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In nUITierical c!latysls 
conductivity that is 

are trecited as non-linear conductors \vith virtu2.1 
so that the current density takes the critical yaluc 

to the critical state model. 'The al§sO!'ltlll!1 by F esaka dOes 
the initial virtual conductivity the curreT:.t reaches the 

th1s ca.nnot handle: correctly -::.11e situation \vhen the eiectric 
field cpproaches zero, the case \t;he:-D the external field DeCornes constant. 'l~he 

virtual conductivity should be increased to infinity in order to sustain the critical current. 
T'o simulate this critical stcte, the steady state of finitE: elernents \\~as introduced. Tv;o 
algorithms that aODl--.: this state v/ere developed. and toge£,her \vith the LJesak2 
algorithrn v;~r~ ~usec. to the applicction of superconductor and slabs to 
reduce magnetic ripple in t.he to[;.amak, 

]{eyu'ords: numerical ;-rn(llysis of scpcrcondu':tors. rippie reduction. 

1. Introduction 

The finite element formulation for the numerical analysis of superconductors 
can be developed from the Ay method [1,2], The two governing equa­
tions, one for the superconducting region and one for the air region, can be 
combined into one single equation: for 2-D problems it is 
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where is the magnetic vector potential due to the magnetic field gener­
ated by the superconducting current, flex is due to the external magnetic 
field and the virtual conductivity a, which is defined later, equal to 0 for 
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the air region. According to the critical state model we have the following 
relationship for the superconducting region 

if IEI:f 0, 

if IEI = 0, 
(3) 

where Je is the critical current density. The virtual conductivity can be 
expressed as 

{

.ls... 
CJ = IEI 

cx::: 
if IEI:f 0, 
if IEI = 0. 

The FEM formulation has the following matrix form 

K· 

(4) 

(5) 

where K is the stiffness matrix, T is the matrix relating to the time depen­
dence and 1 is the force vector due to the external field. To solve equation 
(5) in time, a 8 parameter is introduced as follows 

8) . 

where k is the time step number. When 8 is equal to 0, 1, 0 . .5, 0.878 we 
have the Duler scheme, the backward difference, the Cmnk-Nicolson formula 
and the LinigeT algorithm. respectively [3J. Premultipiying both sides with 
T and taking the equation (.5) in consideration ",ve get the following formula 

+!::,.t·8· - !::"t . (1 - 8) . 

For every step the 'virtual conduc:ivity CJ is to be changed according to 
(4). Cesaka plOposed the following algorithm [4] to carry out the nu­

merical realisation of Eq. 

1. The initial (j of all the finit,? elements is se!. to be enough 

2. value of the induced current > then CJ is to be 
changed as 

~). Repeat Step 2 until IJ of all the elements is less than or equal to the 
critical current density. 

If we consider Eq. (4) closely, we can see that the above algorithm 
cannot handle correctly the situation when the electric field approaches zero. 
which is the case when the external field becomes constant. The virtual 
conductivity should be increased to infinity in order to sustain the critical 
current. The demonstration of this problem can be found in [2J. 
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2. Steady State of the Finite Elements and its Application 

Let us consider the equation 

E=pj·(l-lc). (8) 

where p j is lhe resistivity due to the viscous force acting on fluxoids. When 
the induced current reaches the critical value. the electric field drops to zero 
and as d consequence the current can flow without the energy dissipation. 
This equation also means that \vhen the current reaches the critical value, 
it takes the steady state or it does not change. According to this meaning 
the sl:eady state of a finite element of the superconducting region can be 
introduced as follows: 

its current is The :::a\jed current. 
its conductivit~· does not need Lo change. 

The following tv;o algorithms are used to realise the above interpretation: 

Algorithm 1 

1. The initial Cl of all the finite elements is set to be great enough, e.g. 
8 . ? 

floG = 10 s/m-: 
2. Compute the element stiffness matrices for all the finite elements; 
3. Compute the element matrices and vectors for all the finite elements: 
4. Assemble the element matrices and vectors into the global equation: 
5. Test the state of all the elements. If they are all in the steady state. 

go to Step 9; 
6. Solve Eq. (7) and compute the current density J: 
(. If the absolute value of the induced current > le, then Cl is to be 

changed as 

8. Repeat Steps 3-7 until the current density of all the finite elements is 
less than or equal to the critical current density; 

9. Those elements whose current density is close to (or differs by 1%, 
from) the critical density are set to be in the steady state: 

