiI-generated test sets. This feature was independent of the pro­
portion of non-testable faults. (It is demonstrated in SERIAL -± '\vhere the
proportion of non-testable faults \\-as quite high (about 20%) and in the case
of ALC_16 \\'here almost all the faults \\'ere testable.) This is an important
feature which allo\\'s the application of DeT algorithm in manufacturing
testing.

The increase of the test generation time can be estimated based on the
experiments by the ALC and SERIAL circuits. The DCT algorithm showed
an exponential nature as expected but the gro\\·th of the test generation
was significantly lo\\-er than the increase of the test generation time of the
PODE:,,'I algorithm. This advantage is seen in the case of the synthesis
example circuits when the test generation time of the DCT algorithm was
much 100ver than the test generation time of PODEM.

The DCT algorithm is found to be more efficient in parallel target
circuit structure, i.e. when the circuit components are connected parallel.

BEHAVIOURAL TEST GE!';ER.4TIO!': 333

Table 2. Test generation for ALU 4, ALU 8, and ALU 16 by DCT and PODEyF

Benchmark circuit ALU 4
1

ALU 8 ALU 16

Number of test vectors 160 3.52 736

Test generation time 127.07 277.88 679 . .5

Fault coverage (%) 90.81 % 9.5.11% 97.48%

PODEM algorithm

l\ umber of test vectors
1

.54 102 197

Test generation time 9 . .52 82.38 more than 20.507b

Fault coverage (%) I 91.4.5% 9.5.4.5Yc I 97.6.5%

a. The time is measured in seconds.

b. The test generation is interrupted as it exceeded the given time limit.

This can be seen by comparing the experiments \\'ith SERIAL and ALC
circuits. The ALC circuits have a parallel structure. The fault coverage
of the test sets of DCT algorithm in this case almost reached the fault
coverage of the PODEM generated test sets. In sequentially structured
SERIAL circuits, the fault coverage approached the fault coverage of the
PODENI generated test set but did not reach it.

Table 3. Test generation for SERIAL 4 and SERIAL 8 by DCT and PODE~la

I
Benchmark circuit SERIAL 4 SERIAL 8

:\ umber of test vectors 64 142

Test generation time 46.:33 94.61

Fault coverage (%) 64.68Yc 74.81 %

PODE:YI algorithm

:\ umber of test vectors I 6:3 86 I
I !

Test generation time
11

6819 more than 21410b I
Fault coverage (%) 80 .. 54% 8:3.78%

a. The time is measured in seconds.

b. The test generation is interrupted as it exceeded the given time limit.

This \vas an expected result as in sequential circuit structure many dif­
ferent components are activated during the traversal of a certain CFG path.

334 B. BESYO

The operation of components results in several ne\\' constraints regarding
the processed data which is reflected in complex path predicate constraint
sets. Because of this, the chance of the infeasibility of the path predicate
constraint set completed by the additional constraint forcing a particular
logical value to the input port of a component is considerably higher than
in the case of parallel target circuit structure where the path predicate con­
straint set is in general much simpler.

In practice, the structure of the circuit is not homogeneous, i.e. both
parallel and sequential connections of components occur in the same circuits.
Because of this, the efficiency of DCT algorithm in general is expected to
fall between the results seen above.

5.2. Conclusion

A ne\\" high-level constraint based test generation algorithm has been devel­
oped which can be an alternative way of generating test vectors not only for
design verification testing but also for manufacturing testing.

Through Direct Component Testing, i.e. combining CFG path predi­
cate constraint sets with constraint sets describing the effective test set of
the components, a new possibility of using structural information for the
behavioural level test generation is introduced. The described algorithm is
an efficient method of information compaction which regards the structure
of the designed circuit and extracted from the s:vnthesis roles of the design
system.

The introduced description formalism for test set representation of bit­
sliced digital circuit - i.e. test set description in terms of the bit \\'idth of
the digital circuit is a new idea in the field of digital circuit testing.

Experimental results sho\\' a sufficiently .J.igh degree of gate-level fault
coverage of the test sets generated by the ne\\" algorithm. The test gen­
eration time of the new algorithm is found to be significantly lower than
the test generation time of the PODE:\:1 algorithm. The DCT algorithm
is proven to be more efficient for circuits with components connected par­
allel based on the experimental result. Path predicate constraint sets for
circuits with sequentially connected components result in strict conditions
\vith regard to the path traversal. These strict conditions potentially frus­
trate the forcemeat of candidate test vectors to the component input ports.
e.g. the improper controllability of sequentially connected circuit structures
potentially inhibits the generation of a high fault coyerage test set.

The developed special benchmarks parametrized by the bit-width of
the circuits served as a perfect test bed for estimating the dependency of the
computation complexity of the test generation and the size of the circuit.

