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The finite element formulation for the numerical analysis o
can be developed from the A4 — ¢ method [1,2]. The two
tions, one for the superconducting region and one for the air region, can be
combined into one single equation: for 2-D problems it is

N T (1')

and for axisymmetric problems it is

d /l (}récﬁ)\ LD [IAN (/aésc |
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where A,. is the magnetic vector potential due to the magnetic field gener-
ated by the cuperccmchmtmLT current, 4., is due to the external magnetic

~

fleld and the virtual conductivity o, which is defined later, equal to 0 for
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the air region. According to the critical state model we have the following
relationship for the superconducting region

2 =0 if |

L
i

E| |
B (3)

where J, is the critical current density. The virtual conductivity can be
expressed as

g = 4
i if |E|= ()
The FEM formulation has the following matrix form
JAs.
K- A4,.+7T- == f, 5
4122 5
where K is t 1e stiffness matrix, T is the matrix relating to the time depen-
dence and

J is the force vector due to the external ﬁeld To solve equation
(5) in time, a @ parameter is introduced as follows

Asoipr = Aucp + AL [0 Ay + (1-0) - A (6)

o5 v.,,

where &k is the time step number. When © is equal to 0, 1, 0.5, 0.878 we
have the Euler scheme, the backward difference, the Crank-Nicolson formula
and the Liniger algorithm, respectively [3]. Premultiplying both sides with
T and taking the equation (3) in consideration we get the following formula

T+A0 0 K- Awpsr = [T - A1 (1-0) - K] A + A2 f(8) . (7)

rerv step the virtual conductivity ¢ i to be changed according to

e 1

i
4). Uesaka mopo\ed the following algorithm [4] to carry out the nu-
nerical realisation of Eq. (4):

=]

1. The iniii'” o of all the finite elements is set to be large enough {e.g.

2 £.g

HpC = 10%s/m?

2. If the absolute
changed as

r—! =

3. Repeat Step 2 until |J| of all the elements is less than or equal to
critical current density.

nq-‘
,.J

If we consider Eq. (4) closely, we can see that the above algorithm
cannot handle correctly the situation when the electric field approaches zero,
which is the case when the external field becomes constant. The virtual
conductivity should be increased to infinity in order to sustain the critical
current. The demonstration of this problem can be found in [2].

-
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2. The Steady State of the Finite Elements and its Application

Let us consider the equation

E=ps-(J-J). (8)
where p; is the resistivity due to the viscous force acting on fluxcids. When
the induced current reaches the critical value, the electric field drops to zero
and as a consequence the current can flow without the energy dissipation.
This equation also means that when the current reaches the critical value,
it takes the steady state or it does not change. According to this meaning
the steady state of a finite element of the superconducting region can be
introduced as follows:

~

following two algorithms are used to realise the above interpretation:

=
@

Algorithm 1

. The initial ¢ of all the finite elements is set to be great enough, e.g
HoC = 1OSQ/ 2

2. Compute the element stiffness matrices for all the finite elements;

3. Compute the element matrices and vectors for all the finite elements;

4. Assemble the element matrices and vectors into the global equation;

5. Test the state of all the elements. If they are all in the steady state,
go to Step 9;

6. Solve Eq. (7) and compute the current density J:
If the absolute value of the induced current }J| > J.. then ¢ is to be
changed as

Je

e 2

Jl

8. Repeat Steps 3-7 until the current density of all the finite elements is
less than or equal to the critical current density;

9. Those elements whose current density is close to (or differs by 1%,
from) the critical density are set to be in the steady state;

10. The end.

Optl =

Algorithm 2

The initial ¢ of all the finite elements is set to be great enough, e.g.
oo = 10%s/m";

2. Compute the element stiffness matrices for all the finite elements;
Compute the element matrices and vectors; the element vectors of the
steady state elements are not computed;
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4. Assemble the element matrices and vectors into the global equation;
Test the state of all the elements. If they are all in the steady state,
go to Step 9;

6. Solve Eq. (7) and compute the current density J;

If the absolute value of the induced curtent |J| > J., then ¢ is to be
changed as

o

Tpntl = e

8. Repeat Steps 3-7 until the current density of all the finite elements is
less than or equal to the critical current density:
9. Those elements whose current density is close to (or differs by 1%,
from) the critical density are set to be in the steady state;
10. The end.
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nagnetic vector poteniia
algorithms is ;ound at Step 3. Alvoriti_m 1 takes int
diamagnetism, while Algor ithm 2 does not. It can b said that Algorithm 1is
valid for the auvprcor\dua ;
while A.lg rithm 2 is valid
property is negligible.