10. The end. 

Algorithm 2 

1. The initial Cl of all the finite elements is set to be great enough, e.g. 
8 .) 

floG = 10 s/m-; 
2. Compute the element stiffness matrices for all the finite elements; 
3. Compute the element matrices and vectors; the element vectors of the 

steady state elements are not computed; 
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4. Assemble the element matrices and vectors into the global equation; 
o. Test the state of all the elements. If they are all in the steady state, 

go to Step 9; 
6. Solve Eq. (7) and compute the current density 3: 
7. If the absolute value of the induced current 131 > Je , then a is to be 

changed as 
J~ 

an+l = IJ'[' an· 

8. Repeat Steps 3-7 until the current density of all the finite elements is 
less than or equal to the critical current density: 

9. Those elements whose current density is close to (or differs by 1 Yc, 
from) the critical density are set to be in the steady state: 

10. The end. 

Step 5 is carried out in order to see if all the finite elements of the 
supercondur:ting region are in the steady stale. If it is the case, then the 
magnetic vector potemial is not to be changed. The difference of the two 
algorithms is found at Step 3. Algorithm 1 takes into account the intrinsic 
diamagnetism, while Algorithm 2 does not. It can be said that Algorithm 1 is 
valid for the superconducting state whose diamagnetic property is significant, 
while Algorithm 2 is valid for the superconducting state whose diamagnetic 
property is negiigible. 

A study is performed for both the slab and the ring in order to compare 
their magnetising process during their aopiication to the rippled field in the 
tokamak ~[.5-9]. The resulted from' the discreteness of the magnet sys­
tem of the tokamak and can cause ion losses. Even though the ripple that is 
about 1% does not endanger the balculCe of the burning plasma, the 
ripple losses can result in serious heaL load of the first v;aii [6]. The 
ripple can be reduced inagnetic inserts or coils t 
al. use of Ye slabs to redUCE:-

ripple reduction ill Cl 

of the [8]. NGCYE:\ et al. proposed superconductor to 
superconductor slabs [91. It \\"as shown that the application of superconduc­
tor rings had some advantages over the application of superconductor slabs 
proposed by t' CHil\lOTO et a1.: it makes the numerical analysis simpler and 
it provides a better ripple reduction. In this paper the numerical algorithms 
are applied to examine the ripple reduction of superconductor slab and ring. 
The numerical model can be seen in Fig. 1: for the slab case all the region 
ABeD is superconductor, w'hile for the ring case only the region ABFE and 
the region symmetrical with it are superconductor. The boundary condition 
can also be taken as zero along OPQR. The ring has the dimension of 3 mm 
outer diameter, 1.5 mm inner diameter and 0.6 mm thickness, 'which is close 
to the dimension of the ring measured by GOUGH et a!. [10]. Reported 
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measurements of magnetic hysteresis for single crystals of HTSC are given 
in Table 1. The result of the field computation for this small model can be 
scaled up to estimate the magnetic field of the real size model by applying 
the principles of similarity [11-12J. 

For time dependence computation the Liniger algorithm is chosen. The 
external field, whose direction is parallel with the axis of the superconductor, 
is modelled to change linearly at 4 mT /s, the time step is 0.4 s and the critical 
current is about 108 (J-LoJc = 102 Vs/m3

). 

AB .. 0.6 mm 
BC- 3mm 
AE- 0.75 mm 

DP-JOmm 

Fig. 1. The model for numerical computations 

Table 1. Report of measurements of single crystals of HTSC by GOUGE et al. 