BEHAVIOURAL TEST GENERATION 335

References

[1] ABR.nlOVICI. ?vI. - BREUER, ?vI. A. FRIED:-fA:-;, A. D.: Digital System Testing
and Testable Design, Computer Science Press, 0:ew York, 1990, ISBN 0-7167-8179-4.

[2] RA:-;GA VE:'!URI. KnL-\R. 0:. - VUTUKURU. R. RAO, P. S. - PRWEEX SIXHA,
NIXG REX, - PADDY M.nITORA, - RAy! :\L-\XDAYAy!, - R.nf VDfURI. JAJANTA
Roy: An Integrated ?vlulticomponent Synthesis Environment for MCMs, IEEE Com­
puter. April 1993, Vo!. 26, No. 4, pp. 62-74.

[3] SCHOEX, J. ?v1.: Performance and Fault :\lodelling with VHDL, Englewood Cliffs,
N.J.: Prentice HalL 1992.

[4J BEI'YO. B. VDfURI. R. P.UARICZ.-\, A.: Algorithmic Versus Random Functional
Test Generation, submitted paper to Journal of Electrical and Electronic Testing.

[5] VD!URI. R. KALYAXARA:'fAX, R.:
Generation of Design Verification Test from Behavioural VHDL Programs Using Path
Enumeration and Constraint Programming, IEEE Transactions on VLSI Systems.
1994.

[6] ARYlSTROXG. J. R.: Hierarchical Test Generation: Where "Ye .\re. and \Vhere We
Should Be Going?, IEEE, pp. 434-439. 1993, ISB); 0-8186-4350-1/93.

i7l SHELOO;'; B. AKERS: Test Generation Techniques. IEEE Computer, ?vI arch 1980.
[8i LEVE;';OEL. Y. H. :\lEXOX, P. R.: Test Generation Algorithms for Computer

Hardware Description Languages, IEEE Transactions on Computers, Vo!. C-31, :\0.
7. July 1982.

[9] BREUER .. M. A. FRIED:-I.-\;';, A. D.: Functional Level Primitives in Test Generation,
IEEE Trans. on Computers, Vo!. C-29, No. 3, pp. 223-225, ?v'larch 1980.

[10] RAVISHAXKAR KALYAXARA:'IAX: Behavioural Test Generation in VHDL/vVAVES
Environment, M. Sc. Thesis, Dept. of Engineering and Computer Sciences, Univ. of
Cincinnati, 1993.

[ll] CHI.-\;';G. A. C. L. :\lCCASKILL. R: Two New .\pproaches Simplify Testing of
?v1icroprocessors, Electronics, VoL '19. No. 2. pp. 100-105. January 1976.

[12J :\1cCASKILL. - BOZORGUI-NESBAT. S.: Design for .\utonomous Test. IEEE Trans.
011 Computers, \'o!' C-30, No. 11, pp. 866-87.5. November 1981.

[13J THATTE. S. ?vI. - .",BRAHA:'l. J. A.: Test Generation for :\1icroprocessors. IEEE
Trans. on Computers. \'o!' C-29, No. 6. pp. 429-441. June 1980.
BR.-\H'.!E. D. .·\BRAHA:'l. .-\.: Functional Testing of ?vlicroprocessors. IEEE Trans.
on Computers, \'01. C··33. No. 6, pp. 47·5-48.5. June 1984.
HU:'l:'!ER. H. D. VEIL H. TOPFER. H.: Functional Test of Hardware Described
from VHDL. Proceedings of CHDL-91. pp. 46.5-477 .. \pril 1991.
USC Test Group: Test Generation System (TGS) l'ser's ?vfanual- \'ersion 1.0. Uni­
versity of Southern California.
hFF .. ~R. J. ?vIICHALO\'. S.: ?vlethodology and Implementation of CLP(R) System,
Proc oj 4th fCLP. :ViiT Press. ?vIay 1987. pp. 196--218.
j.-I.FFAR. J. :\lICHALOV. S. STCCKEY. P. J. lAP. R. H. C. The CLP(R)
Language and Svstem. fE.if Research Rep. RC 16292 (#723:36). ~o\'. 1990.

[19] TILLY, 1<:.: .\ C'amparatiye Study of .\utomatic Test p'attemGcneration and Con­
straim Satisfaction :\Iethods, Technical Report Ser. Electrical Engineering, Technical
University of Budapest. June 20. 1994.

[20] j;.;CE. D.: Software Testing. in j. :VIcDermin (ed.) : Software Engineer's Reference
Book. Butterworth-Heinemann Ltd., 1991.

[21] LIX. 1'. S. Su. S. 'I'. H.: VLSI Functional Test Pattern Generation A Design
and Implementation, fEEE International Test Conference. pp. 922-929, November
1985_

[22] BE;';YO, B.: Test Pattern Generation Based on High Level Hardware Description,
CSc (PhD) thesis, Budapest, 1997.