A stu d} is peuo:ﬁed for both the slab and the ring in
their magnetising rin i lication to 1
tokamak [5-9]. ‘-

& £

tem of the Lokamal\ a"u

) ¢ fie
i d | ] Nov EN et al. propo superconductor
superconductor slabs [9]. It was shown that the apoizcaLM*‘ of superconduc-
tor rings had some advantages over the ap phcauun of supercond i

proposed by UCHIMOTO et al.: it ma»x the numerlcal analy 5 3 simpler and

S'SL
th

;\B\JD is superconductor‘ while for the rmg case onl} L.he reglon ,A.B E and
the region symmetrical with it are Quperconductor The boundary condition
can albo be taken as zero along OPQR. The ring has the dimension of 3 mm
outer diameter, 1.5 mm inner dlameter and 0.6 mm thickness, which is dos

to the dimension of the ring measured by GouGH et al. [10]. Reported
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measurements of magnetic hysteresis for single crystals of HTSC are given
in Table 1. The result of the field computation for this small model can be
scaled up to estimate the magnetic field of the real size model by applying
the principles of similarity [11-12}.

For time dependence computation the Liniger algorithm is chosen. The
xternal field, whose direction is parallel with the axis of the superconductor,
is modelled to change linearly at 4 mT /s, the time step is 0.4 s and the critical
current is about 1084 /m? (1oJ. = 102 '\f"s,/ms).

D E A I
s s .
[ T 2,
C F B

Fig. 1. The model for numerical computations

Pty

Table 1. Report of measurements of single crystals of HTSC by GouGH et al.

Applied field | Superconductor Superconductor T
disc ring
40 mT very little flux penetrates | flux starts to enter the
into the body of the disc | central hole, but is still ex-
cluded from the bulk of
the ring-shaped crystal
01T very little flux penetrates | flux continues to enter the
into the body of the disc central hole, but very lit-
tle flux penetrates into the
body of the ring
1T little flux penetrates into | flux continues to benter
the body of the disc the central hole, but still
little flux penetrates into
the body of the ring
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Algorithm 1 is applied first. The direction of the flux penetration is
similar for both the ring and the slab: that is from the outside to inside; the
induced magnetic field B. gets decreased as it goes deep into the ring or the
slab. However, the minimum value of B. can be found at the centre for the
slab and near the inner edge for the ring (Figs. 2-10). In the case of the slab
the induced magnetic field B. increases from the field distribution of 8.005 T
at the edge and —0.016 T inside at Step 10 to the field distribution of 0.01 T
at the edge and —0.05 T inside at Step 40. In the case of the ring the induced
magnetic fleld B, increases from the field distribution of 0.005 T at the outer
edge and —0.016 T at the inner edge at Step 10 to the fleld distribution of
0.01T at the outer edge and —0.048 T at the inner edge at Step 40. The
ring gets saturated at Step 40 (Fig. 8), while the slab gets saturated much
slou er. Even at Step 140 the critical current has not flowed fully inside the
slab (F1g. 11). The result partly explains the experimental results measured
by GougH et al. Very little flux penetrates into the slab for the field up

30 mT (about Step 20). The induced fleld strength inside the slab is
(,.bOUL the same with the external field strength { Fug. 3) However, when the
external field is about 100 mT (at Step 65), the induced field strength at the
centre of the slab is only about 70 mT (Fig. 9). This means that the net
magnetic field strength inside the slab is about 30 mT, therefore a significant
ﬂux has already penetrated into the slab, while aCCOLdHlO— to measurements
almost no flux penetrates into the ring up to 100 mT. According to the
computed result the saturation field of the slab is greater than 200 mT as at
Step 140 the critical current has not circulated in all the volume of the slab.
According to the measurements the saturation field must be greater than
1 T, hence the above numerical result still falls short of the experimental
one. However, as it can be seen later the result computed by Algorithm 1
is still closer to the experimental result thzr the result computed by the

Uesaka algorithm. According to the Uesaka algorithm the flux penetrates
into the buperconduum faster, therefore -\loor'tnm 1 explains the difficulty
of the flux penetration better than the Uesaka algorithm.

Both the numerical lcsdzc, computed by :’\‘gouthm 1, and the exper-
imental results agree that more flux penetrates into the r g than into the
slab. Ewven though the strongest induced field of the ring is about that of
the slab, the mduceq fieid at the centre of the ring is definitely smaller than
this value. The difference can be observed even at Step 10. It means that
at about 16 mT the flux already gets into the hole without penetrating the
body of the ring (F79. 2). According to the measurements this only happens
at 40 mT. There are also other factors that influence the numerical result
and have not been studied yet like the boundary conditions, the external
field distribution, and even the dependence of the critical current density on
the magnetic field