Applied field 

I 

Superconductor Superconductor I 

disc ring 
40 mT i very little flux penetrates flux starts to enter the 

I 
into the body of the disc central hole, but is still ex-

I 

eluded from the bulk of 
I the ring-shaped crystal 

0.1 T I very little flux penetrates flux continues to enter the 
into the body of the disc central hole, but very lit-

I - tIe flux penetrates into the 

I body of the ring 
IT little flux penetrates into flux continues to benter 

the body of the disc the central hole, but still 
little flux penetrates into 
the body of the ring 
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Algorithm 1 is applied first. The direction of the flux penetration is 
similar for both the ring and the slab: that is from the outside to inside; the 
induced magnetic field Ez gets decreased as it goes deep into the ring or the 
slab. However, the minimum value of Bz can be found at the centre for the 
slab and near the inner edge for the ring (Figs. 2-10). In the case of the slab 
the induced magnetic field Bz increases from the field distribution of O.OOS T 
at the edge and -0.016 T inside at Step 10 to the field distribution of 0.01 T 
at the edge and -0.05 T inside at Step 40. In the case of the ring the induced 
magnetic field Bz increases from the field distribution of O.OOS T at the outer 
edge and -0.016 T at the inner edge at Step 10 to the field distribution of 
O.OlT at the outer edge and -0.048 T at the inner edge at Step 40. The 
ring gets saturated at Step 40 (Fig. 8), while the slab gets saturated much 
slower. Even at Step 140 the critical current has not flowed fully inside the 
slab (Fig. 11). The result partly explains the experimental results measured 
by GOlJGH et al. Very little flux penetrates into the slab for the field up 
to ~iO mT (about Step 20). The induced field strength inside the slab is 
about the same with the external field strength (Fig. 5). However. when the 
external field is about 100 mT (at Step 65), the induced field strength at the 
centre of the slab is only about 70 mT (Fig. 9). This means that the net 
magnetic field strength inside the slab is about :30 mT. therefore a significant 
flux has already penetrated into the slab. while accordiIlg to measurements 
almost no flux penetrates into the ring up to 100 111 T. According to the 
computed result the saturation field of the slab is greater than 200 mT as at 
Step 140 the critical current has not circulated in all the volume of the slab. 
According to the measurements the saturation field must be greater than 
1 T. hence the above numerical result still falls short of the experimental 
one. However, as it can be seen later the result computed by Algorithm 1 
is still closer to the experimental result tlnE the result computed by the 
Uesaka algorithm. According to the uesaka algorithm the flux penetrates 
into the superconductor faster, the~efore Algorithm 1 explains the difficulty 
of t.he fiux penetration better than the Uesaka algorithm. 

Both the numerical results. computed Algorithm 1, and the exper-
irnental results agree that Il10re flux penetrates into tJle than into the 
slab. Even though the strongest induced field of the ring is about that of 
the slab, the induced field at the centre of the ring is definitely smaller than 
this value. The difference can be observed even at Step 10. It means that 
at about 16 m T the nux already gets into the hole witl~out penetrating the 
body of the ring (Fig. 2). According to the measurements this only happens 
at 40 mT. There are also other factors that influence the numerical result 
a.nd have not been studied yet like the boundary conditions. the external 
held distribution, and even the dependence of the critical current density on 
the magnetic field. 

Algorithm 2 is then applied. The result is similar in characteristic: that 
is the flux penetrates from the outside (Figs. 12-17). In the case of the slab 
the induced magnetic field B" changes from the field distribution of 0.003 T 
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at the edge and -0.016 T inside at Step 10 to the field distribution of 0.002 T 
at the edge and -O.033T inside at Step 30. In the case of the ring the induced 
magnetic field Bz changes from the field distribution of 0.003 T at the outer 
edge cmd -0.016 T at the inner edge at Step 10 to the field distribution 
of 0.002') T at the outer edge and 0.018 T at the inner edge at Step 30. 
The ring and the slab get saturated faster. The ring has the critical current 
flowing in all its volume at Step 1,). The induced magnetic field is weaker 
than that given by Algorithm 1. Both Algorithm 1 and Algorithm 2 show 
that at low magnetic field both the ring and the slab reduce ripple similarly 
(Figs. 12-15). The induced magnetic field strength near the outer edge 
of the ring is about the same as the induced magnetic field strength near 
the edge of the slab. However. Algorithm 2 shows that for higher magnetic 
field, when the flux penetrates deep into the slab, the field strength near 
the edge of the slab weakens (Figs. 16-17). Therefore according to this 
algorithm, the ring reduces ripple better than the slab for higher mag~letic 
field. Algorithm 1 shows that the flux continues to penetrate into the slab 
against a strong magnetic shielding even when it fully penetrates the ring 
(Figs. 9-10). As a consequence the induced field strength near the edge of the 
slab continues to increase, hence for higher magnetic field the slab reduces 
ripple better than the ring according to this algorithm. It can be understood 
from these results that Algorithm 1 represents the case when the intrinsic 
diamagnetism plays an important role of shielding the flux from penetrating 
into the body of the superconductors during the magnetising process, while 
in Algorithm 2 the intrinsic diamagnetism is simply left out. We can say 
that Algorithm 1 is valid for superconductors in the Meissner state, while 
Algorithm 2 is valid for those in the mixed state. In the tokamak, the 
magnetic field is very high, therefore the mixed state is the right state of 
superconductors_ It can be inferred from this reasoning that rings are the 
right ripple reducers for the tokamak. 
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Fig. 3. Slab: the induced magnetic field Bo at step 10 (Algorithm 1) 

O.Cl,-------------------

.0.035 L-__ ~ _____________ _ 

o D.ooe5 O.C.Ql O.m15 om2 0.0025 
rjm] 

Fig. 4· Ring: the induced magnetic field Bz at step 20 (Algorithm 1) 
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Fig. 5. Slab: the induced magnetic field Bz at step 20 (Algorithm 1) 
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Fig. 8. The current density In the ring at Step 40 (Algorithm 1) 
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0.02.--------------------, 
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Fig. 9. Slab: the induced magnetic field Eo at step 65 (Algorithm 1) 

Finally the Uesaka algorithm is also used. The trapping mechanisms 
are similar: that is the flux penetrates from the outside and the strongest 
induced magnetic field of the slab is at the centre and that of the ring 
is near the inner edge (Pigs. 18-24). In the case of the slab the induced 
magnetic field B::; increases from the field distributioIl uf 0.005 T at the edge 
and -0.016 T inside at Step 10 to the field distribution of 0.006 T at the 
edge and 0.058 T inside at Step 50. In the case of the ring the induced 
magnetic field B::; increases from the field distribution of 0.00.5 T at the outer 
edge and -0.016 T at the inner edge at Step 10 to the fieid distribution of 
0.006 T at the outer edge and -0.033 T at the inner edge at Step SO. The 
result of the Uesaka algorithm just lies between the result of Algorithm 1 and 
Algorithm 2. The tjesaka algorithm takes less time for both the slab and the 
ring to get saturated than by Algorithm 1 and more time than Algorithm 2. 
The xring gets saturated at Step 2.S (Fig. 22). In the L"esaka algorithm both 
the ring and the slab reduce ripple similarly despite the magnitude of the 
external field. Because the ring means less materiaL it would be favoured 
ripple reducer. 

3. Conclusion 

The numerical analysis of superconductors is very difficult not only because 
of their non-linear properties, but also because of their dynamic and static 
characteristics. The attempt to treat superconductors as a kind of dYllamic 
non-linear conductors proves to be not enough. It is quite clear from the 
critical state model that due to the external field change a very high su­
percurrent flows resistively until it drops to the critical current. After that, 
the critical current does not change and the steady state region can conduct 
without resistance. The Uesaka algorithm does not take into account the 
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Fig. 12. Ring: the indUCed magnetic field Bz at step 10 (Algorithm 2) 
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Fig. 13. Slab: the induced magnetic field Bz at step 10 (Algorithm 2) 
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Fig. 14· Ring: the induced magnetic field Bz at step 1-5 (Algorithm 2) 
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Fig. 15. Slab: the induced magnetic field Bz at step 1-5 (Algorithm 2) 
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Fig. 17. Slab: the induced magnetic field B:: at step 30 (Algorithm 2) 
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Fig. 18. Ring: the induced magnetic field Bz at step 10 (the Uesaka algorithm) 
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Fig. 19. Slab: the induced magnetic field Bz at step 10 (the Uesaka algorithm) 
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Fig. 20. Ring: the induced magnetic field B: at step 25 
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Fig. 21. Slab: the induced magnetic field Bz at step 25 (the Uesaka algorithm) 
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22. The current in the ring at. Step 25 t'esaka algorithm) 
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Fig. 2'1. Ring: the induced magnetic field Bo at step 50 (the Cesaka algorithm) 
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Fig. 24. Slab: the induced magnetic field Bo at step 50 (the Uesaka algorithm) 
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steady state and as a consequence it cannot give account for the supercon­
ducting current. The proposed algorithm is in fact an attempt to take into 
consideration the steady state. There is a difficulty of introducing the effect 
of the steady state region into the overall transient process. In the proposed 
algorithms the steady state is modelled as a 'superconducting' region with 
a frozen current. Its validity has not been confirmed experimentally. The 
computed result is quite short of the experimental result. However. Algo­
rithm 1 does explain the difficulty of the flux penetrating into the slab as 
it takes into consideration the diamagnetic property. There are also other 
factors that can influence the numerical result: the boundary conditions, the 
external magnetic field distribution, etc. Further investigations are needed 
from both numerical and experimental studies. 

It v;as shown in [9] that the ripple reduction of superconductors depends 
on the critical current density. At the same time, as it has been shown above 
the ripple reduction also depends significantly on the flux penetration into 
the body of the superconductors. Algorithm 1 shows that for the Meissner 
state little flux penetration into the body of superconductors means an in­
crease of tbe field strength near the outer edge for an increasing external 
magnetic field. However. in the mixed state, \\"hen a lot of flux penetrates 
into the body of superconductors. this field v:eakens as it is sho\\'n by Algo­
rithm 2. In the tokamak it is the mixed state that is dominant and in this 
case, rings reduce ripple better than slabs. However. further experimental 
in\'estigation is needed to confirm this result. 
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