Algorithm 2 is then applied. The result is similar in characteristic: that
is the flux penetrates from the outside (Figs. 12-17). In the case of the slab
the induced magnetic field B, changes from the field distribution of 0.003 T
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at the edge and —0.016 T inside at Step 10 to the field distribution of 0.002 T
at the edge and -0.033T inside at Step 30. In the case of the ring the induced
magnetic fleld B, changes from the fleld distribution of 0.003 T at the outer
edge and —0.016 T at the inner edge at Step 10 to the fleld distribution
of 0.0025 T at the outer edge and — 0.018 T at the inner edge at Step 30.
The ring and the slab get saturated faster. The ring has the critical current
flowing in all its volume at Step 15. The induced magnetic field is weaker
than that given by Algorithm 1. Both Algorithm 1 and Algorithm 2 show
that at low magnetic field both the ring and the slab reduce ripple similarly
(Figs. 2-7, 12-15). The induced magnetic field strength near the outer edge
of the ring is about the same as the induced magnetic field strength near
the edge of the slab. However, Algorithm 2 shows that for higher magnetic
field, when the flux penetrates deep into the slab, the field strength near
the edge of the slab weakens (Figs. 16-17). Therefore according to this
algorithm, the ring reduces ripple better than the slab for higher magnetic
field. Algorithm 1 shows that the flux continues to penetrate into the slab
against a strong magnetic shielding even when it fully penetrates the ring
(Figs. 9-10). As a consequence the induced fleld strength near the edge of the
slab continues to increase, hence for higher magnetic field the slab reduces
ripple better than the ring according to this algorithm. It can be understood
from these results that Algorithm 1 represents the case when the intrinsic
diamagnetism plays an important role of shielding the flux from penetrating
into the body of the superconductors during the magnetising process, while
in Algorithm 2 the intrinsic diamagnetism is simply left out. We can say
that Algorithm 1 is valid for superconductors in the Meissner state, while
Algorithm 2 is valid for those in the mixed state. In the tokamak, the
magnetic fleld is very high, therefore the mixed state is the right state of
superconductors. It can be inferred from this reasoning that rings are the
right ripple reducers for the tokamak.
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Fig. 5. Slab: the induced magnetic field B, at step 20 (Algorithm 1)
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Fig. 9. Slab: the induced magnetic fleld B, at step 65 {Algorithm 1)

Finally the Uesaka algorithm is also used. The trapping mechanisms
are similar: that is the flux penetrates from the outside and the strongest
induced magnetic field of the slab is at the centre and that of the ring
is near the inner edge (Figs. 18-24). In the case of the slab the mduced
magnetic fleld B; increases from the field distribution of 0.005 T at the edge
and —0.016 T inside at Step 10 to the fleld distribution of 0.006 T at the
edge and - 0.058 T inside at Step 50. In the cese of the ring the induced
magnetic fleld B, increases from the field distribution of 0.005 T at the outer
edge and —0.016 T at the inner edge at Step 10 to the field distribution of
0.006 T at the outer edge and —0.033 T at the inner edge at Step 50. The
result of the Uesaka algorithm just lies between the result of Algorithm 1 and
Algorithm 2. The U esaka algorithm takes less time for both the slab and the
ring to get saturated than by Algorithm 1 and more time than Algorithm 2.
The xring ge‘s aturated at Step 25 (Fig. 22). In the Uesaka algorithm both
the ring and the slab reduce ripple similarly despite the magnitude of the
external field. Because the ring means less material, it would be the favoured
ripple reducer.

— 2

3. Conclusion

The numerical analysis of superconductors is very difficult not only because
of their non-linear properties, but also because of their dynamic and static
characteristics. The attempt to treat superconductors as a kind of dynamic
non-linear conductors proves to be not enough. It is quite clear from the
critical state model that due to the exiernal field change a very high su-
percurrent flows resistively until it drops to the critical current. After that,
the critical current does not change and the steady state region can conduct
without resistance. The Uesaka algorithm does not take into account the
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Frg. 11. Slab: the current distribution at step 140 (Algorithm 1)
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Fig. 12. Ring: the induced magnetic field B, at step 10 (Algorithm 2)
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Fig. 18. Ring: the induced magnetic field B, at step 10 (the Uesaka algorithm)




360 T. NGUYEN

0.605 :
.\ H
J \“"‘
0 . "’ . A |
/’ i
-0.605 /
82T} /
-0.01 /
/
//
/ )
~ :
Qo015f ;
{ :
-0.02
o 0.030% 0.001 0.0015 0.002 0.00
Am]

Fig. 19. Slab: the induced magnetic field B, at step 10 {the Uesaka algorithm)
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Fig. 21. Slab: the induced magnetic field B, at step 25 (the Uesaka algorithm)
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steady state and as a consequence it cannot give account for the supercon-
ducting current. The proposed algorithm is in fact an attempt to take into
consideration the steady state. There is a difficulty of introducing the effect
of the steady state region into the overall transient process. In the proposed
algorithms the steady state is modelled as a ‘superconducting’ region with
a frozen current. Its validity has not been confirmed experimentally. The
computed result is quite short of the experimental result. However, Algo-
rithm 1 does explain the difficulty of the flux penetrating into the slab as
it takes into consideration the diamagnetic property. There are also other
factors that can influence the numerical result: the boundary conditions, the
external magnetic field distribution, etc. Further investigations are needed
from both numerical and experimental studies.

It was shown in [9] that the ripple reduction of superconductors depends
on the critical current density. At the same time, as it has been shown above
the ripple reduction also depends significantly on the flux penetration into
the body of the superconductors. Algorithm 1 shows that for the Meissner
state little flux penetration into the body of superconductors means an in-
crease of the fleld strength near the outer edge for an increasing external
magnetic fleld. Howexer, in the mixed state, when a lot of flux pfwnewaﬂzeQ
into the body of superconductors, this field weakens as it is shown | by Algo-
rithm 2. In the tokamak it is the mixed state that is dominant and in this
case, rings reduce ripple better than slabs. However, further experimental
investigation is rieeded to confirm this result.
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